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Electric-field-induced helium-helium resonances
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The tunability of the helium-helium interaction through an external electric field is investigated. For a static
external field, electric-field-induced resonances and associated electric-field-induced bound states are calculated
for the 4He-4He, 3He-4He, and 3He-3He systems. Qualitative agreement is found with the literature for the
3He-4He and 3He-3He systems [E. Nielsen, D. V. Fedorov, and A. S. Jensen, Phys. Rev. Lett. 82, 2844 (1999)].
The implications of the predicted electric-field-induced resonances for 4He-4He on the wave packet dynamics,
initiated by intense laser pulses, are investigated. Our results are expected to guide next generation experiments.
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I. INTRODUCTION

The helium atom is a chemically inert rare gas atom. He-
lium has two naturally occurring isotopes: 4He, a composite
boson, and 3He, a composite fermion. Whether or not these
isotopes form diatomic molecules was debated for a long time
in the literature. It is now agreed upon that the 4He-4He system
supports a single rotationless bound state with an extremely
small binding energy of about 1.3 mK [1–7]. Neither the
3He-4He nor the 3He-3He system support, in the absence of
external fields, molecular bound states.

The extremely small binding energy of the 4He-4He dimer
is associated with a large positive s-wave scattering length.
The 3He-4He system, in contrast, is characterized by a nega-
tive and large, in magnitude, s-wave scattering length. Moti-
vated by the tunability of many of the alkali dimers through
the application of an external magnetic field in the vicinity of
a Fano-Feshbach resonance [8], one may ask if the helium-
helium interaction can be tuned as well, with the external
magnetic field replaced by an external electric field. If such
a tunability existed, this would open up many new research
directions related to the study of extremely weakly bound
molecular states for a system that is amenable to ab initio
calculations. Indeed, Ref. [9] pointed out the tunability of the
3He-4He and 3He-3He systems by a static external electric
field. Moreover, Ref. [9] explored the consequences of this
tunability for the three-body sector in the context of Efimov
physics [10–12]. The tunability of the 4He-4He system by a
static electric field and by laser pulses strong enough to in-
volve electronically excited potential curves was very recently
pointed out in Ref. [13].

Working in the opposite regime of short laser pulses, a
recent molecular beam experiment [14] demonstrated that a
short 310 fs laser pulse with an intensity of a few times 1014

W/cm2 can induce dissociative wave packet dynamics of the
4He-4He dimer, including interferences between the l = 0 and
l = 2 partial wave channels. Here l denotes the orbital angular
momentum quantum number. While Ref. [14] provided no ev-
idence for the existence of electric-field-induced bound states
or hybridized states such as those predicted in Ref. [15], the
experimental results clearly show that the laser-molecule cou-
pling is strong enough to trigger measurable changes such as

a clean alignment signal. Moreover, the excellent agreement
between the experimental and theoretical results in Ref. [14]
suggests that the laser-molecule interaction, which included
the lowest Born-Oppenheimer potential curve and assumed
inertness of the electronic degrees of freedom, provides a
reliable description, at least in the short-pulse regime for the
intensities considered.

The present theoretical work considers laser pulses that
are longer than those utilized in Ref. [14]. As a first explo-
ration, our theoretical framework neglects, as in Ref. [14], the
electronic degrees of freedom. It is expected that corrections
due to the electronic motion (see, e.g., Ref. [16]) need to be
accounted for in follow-up work. One of the goals is to explore
under which conditions the electric-field-induced resonances
of the helium-helium systems, first investigated in Ref. [9]
for the 3He-4He and 3He-3He systems and for the 4He-4He
system in Ref. [13], can be observed experimentally in time-
dependent setups. To interpret the dynamic wave packet stud-
ies, the static field case is revisited and some quantitative dis-
crepancies with the literature [9], which we have no explana-
tion for, are pointed out. To observe the electric-field-induced
resonances, the associated bound states have to be populated
with sufficiently high probability and some signature that this
has been achieved needs to be recorded. Our time-dependent
calculations show, owing to the extremely floppy and highly
quantum mechanical nature of the helium dimers, that revival
dynamics competes with dissociative dynamics. Probing this
intricate dynamics experimentally is expected to be possible
but quite challenging due to the need of realizing long, intense
laser pulses.

The remainder of this article is organized as follows.
Section II introduces the system Hamiltonian and relevant
theoretical background. Sections III and IV present our results
for a static external field and a time-dependent external field,
respectively. Last, Sec. V concludes.

II. SYSTEM HAMILTONIAN
AND THEORETICAL BACKGROUND

This section describes the theoretical framework employed
to investigate the tunability of the effective helium-helium in-
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teraction strength. Section II A introduces the system Hamil-
tonian. The determination of the scattering and bound states
of the static Hamiltonian are discussed in Secs. II B and II C.
Last, Sec. II D summarizes how the wave packet propagation
is done when the Hamiltonian is time dependent.

A. System Hamiltonian

We consider two helium atoms, either two 4He atoms,
a 3He-4He pair, or two 3He atoms, with reduced mass μ

interacting through the spherically symmetric state-of-the-art
“electronic ground state” potential V2b(r) from Ref. [17],
where �r denotes the internuclear distance vector and r is
equal to |�r|. Due to the adiabatic beyond Born-Oppenheimer
correction term [17], the interaction potentials for 4He-4He,
3He-4He, and 3He-3He are slightly different.

Throughout we assume that the electric field of the laser
is oriented along the z axis. Moreover, we assume that the
oscillations of the electric field are so fast that they can be
integrated over. With these assumptions, the time-dependent
laser-molecule interaction Vlm(r, θ, t ) reads [18]

Vlm(r, θ, t ) = − 1
2 |ε(t )|2[α‖(r) cos2 θ + α⊥(r) sin2 θ ], (1)

where θ denotes the angle between the z axis and the in-
ternuclear distance vector �r (in spherical coordinates, this is
the azimuthal angle), ε(t ) characterizes the shape of the laser
pulse, and α⊥(r) and α‖(r) denote the polarizabilities per-
pendicular and parallel to the molecular axis. The difference
between these polarizabilities is responsible for the intriguing
dynamics discussed in Sec. IV.

Following the pioneering work of Buckingham and Watts
[19], analytic expressions for α⊥(r) and α‖(r) read

α⊥(r) = 2α0 − 2α2
0

4πE0 r3
+ 2α3

0

(4πE0)2 r6
(2)

and

α‖(r) = 2α0 + 4α2
0

4πE0 r3
+ 8α3

0

(4πE0)2 r6
, (3)

where α0 denotes the atomic polarizability, α0 = 1.383 a.u.
(a.u. stands for “atomic units”), and E0 is the permittivity
(4πE0 = 1 a.u.; note that the symbols ε and E0 refer to dif-
ferent physical quantities). To discuss the physics, we rewrite
Vlm (in doing so, we drop the r-independent terms, which only
contribute an energy shift and/or an overall phase),

Vlm(r, θ, t ) = |ε(t )|2α2
0

4πE0

[
− 2α0

(4πE0) r6
+ α0

1 − 3 cos2 θ

(4πE0) r6

+ 1 − 3 cos2 θ

r3

]
. (4)

The first term in square brackets shows that the laser-molecule
interaction increases the C6 van der Waals coefficient of the
helium-helium potential. The second term in square brackets
shows that the laser-molecule interaction introduces an angle
dependence into the C6 coefficient. Finally, the third term in
square brackets corresponds to the interaction between two
point dipoles, yielding a repulsive interaction energy for a
side-by-side configuration and an attractive interaction energy
for a head-to-tail configuration. These analytic expressions
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FIG. 1. Polarizabilities as a function of the internuclear distance
r (note the logarithmic scale of the horizontal axis). The solid and
dotted lines show α⊥ and α‖ using the ab initio data from Ref. [20].
The dash-dotted and dashed lines show α⊥ and α‖ using the analytical
polarizabilities [see Eqs. (2) and (3)]. The constant contribution of
2α0 is not included in the plots.

agree well with the state-of-the-art ab initio results from
Ref. [20] in the large r region but not in the small r region
(see Fig. 1).

We find that the analytic expressions and the ab initio
parametrization yield predictions that differ quantitatively but
not qualitatively. The analytic polarizability model, for exam-
ple, supports field-induced bound states for somewhat smaller
field strengths than the ab initio parametrization. Similarly,
the dynamical results presented in Sec. IV are dominated by
the polarizabilities around 4 to 10 a.u. for which the two sets
of polarizabilities agree quite well. Since the results for the
two models agree qualitatively, the majority of the results
presented in this work employs the polarization model from
Ref. [20].

Since the Hamiltonian H is in our setup independent of
the polar angle φ, the projection quantum number ml , which
is associated with the z component of the orbital angular
momentum operator �l , is a good quantum number. We restrict
ourselves to the ml = 0 channel in this work. Combining the
interaction terms, the time-dependent Hamiltonian H , written
in spherical coordinates, reads

H = − h̄2

2μ

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]

+V2b(r) + Vlm(r, θ, t ). (5)

We consider two parametrizations of ε(t ):
(1) Static field with ε(t ) = ε0,S, where ε0,S is a constant.

Even though some of the field strengths ε0,S considered in
this work can only be realized for a relatively short time
with present day technology, the results for the static field
provide a useful framework for understanding the results for
time-dependent pulses.

(2) A “stretched” Gaussian pulse with ε(t ) = εSG(t ),

εSG(t ) =
⎧⎨
⎩

εG(t ) for t � 0,

ε0,G for 0 < t < thold,

εG(t − thold) for thold � t,
(6)
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where

εG(t ) = ε0,G exp

(
−2 ln(2)

t2

τ 2

)
, (7)

with ln(2) = 0.6931 . . . . At t = 0 the pulse is maximal for the
first time and τ is the FWHM, which determines the rise and
fall-off of the Gaussian pulse. While the stretched Gaussian
pulse shape may not be realizable experimentally, the ensuing
dynamics is comparatively straightforward to interpret and
thus serves as a guide to what might be expected for stretched
pulses with somewhat different profiles.

B. Scattering states

In the absence of the external field (Vlm = 0), the s-wave
scattering length as of the 4He-4He system is positive and
large (as = 170.9 a.u.), signaling the existence of a weakly
bound molecular s-wave state. In fact, this is the only bound
state supported in the field-free case; no rotationally or vi-
brationally excited states exist. The s-wave scattering length
of the 3He-4He system, in contrast, is negative and large in
magnitude (as = −34.2 a.u.), signaling that the system is just
short of supporting a weakly bound s-wave bound state. No
deep-lying bound states are supported. The s-wave scattering
length of the 3He-3He system is equal to −13.73 a.u. in the
absence of an external electric field; in this case, the nuclear
spins form a singlet, thereby enforcing the antisymmetry of
the full wave function under the exchange of two identical 3He
atoms. The magnitude of the generalized higher partial wave
scattering lengths such as the p-wave scattering volume for
the 3He-4He and 3He-3He systems and the d-wave scattering
hypervolume for the 4He-4He system are small.

We now include a time-independent laser-molecule Hamil-
tonian (parametrization 1 in Sec. II A), which couples dif-
ferent orbital angular momentum channels. For the bosonic
4He-4He system, only even-l channels contribute because the
spatial wave function has to be symmetric under the exchange
of the two 4He atoms. For the 3He-4He system, in contrast,
no symmetry constraints exist, implying that even- and odd-l
channels contribute (due to the nature of the laser-molecule
interaction, the even- and odd-l channels are decoupled). Last,
for the fermionic 3He-3He system, even-l channels contribute
when the nuclear spins form a singlet and odd-l channels
when the nuclear spins form a triplet. The long-range nature
of the laser-molecule interaction modifies the threshold law in
the nonzero partial wave channels [21–24]. In particular, since
the K-matrix elements

Kl,l ′ (k) = tan[δl,l ′ (k)] (8)

are proportional to the wave vector k as k goes to zero (k is
defined in terms of the scattering energy E through

√
2μE/h̄),

the zero-energy scattering length matrix elements al,l ′ are
defined through

al,l ′ = lim
k→0

−Kl,l ′ (k)

k
. (9)

For short-range interactions (interactions that fall off faster
than 1/r3 at large internuclear distances), the denominator
in Eq. (9) reads kl+l ′+1 instead of k [25]; the modification
of the power of k reflects the modified threshold behavior.

The threshold laws, Eqs. (8) and (9), depend crucially on
the angle dependence of the −r−3 potential. If the angle
dependence was absent, one would not be able to define an
s-wave scattering length.

The phase shifts δl,l ′ (k) [see Eq. (8)] are obtained by
matching the inside solution to the large-r, free-particle solu-
tion, with the relative importance of the regular solutions [the
spherical Bessel functions jl (kr)] and the irregular solutions
[the Neumann functions nl (kr)] given by the tangent of the
phase shifts δl,l ′ (k). The scattering solutions in the presence
of a static external field are thus characterized by, in gen-
eral, a nondiagonal scattering length matrix. Even though the
determination of the scattering solutions requires the entire
scattering length matrix, the emergence of a new zero-energy
bound state that is even (odd) in the relative coordinate z is
accompanied by the a0,0 (a1,1) matrix element going to infinity
[26,27].

We determine the K matrix by decomposing the full wave
function ψ (r, θ ) into partial waves,

ψ (r, θ ) =
∑

l ′

ul ′ (r)

r
Yl ′,0(cos θ ), (10)

where the sum over l ′ includes all angular momentum values
allowed by symmetry and where the spherical harmonics
Yl ′,m′

l
are independent of φ since m′

l is assumed to be zero
throughout. Inserting Eq. (10) into the Schrödinger equation
Hψ = Eψ and projecting onto the Y ∗

l,0 states, we obtain
a set of coupled differential equations for the radial
components ul (r),(

− h̄2

2μ

∂2

∂r2
+ V2b(r)

)
ul (r) − 1

2
|ε0,S|2

∑
l ′

Wl,l ′ (r)ul ′ (r)

= Eul (r). (11)

An explicit expression for the coupling matrix elements
Wl,l ′ (r), which arise from integrating over the angular degrees
of freedom, is given in the Appendix A. Equation (A5) shows
that the laser-molecule interaction Vlm couples only channels
with the same l or channels whose indices differ by two.
Imposing that the ul (r) vanish at small r, the logarithmic
derivative matrix is propagated using the Johnson algorithm
[28] with adjustable step size. Matching the large-r solu-
tion to the asymptotic free-particle solution, the K matrix
is extracted. We find that a scattering energy of 10−12 a.u.
approximates the zero-energy limit accurately; for this energy,
we choose the large-r matching point to be 106 a.u. We
find that the inclusion of about 8 even and/or 8 odd partial
wave channels yields converged results for the field strengths
considered in this work.

C. Bound states

In addition to the scattering states, we calculate the bound
states of the helium-helium systems in a static external field.
Since a time-dependent external field can, at each time, be
thought of as being static, the solutions for the static Hamil-
tonian provide guidance for interpreting our time-dependent
results. In the extreme case of an adiabatically changing
external field, the full dynamics can be readily extracted from
the static results by, e.g., performing a Landau-Zener analysis.
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To determine the bound state spectrum, we express the
eigenstates ψ (r, θ ) in terms of a B-spline basis using non-
linear grids in r and θ . The largest r is adjusted so that the
most weakly bound state is fully covered by the numerical
grid. For 4He-4He, we calculate eigenstates that are even in the
relative coordinate z. For the 3He-3He and 3He-4He systems,
both even and odd states in z are considered. In the case of
3He-3He, the even and odd partial waves must be combined
with singlet and triplet nuclear spin states, respectively. Even
though the bound states cannot be labeled by a single l
quantum number due to the θ dependence of Vlm, the weakly
bound states are typically dominated by a single partial wave.
The dominant character can be obtained by projecting the
eigenstates onto different l channels.

D. Dynamics

If the laser-molecule interaction is time dependent, we have
to solve the time-dependent Schrödinger equation for a given
initial state �(r, θ, t = −∞). In practice, the initial state is
prepared at a time where the laser-molecule interaction can be
neglected, i.e., at a time much smaller than 0.

To solve the time-dependent Schrödinger equation, we
decompose the wave packet �(r, θ, t ), similar to what we did
in Sec. II B to obtain the time-independent scattering states,
into partial wave components,

�(r, θ, t ) =
∑

l ′

Ul ′ (r, t )

r
Yl ′,0(cos θ ). (12)

Inserting Eq. (12) into the time-dependent Schrödinger equa-
tion ı h̄∂�/∂t = H�, we obtain a set of coupled time-
dependent equations for the radial components Ul (r, t ),(

− h̄2

2μ

∂2

∂r2
+ V2b(r)

)
Ul (r, t ) − 1

2
|ε(t )|2

∑
l ′

Wl,l ′ (r)Ul ′ (r, t )

= ı h̄
∂Ul (r, t )

∂t
, (13)

where the coupling elements Wl,l ′ (r) are given in Eq. (A5).
To solve the coupled set of time-dependent radial equa-

tions, we discretize the r coordinate (we typically use about
32 000 points) and propagate the Ul (r, t ) by expanding the
radial propagator in terms of Chebychev polynomials [29].
The time step �t is chosen such that |ε(t )|2 can be considered,
to a very good approximation, as time independent during
each time step. We use �t ≈ 0.24 to 0.60 fs and about 30
terms in the expansion into Chebychev polynomials. For the
pulses considered, accounting for about eight partial wave
channels yields converged results.

III. TIME-INDEPENDENT FIELD STRENGTH

This section discusses the characteristics of the helium-
helium systems in the presence of a static external field
(parametrization 1 in Sec. II A). Figure 2 shows the dimer
binding energy Ebind for (a) 4He-4He, (b) 3He-4He, and (c)
3He-3He as a function of the field strength ε0,S. The binding
energy associated with states that are even in z is shown by
solid lines and that associated with states that are odd in
z is shown by dashed lines. The 4He-4He system supports
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FIG. 2. Binding energy Ebind for (a) 4He-4He, (b) 3He-4He, and
(c) 3He-3He as a function of the field strength ε0,S. The solid lines
show the binding energy of states that are even in z while the dashed
lines show the binding energy of states that are odd in z. Note that
the binding energy is shown on a logarithmic scale that covers five
orders of magnitude.

new s-wave (l = 0) dominated bound states for field strengths
larger than about ε0,S = 0.0715 a.u. and larger than about
ε0,S = 0.0976 a.u. No evidence for the existence of these
states is reported in Ref. [13]. For field strengths larger than
about ε0,S = 0.10962 a.u., a new bound state with appreciable
d-wave admixture is being supported [also notice the related
avoided crossing between the s-wave dominated and d-wave
dominated states at (ε0,S, Ebind ) ≈ (0.11 a.u., 5 × 10−7 a.u.)].
Owing to the orbital angular momentum barrier, this bound
state acquires an appreciable binding energy over a fairly
small variation of the field strength ε0,S. Reference [13] refers
to this d-wave dominated state as a “pendular state.”

The 3He-4He system [see Fig. 2(b)] supports its first s-
wave dominated bound state for field strengths larger than
about ε0,S = 0.0311 a.u., a second s-wave dominated bound
state for field strengths larger than about ε0,S = 0.0776 a.u.,
and a third s-wave dominated bound state for field strengths
larger than about ε0,S = 0.1054 a.u. Owing to the smaller
reduced mass, the latter two field strengths are a bit larger
than the critical field strengths for the 4He-4He system. The
first field-induced bound state, which first appears at ε0,S =
0.0311 a.u., has no analog in the 4He-4He system since this
system already supports a weakly bound state in the absence
of an external electric field. The 3He-4He system additionally
supports bound states that are odd in the relative coordinate z
[see the dashed lines in Fig. 2(b)]. Interestingly, these odd-z
bound states first appear at field strengths that are just a
bit larger than the field strengths at which the even-z bound
states first appear. As the binding energy increases, the energy
difference, normalized by the binding energy itself, between
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FIG. 3. Scattering lengths for (a) 4He-4He, (b) and (c) 3He-4He,
and (d) and (e) 3He-3He as a function of the field strength ε0,S.
The solid lines in (a), (b), and (d) show the scattering length a0,0

while the dashed lines in (c) and (e) show the scattering length a1,1.
The narrow resonance at ε0,S ≈ 0.11 a.u. in (a) has notable d-wave
admixture. The resonances in the (l, l ′) = (1, 1) channel [see (c) and
(e)] are extremely narrow. The solid circles in (c) and (e) show a1,1

as predicted by the Born approximation; the Born approximation
reproduces the “background value” very well but does not capture
the resonances (the scattering lengths in the Born approximation are
directly proportional to −|ε0,S|2).

the pairs of even-z and odd-z states decreases. This is not
unlike the tunneling splitting in a double-well potential, where
the tunneling is much smaller for deep-lying states than for
states that lie near or above the barrier.

Last, the 3He-3He system first supports even-z bound states
at field strengths larger than about ε0,S = 0.0388 a.u., larger
than about 0.0832 a.u., and larger than about 0.1126 a.u.,
respectively. Odd-z bound states are first supported at field
strengths larger than about ε0,S = 0.0492294 a.u., larger than
about ε0,S = 0.0875679 a.u., and larger than about ε0,S =
0.116342 a.u. Owing to the smaller reduced mass, these field
strengths are a bit larger than the corresponding critical field
strengths for the 3He-4He system.

As mentioned in Sec. II B, the emergence of a new even-
z bound state is accompanied by a diverging a0,0 and the
emergence of a new odd-z bound state by a diverging a1,1.
Solid lines in Fig. 3 show the scattering length matrix element
a0,0 as a function of the field strength ε0,S for (a) 4He-4He,
(b) 3He-4He, and (d) 3He-3He while dashed lines show the
scattering length matrix element a1,1 for (c) 3He-4He and
(e) 3He-3He. Comparison with Fig. 2 shows that a0,0 and
a1,1 go through infinity at the field strengths at which new,
respectively, even-z and odd-z bound states are first being
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-40
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-20

-10
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FIG. 4. Enlargement of the scattering length a1,1 for 3He-4He in
the vicinity of a resonance. The data and symbol/line styles are the
same as in Fig. 3(c).

supported. We checked that the generalized scattering lengths
al,l ′ , except for a0,0, are well described—as they should be
for potentials that are purely dipolar at large internuclear
distances [23]—by the Born approximation for field strengths
where resonances are absent. This is illustrated in Figs. 3(c)
and 3(e), where the Born approximation results (solid cir-
cles) reproduce the full coupled-channel calculations (dashed
lines) reliably. In the Born approximation, a1,1 is given by
−2μ|ε0,S|2|α0|2/[5(4πE0)2h̄2] [30]. Figure 4 shows an en-
largement of the scattering length matrix element a1,1 for
3He-4He near the third resonance shown in Fig. 3(c), i.e.,
near ε0,S ≈ 0.10885 a.u. The Born approximation values do
not capture the resonance; instead, they continue to change
quadratically with ε0,S across the resonance.

The calculations presented thus far employ the ab initio
polarization model from Ref. [20]. If we use the simpler ana-
lytical polarization model [Eqs. (2) and (3)], the first electric-
field-induced resonance for 4He-4He occurs at ε0,S = 0.0699
a.u. instead of at ε0,S = 0.0715 a.u. and the first electric-field-
induced resonance for 3He-4He occurs at ε0,S = 0.0304 a.u.
instead of at ε0,S = 0.0311 a.u. The deviation between the
results for the two different polarization models increases with
increasing field strength.

Our results for the scattering properties of the 3He-4He
and 3He-3He systems in the presence of a static field disagree
quantitatively with those presented in Refs. [9,31]. Repeating
the calculations for the interactions employed in Ref. [9] (i.e.,
using the LM2M2 potential [32] and the analytic polarizabil-
ity model), we find that the first bound state for 3He-4He is
supported for ε0,S = 0.0305 a.u. as opposed to 0.053 a.u. as
reported in Ref. [9] and the first s-wave dominated bound state
for 3He-3He first appears at ε0,S = 0.0382 a.u. as opposed to
ε0,S = 0.067 a.u. as reported in Ref. [9]. We have no insight
into what might be the reason for the discrepancies.

The results presented so far indicate that the helium-helium
interaction strength can be varied through the application
of a static external field. While the field strengths required
are attainable with present-day technology, they can only
be realized for a relatively short time. For the field to be
considered truly static, the pulse duration has to be longer than
the internal or characteristic timescale of the helium-helium
system. If we convert the 4He-4He binding energy in the
absence of an external field, we find a timescale of about
29.71 ns. Clearly, the realization of such temporally extended,
high-intensity laser pulses is presently out of reach. Alterna-
tively, the minimal energy of the He-He interaction potential
corresponds to a timescale of about 4.364 ps. This timescale
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estimate looks much more promising from an experimental
point of view. Alternatively, we can estimate the timescale
associated with the field-induced bound states. Energies of
10−10, 10−8, and 10−6 a.u. correspond to timescales of about
1520, 15.20, and 0.1520 ns. If one were to populate the new
bound state and if the system could be held at a particular field
strength longer than the time given above, one should be able
to see revival signatures corresponding to the above timescale
in the dynamical evolution of an appropriately chosen ob-
servable. While challenging, realizing such a scenario experi-
mentally does not seem entirely out of reach. Ultimately, one
has to analyze the full dynamics to see which pulse shapes
and lengths yield observable signatures of the electric-field-
induced tunability of the helium-helium interaction strength.
Exploratory calculations along these lines are presented in the
next section. While earlier work [33] employed a perturbative
framework to address this question, we employ a full coupled-
channel treatment. Our calculations employ peak electric field
strengths of ε0,G = 0.0843949 and 0.11 a.u. (corresponding
to 2.5 × 1014 and 4.247 × 1014 W/cm2, respectively). These
field strengths are significantly lower than those employed in
“realm II” of Ref. [13].

IV. TIME-DEPENDENT FIELD STRENGTH

This section summarizes our results for the stretched Gaus-
sian pulse (parametrization 2 in Sec. II A). Our studies are
motivated by two questions: What, if any, are the signatures of
the field-induced resonances discussed in Sec. III that could be
measured experimentally in pump-probe experiments? Do the
field-induced resonances lead to revival dynamics, somewhat
reminiscent of what has been observed in pump-probe exper-
iments for stiff, rigid-rotor-like diatomic molecules [34,35]?
To address these questions, we focus on the 4He-4He system.
We assume that the dimer is prepared in the absence of an
external field in its l = 0 ground state, as is being done in

molecular beam experiments [1,5–7,14]. The laser pulse is
then turned on and the system is assumed to be imaged via
COLTRIMS after a delay time [14,36]. In this technique, an
extremely short and intense probe pulse, which “rips off”
one electron of each of the helium atoms, is applied and the
ions are imaged. Since the probe pulse, to a very good ap-
proximation, instantaneously projects the helium atoms to one
particular configuration, we do not simulate the imaging part
of the experiment. Repeated experimental measurements for
the same time delay provide access to the quantum mechanical
density distribution of the wave packet. In what follows, the
delay time is defined such that it is zero when the stretched
Gaussian pulse first reaches its maximum. Our calculations
scan the delay time from zero to many times thold.

We monitor the correlator or alignment C2(r, t ),

C2(r, t ) =
∫ π

0 �∗(r, θ, t ) cos2 θ�(r, θ, t ) sin θdθ∫ π

0 |�(r, θ, t )|2 sin θdθ
. (14)

If � was independent of θ (as it is in the absence of the laser
pulse), C2(r, t ) would be equal to 1/3. Deviations from 1/3
provide a measure of the angle dependence that is introduced
to the wave packet by the laser pulse. Importantly, after the
laser is “off,” i.e., after its intensity has decayed to a suffi-
ciently small value, the coupling between different l channels
vanishes and the populations of the different l channels are in-
dependent of time. The wave packet itself, however, continues
to change with time since the spatially dependent phases of the
different partial wave components continue to evolve. These
phase factors imprint an r-dependent interference pattern,
which varies with time (see also Ref. [14]), onto the correlator
C2(r, t ).

The upper row of Fig. 5 shows contour plots of C2(r, t ) for
fixed τ and ε0,G, τ = 311 fs and ε0,G ≈ 0.0844 a.u. (intensity
of 2.5 × 1014 W/cm2), and four different hold times, i.e., for
thold = 0.5, 2, 4, and 8 ps. The lines in the lower row show

FIG. 5. Alignment signal for stretched Gaussian laser pulse with ε0,G = 0.0843949 a.u. and τ = 311 fs. Results are shown for four different
hold times: (a) and (e) thold = 0.5 ps, (b) and (f) thold = 2 ps, (c) and (g) thold = 4 ps, and (d) and (h) thold = 8 ps. (a)–(d) Contour plots of the
alignment signal C2(r, t ). A spherically symmetric wave packet would yield an alignment signal of 1/3. The dashed, dotted, dash-dotted, and
solid lines in (e)–(h) show cuts of C2(r, t ) for r = 3 Å = 5.669 a.u., r = 5 Å = 9.449 a.u., r = 10 Å = 18.90 a.u., and r = 20 Å = 37.79 a.u.,
respectively. The curves are offset from each other for ease of readability.
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cuts, from bottom to top, for r = 3 Å = 5.669 a.u., r = 5 Å =
9.449 a.u., r = 10 Å = 18.90 a.u., and r = 20 Å = 37.79 a.u.
For the peak field strength used, the static system supports
two bound states that are dominated by the s-wave channel
(see Figs. 2 and 3).

For the shortest thold considered, C2(r, t ) is characterized
by a fairly regular interference pattern, whose maxima and
minima move out with increasing time. Even though thold is
finite, the interference pattern is quite similar to that observed
and interpreted in a very recent joint experiment-theory col-
laboration, which employed an unstretched Gaussian pulse
with thold = 0, the same τ , and comparable field strength [14].
The pattern of the alignment signal can be traced back to
the interference between the dissociating l = 2 wave packet
portion, which gets populated as a consequence of the laser-
molecule interaction, and the broad spherically symmetric
background portion (recall, the initial state is a pure s-wave
state). Close inspection of C2(r, t ) in the t = 0.5 to 1 ps
window, however, reveals that the interference pattern is due
to two dissociating wave packet portions, one that is emitted
starting at t = 0 and another that is emitted for t � thold. This
behavior becomes more prominent for larger thold (see below).

The small r behavior changes distinctly when thold in-
creases. Figures 5(b)–5(d) display oscillations of C2(r, t ) at
small r [see also the dashed lines in Figs. 5(f)–5(h)]. These
oscillations, which are most prominent for the largest hold
time considered [Fig. 5(h)], are roughly governed by the bind-
ing energy of the deepest-lying, s-wave dominated transient
state that is supported by the static Hamiltonian with field
strength ε0,G. Its binding energy translates to about 3.800 ps.
The timescale associated with the energy difference between
the two s-wave dominated transient bound states is equal to
about 3.891 ps, which is very close to the timescale set by the
binding energy of the deep-lying transient state. Indeed, we
attribute the small-r oscillations of C2(r, t ) to two processes,
namely the interference between the wave packet portions
corresponding to the two transient bound states and the in-
terference between the wave packet portions corresponding to
the deep-lying transient bound state and unbound scattering
states. These interference processes both contribute to the

population transfer between the l = 0 and l = 2 channels and
thus lead to oscillations in the alignment C2(r, t ).

The oscillations of C2(r, t ) are reminiscent of revival dy-
namics in rigid-rotor-like molecules due to population transfer
between different rotational states. There are, however, impor-
tant differences. First, unlike for rigid-rotor molecules where
multiple eigenenergies with spacings set by the rotational
constant B exist in the absence of the field, the deep-lying state
that sets the timescale in the helium dimer system is transient.
Second, the r dependence of the alignment C2(r, t ), as high-
lighted by the “outgoing finger structure” in Fig. 5, is unique
to the nonrigid helium dimer. For rigid-rotor molecules, this
structure is absent. Third, the broadness of the initial wave
packet combined with the fact that the laser-molecule interac-
tion is dominant at small r implies that only a small fraction
of the wave packet gets “promoted” to finite l states.

As already alluded to above, Figs. 5(b)–5(d) show that the
decay of the pump pulse from strength ε0,G to zero (this occurs
for times just a bit larger than thold) triggers the “emission”
of a second dissociating wave packet portion, which can be
attributed to the fact that the population of the deep-lying
transient bound state is no longer bound when the laser
intensity is negligible. The second dissociating wave packet
produces a new set of outgoing fingers that are delayed by
thold compared to the first set of fingers and that “collide”
with the first set of fingers. The interference of the delayed
outgoing wave packet portion with the first dissociating wave
packet portion leads, as can be seen nicely in the r = 20 Å
cuts [solid lines in Figs. 5(f)–5(h)], to “distortions” of the
interference pattern. In particular, it can be seen that C2(r, t )
displays a regularly changing wave pattern for t � thold that
changes notably for t just a bit larger than thold. For t quite a bit
larger than thold, C2(r, t ) again displays a regularly changing
wave pattern.

Figure 6 shows the same quantities as Fig. 5 but for a
larger peak field strength, namely for ε0,G = 0.11 a.u. For
this field strength, the static 4He-4He system supports three
s-wave dominated bound states and one d-wave dominated
bound state. The binding energy of the most strongly bound
transient state translates to a timescale of 1.522 ps. Indeed,

FIG. 6. Same as Fig. 5 but for a larger peak field strength, namely for ε0,G = 0.11 a.u.
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the small-r region of the alignment signal displays close to
regular oscillations at roughly this timescale. We do not expect
perfect “single-frequency” oscillations since several transient
eigenfrequencies are expected to contribute to the observed
oscillatory pattern. As in the weaker field strength case, the
emission of a second dissociating wave packet portion at times
just a bit larger than thold is clearly visible in the alignment
signal. Comparison of Figs. 5 and 6 shows that the larger field
strength has two primary effects. First, it leads to a shortening
of the oscillation period of the small-r portion of C2(r, t ).
Second, it enhances the contrast of C2(r, t ). Besides these two
effects, the overall behavior of C2(r, t ) is quite similar.

Figures 5 and 6 demonstrate that pump-probe experiments
on the 4He-4He system should provide evidence for the tun-
ability of the bound state spectrum by an external electric
field. However, the alignment signal does unfortunately not—
or if so rather indirectly—provide access to the number of
field-induced bound states since the energy level spacing of
the field-induced bound states is highly nonlinear, leading to
vastly different timescales governing the interference between
the more weakly bound states. Moreover, the highly non-
linear spacing also makes it difficult to distinguish between
oscillations in the alignment C2(r, t ) due to the interference
of wave packet portions corresponding to the deepest-lying
transient state and the most weakly bound transient state and
oscillations in the alignment C2(r, t ) due to the interference
of wave packet portions corresponding to the deepest-lying
transient state and the transient scattering continuum. The
latter process contributes also for peak field strengths ε0,G

that are smaller than 0.0715 a.u., i.e., for peak strengths
for which the static field Hamiltonian supports only one
bound state. However, in this field strength regime, the large
timescale associated with the small binding energy makes the
unambiguous experimental observation that the energy of the
transient bound state has been tuned essentially impossible.

V. CONCLUSION

This work investigated static and dynamic properties of
helium-helium systems in the presence of an external electric
field. All three possible combinations of the two isotopes 3He
and 4He were investigated, namely the 4He-4He, 3He-4He,
and 3He-3He systems. In the absence of an external field,
only the 4He-4He system supports a weakly bound state (and
only one). When a static external electric field is applied, all
three helium-helium systems display field-induced scattering
resonances, which are accompanied by the pulling-in of new
two-body bound states. The resonances and their characteris-
tics were analyzed carefully.

Applying a stretched Gaussian laser pulse, the work in-
vestigated the signatures imprinted on the dynamics by the
field-induced resonances. For this analysis, we focused on the
4He-4He system. Assuming that the system is prepared in its

only bound state in the absence of an external field, the time
evolution during and after the stretched Gaussian pump pulse
was investigated. It was found that the time-evolving wave
packet carries fingerprints of the field-induced bound states, in
addition to displaying dissociative dynamics that is associated
with the fact that the pump laser leads to the population of
scattering states with zero and finite angular momenta. It was
commented that the experimental realization of the simulated
scenarios is technically demanding but not impossible.

The response of diatomic rigid-rotor-like molecules to
intense laser pulses has been studied extensively in the lit-
erature, both experimentally and theoretically. The present
dynamical study differs from these earlier works in that the
4He-4He system supports only a single extremely weakly
bound state in the absence of an external field. Thus, the no-
tion of a rotorlike spectrum does not apply. As a consequence,
the external field leads to a strong coupling of the vibrational
and rotational degrees of freedom, with the populations of
finite l states dissociating.
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APPENDIX: COUPLING MATRIX ELEMENTS Wl,l ′

To determine explicit expressions for the coupling matrix
elements Wl,l ′ (r), we rewrite the laser-molecule interaction
Vlm(r, θ, t ) as

Vlm(r, θ, t ) = g(t )[α0,0(r)Y0,0 + α2,0(r)Y2,0(cos θ )], (A1)

where

g(t ) = −|ε(t )|2
2

, (A2)

α0,0(r) =
√

4π

3
[α‖(r) + 2α⊥(r)], (A3)

and

α2,0(r) =
√

16π

3
√

5
[α‖(r) − α⊥(r)]. (A4)

Using this notation, Wl,l ′ (r) becomes

Wl,l ′ (r) = α0,0(r)〈Yl,0|Y0,0|Yl ′,0〉
+α2,0(r)〈Yl,0|Y2,0|Yl ′,0〉, (A5)

where the notation 〈·〉 indicates an integration over the angular
degrees of freedom.
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