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Three-state Landau-Zener model in the presence of dissipation
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A population transfer based on adiabatic evolutions in a three-state system undergoing an avoided crossing
is considered. The efficiency of the process is analyzed in connection with the relevant parameters, bringing
to light an important role of the phases of the coupling constants. The role of dissipation is also taken into
account, focusing on external decays that can be described by effective non-Hermitian Hamiltonians. Though
the population transfer turns out to be quite sensitive to the decay processes, for very large decay rates the
occurrence of a Zeno phenomenon allows for restoring a very high efficiency.
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I. INTRODUCTION

Time-dependent Hamiltonians are difficult to solve, except
for special classes associated with low dimensionality [1–3] or
particular commutation properties [4–6]. Beyond such special
cases, only approximated resolutions are possible, based, for
example, on perturbation treatments. An important class of
time-dependent Hamiltonians is that of slowly varying ones,
leading to adiabatic evolutions [7,8], which play an important
role in quantum technologies, because of high efficiency in
the manipulation of microscopic systems.

In the realm of adiabatic evolutions, Landau-Zener-
Majorana-Stückelberg (LZMS) [9–12] processes are very im-
portant. They are characterized by a two-state system with
bare energies linearly changing with time, which would cross
at some instant if it were not for an interaction between the two
states which removes the degeneracy, leading to an avoided
crossing. From the original formulation of the problem, sev-
eral variants and generalizations of the model have been
proposed, studied, and experimentally realized. An important
point that has been taken into account is the finite duration of
a real experiment [13,14], in place of an infinite time interval
from −∞ to ∞ as in the original mathematical formulation.
The nonlinear time dependence of the bare energies of the two
states has been considered [15], as well as the avoided cross-
ing for a two-state system whose dynamics is governed by
nonlinear equations [16,17] or a non-Hermitian Hamiltonian
[18]. Another interesting variant is the hidden crossing model,
where neither the bare energies nor the dressed ones cross
[19,20]. The complementary situation is given by the total
crossing model, where both the bare and the dressed energies
cross [21].

The problem of the evolution of a quantum system in the
presence of a multilevel crossing was analyzed for the first
time by Majorana in his seminal work [11], where a spin j
immersed in a magnetic field with linearly changing z compo-
nent was considered. In spite of this fact, a complete analytical
resolution of the most general multistate LZMS model does
not exist and only particular cases have been successfully

analyzed. One class of these models is solvable through the
so-called independent-crossing approximation [22], which is
applicable because a series of independent crossings occurs,
each one involving two states. A very famous example is
given by the Demkov-Osherov model [23], also addressed as
the equal-slope model. A different scenario addressed as the
degenerate Landau-Zener model is realized when two degen-
erate levels cross at the same time [24]. A remarkable case
characterized by a proper multistate and multilevel crossing is
the bow-tie model, where N states have bare energies which
cross at the same time, but the states are coupled in a particular
way: One state is coupled to all the other N − 1, while all
such N − 1 states do not couple each other. This model,
originally introduced by Carroll and Hioe for the N = 3 case
[25,26], has been generalized to the case of N − 2 decoupled
states crossing at the same time and two states interacting
with the remaining N − 2 [27]. An intriguing variant of the
Carroll-Hioe model has been analyzed by Ivanov and Vitanov
[28], who considered also time-dependent coupling constants,
obtaining a sort of hybrid model between LZSM process and
stimulated Raman adiabatic passage. Other interesting studies
have been developed for specific models [29–32]. Multilevel
LZMS transitions can be related to important spin-boson
models such as the time-dependent Rabi Hamiltonian [33] and
Tavis-Cummings model [34,35].

Although there are several papers dealing with dissipative
adiabatic evolutions [36–39] and, specifically, with Landau-
Zener processes in the presence of interaction with the en-
vironment [40–46], contributions dealing with the dissipative
dynamics for quantum systems with many states undergoing
avoided crossings are rare. Recently, Ashhab [47] analyzed
the multilevel Landau-Zener problem in the presence of inter-
action with an environment, focusing on the equal-slope and
bow-tie models and on a case with a less regular structure of
the crossings that the author refers to as the triangle model.

In this paper we consider a proper three-state avoided
crossing beyond the bow-tie model, therefore including all
three couplings between the three states as well as the ef-
fects of the interaction with the environment in a specific
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configuration of the system-bath coupling. The paper is or-
ganized as follows. In Sec. II we study analytically the pos-
sibility of realizing a complete adiabatic population transfer,
which we trace back to the presence of an energy level
whose crossings are properly avoided. Then we analyze the
efficiency of the population transfer numerically. In Sec. III
we consider the effects of the coupling with the environment
in the special case where only external decays are present,
meaning that the dissipation processes are responsible for
incoherent transitions toward states different from the three
we are focusing on. The relevant dynamics, which can be
studied in terms of an effective non-Hermitian Hamiltonian,
is extensively analyzed numerically. Finally, in Sec. IV we
provide a summary.

II. IDEAL THREE-STATE SYSTEM

Let us consider a three-state system described by the
Hamiltonian in the basis {|1〉, |2〉, |3〉},

H3(t ) =
⎛
⎝ −κt �eiφ ωeiϕ

�e−iφ 0 �eiφ

ωe−iϕ �e−iφ κt

⎞
⎠, (1)

where κ is the rate of change of the bare energies of the
first and third states, while � and ω are coupling constants
between the bare states; here h̄ = 1. This kind of model
is quite similar to the Carroll-Hioe one [25,26], the main
difference being the presence of a direct |1〉-|3〉 coupling.
This Hamiltonian can be thought of, for example, as a
two-qubit anisotropic Heisenberg model, involving only
transverse couplings, in the presence of an external magnetic
field with a time-dependent z component and static x and y
components (see, for example, Refs. [48–50]). Indeed, H =
κt (σ A

z +σ B
z ) + √

2� cos φ(σ A
x + σ B

x ) + √
2� sin φ(σ A

y + σ B
y )

+ ω/2(σ A
x σ B

x − σ A
y σ B

y ) has a triplet invariant subspace

{|↑↑〉, (|↑↓〉 + |↓↑〉)/
√

2, |↓↓〉} ≡ {|1〉, |2〉, |3〉} whose
dynamics is governed by the Hamiltonian in (1), with
ϕ = 0. Since we will see that the eigenvalues of the
Hamiltonian depend on the phase 2φ-ϕ, this is essentially
equivalent to implementing the model for every couple
(φ, ϕ). Moreover, it is worth mentioning that cyclic coupling
configurations can be realized with superconducting artificial
atoms [51,52].

Similarly to the two-state scenario, when κt is positively
or negatively very large, the dressed (i.e., with interaction)
eigenstates and eigenvalues approach the bare (i.e., in the ab-
sence of interaction) ones, because the coupling terms become

negligible compared to the bare Bohr frequencies. In our case,
the three eigenstates of the Hamiltonian H3(t ) are very close
to |1〉, |2〉, and |3〉, with eigenvalues roughly given by −κt , 0,
and κt , respectively. In particular, for negatively very large t ,
the largest eigenvalue is approximately −κt and corresponds
to an eigenstate roughly equal to |1〉, while for positively
large t the largest eigenvalue is κt roughly corresponding to
|3〉. Therefore, in the absence of crossings (we use the word
crossing to indicate the appearance of a degeneracy, whether
the relevant levels properly cross or simply osculate) involving
such an eigenvalue and provided the Hamiltonian changes
very slowly, which implies that the condition for the validity
of the adiabatic following of this eigenstate is fulfilled, the
state |1〉 is mapped into the state |3〉, when t spans an interval
[−t0, t0] with κt0 very large. Reciprocally, since |3〉 is roughly
equal to the negative large eigenvalue κt for t negatively large,
while for t positively large the negatively large eigenvalue
is −κt roughly equal to |1〉, one gets that in the absence
of crossings involving the lowest eigenvalue the state |3〉 is
adiabatically mapped into |1〉. So far the situation is pretty
similar to the two-state case. The only difference is that in
the two-state case the crossing occurring at t = 0 for the
bare energies is removed by the coupling between the bare
states. In the three-state scenario the situation is slightly more
complicated. It can be proven analytically (see Appendix A)
that when ω �= � or 2φ − ϕ �= mπ no crossing occurs and
then the adiabatic following can be realized for sufficiently
slow changes of the Hamiltonian so that state |1〉 can be
adiabatically mapped into |3〉 and vice versa. For ω = �

and 2φ − ϕ = 2nπ there is an eigenvalue, the highest one,
which never crosses the other two. Since the corresponding
eigenstate is very close to |1〉 for negatively large values of t ,
while it is essentially |3〉 for positively large t , it is possible
to adiabatically map state |1〉 into |3〉. The opposite is not
possible, because for negatively large t state |3〉 is very close
to one of the eigenstates whose corresponding eigenvalue
becomes degenerate at t = 0. The complementary situation
occurs for ω = � and 2φ − ϕ = (2n + 1)π : State |3〉 can be
adiabatically mapped to |1〉, but an efficient mapping of |1〉
into |3〉 is not possible. Far from these regions of the parameter
space, an adiabatic population transfer can be realized in both
directions: |3〉 → |1〉 and |1〉 → |3〉.

Summarizing, we have the following statements (proven
in Appendix A): (a) For ω �= � or 2φ − ϕ �= nπ there are
no degenerate eigenvalues of the Hamiltonian, whatever t is;
(b) for ω = � and 2φ − ϕ = nπ , at t = 0, there is a twofold
degenerate eigenvalue, while the third eigenvalue remains
well distinguished. Plotted in Fig. 1 are the eigenvalues of the
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FIG. 1. Eigenvalues (in units of �) of the Hamiltonian as functions of time (in units of �/κ) for (a) ω = 0, (b) ω/� = 0.5, (c) ω/� = 1,
and (d) ω/� = 1.2. The relevant parameters are κ/�2 = 0.1, �t0 = 500, and ϕ = φ = 0.
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FIG. 2. Final population of state |3〉 when the system starts in state |1〉 as a function of ω/� (in the range [0,2]) and κ/�2 (in the range
[0.05,5]), for three different values of the phase ϕ: (a) ϕ = 0, (b) ϕ = π/2, and (c) ϕ = π . In all three cases φ = 0 and �t0 = 500.

Hamiltonian for φ = ϕ = 0 and three different values of ω: in
Figs. 1(a), 1(b), and 1(d) no crossing is present since ω �= �,
while in Fig. 1(c) two levels become a single degenerate level
at t = 0, as expected for ω = �.

Figure 2 shows some examples of efficiency of the popu-
lation transfer protocol based on the three-state Landau-Zener
process. Shown in particular is the final population of state
|3〉 when the system starts in state |1〉 as a function of ω/�

and κ/�2, for three different values of the phase ϕ. From
Fig. 2(a), corresponding to φ = ϕ = 0, we observe that for
small values of κ the efficiency is always high, while for
larger values of κ higher values of ω are required to make the
population transfer efficient. The situation for φ = 0 and ϕ =
π/2 represented in Fig. 2(b) is quite similar to the φ = ϕ = 0
case. From Fig. 2(c) it is clearly shown that for φ = 0 and
ϕ = π (implying 2φ − ϕ = −π ) the efficiency becomes very
low when ω ≈ �, as expected. The region of high efficiency
is very much smaller than in the other two cases.

We conclude this section by commenting on a possible
further generalization of the model consisting in having dif-
ferent constants for the |1〉-|2〉 and |2〉-|3〉 couplings. The only
relevant (though intuitive) consequence is that when one of
the two strengths approaches zero and the |1〉-|3〉 coupling is
absent or negligible (ω ≈ 0), the efficiency of the population
transfer dramatically diminishes.

III. DISSIPATIVE DYNAMICS

Let us now introduce the effects due to the interaction with
the environment. We will take into account the implications
of external decays, i.e., incoherent transitions toward states
different from the three on which we focused in the ideal
model. To this purpose we introduce a fourth state which is
considered as the ground state, so its energy is lower than
those of the other three for all |t | < t0. The relevant 4 × 4
Hamiltonian is

H4(t ) =

⎛
⎜⎜⎝

−κt �eiφ ωeiϕ 0
�e−iφ 0 �eiφ 0
ωe−iϕ �e−iφ κt 0

0 0 0 −ωg

⎞
⎟⎟⎠. (2)

Now we also assume the presence of an interaction with the
environment responsible for transitions between the subspace
generated by |1〉, |2〉, and |3〉 and state |4〉:

HI =
(

3∑
n=1

cn|n〉〈4| + H.c.

)∑
k

gk (ak + a†
k ). (3)

In the case of external decays (toward lower levels which
do not belong to the subspace we are focusing on), at zero
temperature, the dissipative dynamics of the main part of the
system we are focusing on can be described by an effective
non-Hermitian Hamiltonian (see, for example, Refs. [53–55]).
In our case, the 3 × 3 effective non-Hermitian Hamiltonian
has the form (see Appendix B for details)

H̃3(t ) =
⎛
⎝−κt − i	1 �eiφ ωeiϕ

�e−iφ 
 − i	2 �eiφ

ωe−iϕ �e−iφ κt − i	3

⎞
⎠, (4)

with 	n ∝ |cn|2.
Figure 3 shows the final population of state |3〉 when

the system starts in |1〉 as a function of a decay rate, for
different values of the relevant parameters. In particular, in
Fig. 3(a) φ = ϕ = 0, ω = 0, κ/�2 = 0.1, and �t0 = 500 are
considered. The black solid line corresponds to 	1 = 	 (the
abscissa parameter) and 	2 = 	3 = 0, while the red long-
dashed line is related to 	3 = 	 and 	2 = 	1 = 0. The two
curves perfectly match. This is well understood if one thinks
that in both cases the waste of probability accumulated is
roughly the same. Indeed, in the ideal case, the instantaneous
eigenstate of H3(t ) corresponding to the highest energy is very
close to |1〉 almost for all negative values of t , while it is
very close to |3〉 for all positive values of t . When 	1 �= 0 and
	2 = 	3 = 0, the Hamiltonian eigenstate undergoes a loss of
probability roughly equal to exp(−	1t0), while for 	3 �= 0
and 	2 = 	1 = 0 the waste of probability is roughly equal
to exp(−	3t0). The curve corresponding to 	2 = 	 and 	1 =
	3 = 0 is different from the other two. Indeed, in this case the
waste of population is accumulated mainly in a time interval
around t = 0 where state |2〉 is effectively involved in the
dynamics, being a non-negligible component of the adiabatic
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FIG. 3. Final population of state |3〉 when the system starts in state |1〉 as a function of the decay rate 	 (in units of � and in logarithmic
scale) for three different values of ω, κ , and t0: (a) ω = 0, κ/�2 = 0.1, and �t0 = 500; (b) ω = �, κ/�2 = 0.1, and �t0 = 500; and (c) ω = �,
κ/�2 = 1, and �t0 = 50. In all three figures, the black solid line refers to the case 	2 = 	3 = 0 and 	1 = 	, the blue short-dashed line to
	1 = 	3 = 0 and 	2 = 	, and the red long-dashed line to 	1 = 	2 = 0 and 	3 = 	. In all cases we have considered φ = ϕ = 0.

Hamiltonian eigenstate carrying the population. This makes
the population transfer less sensitive to the decay, when 	1 =
	3 = 0.

In Fig. 3(b) the parameters are φ = ϕ = 0, ω = �,
κ/�2 = 0.1, and �t0 = 500. For small values of the decay
rates, the behaviors are similar to those of Fig. 3(a). A sig-
nificant different behavior is instead obtained for very large
values of 	2, where high values of efficiency are recovered.
This phenomenon is traceable back to the occurrence of a
Zeno-like phenomenon meant as a Hilbert state partitioning
[56,57], where a strong decay makes ineffective the couplings
involving the decaying state [46,53,58–60]. Specifically, a
large value of 	2 implies that state |2〉 is essentially an
eigenstate of the Hamiltonian for all values of t , which in turn
implies that state |2〉 is essentially decoupled from |1〉 and |3〉.
As a consequence, the doublet {|1〉, |3〉} behaves as a two-state
Landau-Zener-Majorana-Stückelberg system with coupling ω

and no dissipation. Obviously, this revival of efficiency is not
possible for ω = 0.

In Fig. 3(c) a similar situation is represented, but cor-
responding to a shorter experiment time (with t0 = 50/�)
compensated by a larger κ to keep κt0 very large. Since the
system is subjected to the decay for a shorter time [one-tenth
of the case in Fig. 3(b)], the population transfer turns out to be
more robust to the decay.

Figure 4 shows the population transfer efficiency as a func-
tion of 	2 and κ for φ = ϕ = 0 and three different values of
ω. In Fig. 4(a), where ω = 0, the efficiency rapidly diminishes
as the decay rate increases and reaches very low values for
	2/� ∼ 10−2. In Figs. 4(b) and 4(c), where ω �= 0, the revival
of efficiency is clearly visible for very large values of 	2.

The efficiency as a function of 	2 and ω is represented in
Fig. 5 for a small value of κ and three different values of phase
difference 2φ − ϕ. For 2φ − ϕ = 0 [Fig. 5(a)] and 2φ − ϕ =
π/2 [Fig. 5(b)] there are very similar behaviors characterized
again by a diminishing of the efficiency for relatively large 	2

and a revival for 	2 very large, provided ω is large enough.
When 2φ − ϕ = π there is also a very low efficiency even for
very small 	2 in the region ω ≈ �. It is interesting to note
that for very large 	2 the revival occurs even if ω ≈ �. This
is easily understood if one considers that the Hilbert space
partitioning occurring for very large 	2 changes the interplay
between the two couplings of strength � and the other one of
strength ω. Indeed, the couplings involving state |2〉 are made
ineffective to the point that, at a first approximation, they can
be considered as absent, hence removing the occurrence of a
crossing. Figure 6 corresponds to a higher value of κ and a
smaller value of t0. Though the efficiency is high in a wider
range of 	2 values, the region of values of ω that allow for
complete population transfer is smaller.
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FIG. 4. Final population of state |3〉 when the system starts in state |1〉 as a function of log10(	2/�) (in the range [−5, 5]) and κ/�2 (in the
range [0.05,1]), for three different values of the phase ω: (a) ω = 0, (b) ω = �/2, and (c) ω = �. In all three cases 	1 = 	3 = 0, ϕ = φ = 0,
and �t0 = 500.
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FIG. 5. Final population of state |3〉 when the system starts in state |1〉 as a function of log10(	2/�) (in the range [−5, 5]) and ω/�2 (in
the range [0,2]), for three different values of the phase ϕ: (a) ϕ = 0, (b) ϕ = π/2, and (c) ϕ = π . In all three cases 	1 = 	3 = 0, φ = 0,
κ/�2 = 0.1, and �t0 = 500.

IV. CONCLUSION

We have analyzed a generalization of the Carroll-Hioe
model which includes an additional coupling that should
not be present in a bow-tie model. The constants of the
two couplings between states |1〉 and |2〉 and between |2〉
and |3〉 are equal (�e−iφ), while the third coupling between
|1〉 and |3〉 has a different strength and phase (ωe−iϕ). We
have proven analytically that when ω �= � all crossings are
avoided, which leads to the possibility of realizing a complete
population transfer, provided the Hamiltonian changes slowly
enough. When ω = � the phases of the coupling constants
are important, allowing for avoidance of the crossing of one
of the three dressed levels when 2φ − ϕ �= mπ . Otherwise,
a crossing occurs which involves only two dressed states,
leaving possible a complete adiabatic following of the state
which does not cross the other two.

The model has been analyzed also in the presence of
interaction with the environment, in the special configuration
where the decays happens toward states different from the
three involved in our model, which is realized at zero temper-
ature with system-environment interaction Hamiltonians with

suitable properties. In this situation, from the microscopic
model one can derive the relevant master equation, which
in turn allows for identifying a non-Hermitian Hamiltonian
which effectively describes the dynamics. The numerical res-
olution of this model has brought to light a certain sensitivity
of the population transfer to the decay processes, but also
the counterintuitive possibility of a recovering the efficiency
when the decay rate of state |2〉 is very high. This behavior is
traceable back to a Zeno-like phenomenon inducing a Hilbert
space partitioning. In fact, the effect of the strong decay is
to separate state |2〉 from the others, hence neutralizing the
|1〉-|2〉 and |2〉-|3〉 couplings. This leaves the system under
the action of the sole |1〉-|3〉 coupling, turning the dissipative
three-state LZMS model into an ideal two-state LZMS model.

APPENDIX A

The characteristic equation useful to find the eigenvalues
of the Hamiltonian in (1) is

λ3 − (2�2 + ω2 + κ2t2)λ − 2�2ω cos χ = 0, (A1)

�
�
�

�

�

�
(a)

�
�
�

�

�

�
(b)

�
�
�

�

�

�
(c)

0

0.2

0.4

0.6

0.8

1.0

FIG. 6. Final population of state |3〉 when the system starts in state |1〉 as a function of log10(	2/�) (in the range [−5, 5]) and ω/�2 (in
the range [0,2]), for three different values of the phase ϕ: (a) ϕ = 0, (b) ϕ = π/2, and (c) ϕ = π . In all three cases 	1 = 	3 = 0, φ = 0,
κ/�2 = 1, and �t0 = 50.
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with χ ≡ 2φ − ϕ. Because of the missing λ2 term, this equa-
tion is never of the form (λ − λ1)3 = 0, so no triple root is
possible. Moreover, this equation does not have a double root
and thus is never of the form (λ − λ1)2(λ − λ2) = 0, unless
the following three conditions occur simultaneously: ω = �,
χ = mπ , and t = 0. Indeed, since (λ − λ1)2(λ − λ2) = λ3 −
(2λ1 + λ2)λ2 + (λ2

1 + 2λ1λ2)λ − λ2
1λ2, identification of this

polynomial with the left-hand side of (A1) leads to the follow-
ing conditions: (i) 0 = λ2 + 2λ1, (ii) −(2�2 + ω2 + κ2t2) =
λ2

1 + 2λ1λ2, and (iii) 2�2ω cos χ = λ2
1λ2. After substituting

λ2 = −2λ1 into (ii) and (iii) and identifying the relevant two
expressions for λ1, we get the equation

κ2t2 = −�2[x3 − 3(cos2 χ )1/3x + 2], (A2)

where x = (ω2/�2)1/3. Since 3�(cos2 χ )1/3x � 3�x for x �
0, and x3 − 3x + 2 = (x + 2)(x − 1)2, we get

κ2t2 � −�2(x + 2)(x − 1)2. (A3)

Now, since the right-hand side is strictly negative for
−2 < x < 1 or x > 1 and zero for x = −2, 1, we infer that
for ω2/�2 = 1 and χ = mπ , a crossing can occur at t = 0,
while for all the other possible values of ω2/�2, from 0 to
∞, no crossing is possible. The crossing occurring at t = 0
for ω = � and χ = 2nπ corresponds to the eigenvalues 2�

(simple root) and −� (double root). Since no other crossing
is possible, there is an eigenvalue which is always higher than
the other two. Conversely, the crossing occurring at t = 0 for
ω = � and χ = (2n + 1)π corresponds to the eigenvalues
−2� (simple root) and � (double root), which implies the
presence of an eigenvalue always lower than the other two.
It is worth noting that when cos2 χ �= 1, the right-hand side
of (A2) is strictly smaller than the right-hand side of (A3),
implying the absence of a crossing even for ω = ±�.

We finally observe that for ω = 0 or cos χ = 0 the λ0 term
of the secular equation vanishes, implying a simple resolution
with the three roots λ = 0,±√

2�2 + ω2 + κ2t2.

APPENDIX B

Let us consider a system S described by the Hamilto-
nian HS and interacting with an environment S whose free
Hamiltonian is HA and which is prepared in a thermal state
at T temperature ρA

T . Considering an interaction Hamiltonian
between the system and the environment of the form HI =∑

α Xα ⊗ Vα (with Xα and Vα Hermitian operators), we get the
Markovian master equation [61,62]

ρ̇ = −i[HS + HLS, ρ] +
∑
α,β

∑
ω

γαβ (ω)

×
[

Xβ (ω)ρX †
α (ω) − 1

2
{X †

α (ω)Xβ (ω), ρ}
]
, (B1)

with

γαβ (ω) =
∫ +∞

−∞
eiωstrA

[
Ṽα (s)Ṽβ (0)ρA

T

]
ds, (B2)

Xα (ω) =
∑

ε′−ε=ω

�εXα�ε′, (B3)

HS�ε = ε�ε, (B4)

where ω spans the Bohr frequencies of the system S, Ṽα (t )
is the operator Vα in the interaction picture, and HLS is the
Lamb-Shift Hamiltonian commuting with HS .

Let us make the following assumptions. (a) The bath is at
zero temperature. (b) Two complementary subspaces identi-
fied by the projectors �R and �Q = I − �R exist which are
not connected by HS . Moreover, (c) the operators Xα do not
induce transitions inside each of such subspaces and (d) every
energy level in �R is higher than every level in �Q. Hypoth-
esis (a) implies that in (B1) the sum

∑
ω can be replaced by∑

ω>0, since every thermal pumping is forbidden in such a
case. Hypothesis (b) translates into �RHS�Q = �QHS�R =
0, which implies [HS,�R] = [HS,�Q] = 0. Moreover, con-
dition (c) corresponds to �RXα�R = �QXα�Q = 0, from
which one easily gets �RXα (ω)�R = �QXα (ω)�Q = 0 for
every ω. Finally, because of condition (d) it follows that
�RXα (ω)�Q = 0 and Xα (ω)�R = Xα (ω) for every ω > 0.

After introducing the restricted state

ρR ≡ �Rρ�R (B5)

and exploiting all the previous properties, we get the equation

ρ̇R = −i[�R(HS + HLS)�R, ρR]

− 1

2

∑
α,β

∑
ω>0

γαβ (ω){X †
α (ω)Xβ (ω), ρR}, (B6)

which can be recast in the form of a pseudo-Liouville equation

ρ̇R = −i[HRρR − ρR(HR)†], (B7)

with

HR = �R(HS + HLS)�R

− i

2

∑
α,β

∑
ω>0

γαβ (ω)X †
α (ω)Xβ (ω), (B8)

where
∑

α,β

∑
ω>0 γαβ (ω)X †

α (ω)Xβ (ω) is an Hermitian oper-
ator, on the basis of the property [γαβ (ω)]∗ = γβα (ω), with
nonvanishing elements only in the subspace �R and commut-
ing with HS . It is worth noting that assumption (d) can be
relaxed and replaced by a constraint on the initial condition,
which should have zero population in all the states with energy
higher than those in �R.

Assuming a system-bath interaction Hamiltonian of the
form (3), with state |4〉 at lower energy than the three
other states, and a system Hamiltonian HS = −κt |1〉〈1| +
κt |3〉〈3| − ωg|4〉〈4|, we get

HR
S = �R(HS + HLS)�R − i

3∑
n=1

γn

2
|n〉〈n|, (B9)

with γn = |cn|2γ (εn + ωg), γ (ω) ≡ γ11(ω) (there is only an
Xα operator), ε1 = −κt , ε2 = 0, and ε3 = +κt . After ne-
glecting the Lamb shifts, introducing 	k ≡ γk/2, and re-
covering the interaction terms HR

S → HR
S + (�eiφ|1〉〈2| +

�eiφ |2〉〈3| + ωeiϕ |1〉〈3| + H.c.), we obtain the 3 × 3 Hamil-
tonian in (4).
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