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Single-center approach for photodetachment and radiative electron attachment: Comparison
with other theoretical approaches and with experimental photodetachment data
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A single-center method for calculating photodetachment cross section for anions and radiative electron
attachment cross section for neutral molecules by microreversibility is presented. It uses the integral equation
method to calculate the ejected electron’s continuum wave function while the single-electron bound function of
the anion is described by the Dyson orbital. It is compared with related theoretical approaches and benchmarked
to the experimental photodetachment cross sections of O2

−, OH−, and CN−. The use of the plane-wave
approximation of the ejected electron wave function combined with the Hartree-Fock frozen-core approximation
of the Dyson orbital is also considered and its results are compared with those of our methods and with
experiment. A good agreement between the calculated photodetachment cross sections and the experimental
data is obtained for O2

− and CN− when using the three methods. For OH−, the calculated scattering-wave
electron photodetachment cross sections agree well with two most recent sets of experimental data among the
three available while the plane-wave results disagree with all the experimental and theoretical data. The different
approaches to calculate the Dyson orbital are also discussed as well as the convergence of the calculations with
respect to the choice of the one-electron basis set. The approximation of Dyson orbitals by Kohn-Sham orbitals
appears to overestimate the photodetachment cross section.
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I. INTRODUCTION

The formation and destruction of anions in space [1] is a
field of recent interest as, so far, only six molecular carbon
chain anions (C4H−, C6H−, C8H−, CN−, C3N−, C5N−) have
been detected in the interstellar medium (ISM) [2–7]. They
were seen in different carbon-rich sources, e.g., the carbon
star IRC+10216 and the molecular cloud TMC1. As sug-
gested by Herbst [8] long ago, radiative electron attachment
(REA) could be a significant production mode of anions in
these environments where the density of electron is rela-
tively important (10−7 the density of H2 which is typically
ranging between 105 to 106 molecules cm−3 [9]). Such a
value of the electron density is considered to be high as
it is several orders of magnitude larger than the one of all
the detected anions (around 10−11 the density of H2) and
leads to high electronic dissociative recombination fluxes
which are considered to initiate the dense molecular clouds
chemistry. Statistical calculations of the rate coefficients for
REA to linear carbon chains Cn (n = 4–9), and CnH (n =
2–8) have been reported [10,11]. It was shown that the
REA rate coefficient increases strongly with the size of the
molecule, mainly because the statistical autodetachment rate
of the activated anionic complex is inversely proportional to
the size of the phase space. More recently, accurate quantum
calculations of the REA rate coefficients [12–14] have been
performed for C2n+1N (n = 0,1,2) and C2nH (n = 1,2). These
calculations were performed with rigid molecules, except
for CN where the contribution of the vibrational relaxation
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process to REA was found to be negligible. The quantically
calculated rate coefficients were found much smaller than the
corresponding statistical rates and also too small to explain
the observed abundance of anions in the ISM. However,
electron attachment resonances are expected to enhance the
REA rate coefficients. A detailed review of the studies of
such mechanisms has been given by Millar et al. [1]. The
possibility of dipole-bound states acting as doorway for REA
via Feshbach resonances lying in the continuum of the anion
has been investigated [15–17], as well as shape resonance due
to electron attachment in π∗ orbital for linear carbon chain
with filled π bonding [18,19] or in cyanopolyyne [20], or
shape resonance followed by IVR [21]. Long-lived activated
anionic complex such as SF−∗

6 and NC4N−∗ have been ob-
served experimentally [22,23]. Metastable states with long
lifetime are expected to enhance REA.

On the experimental side, measurements of REA cross sec-
tions are scarce due to the difficulties of measuring these very
low-magnitude cross sections and also to avoid a collisional
stabilization before the slow radiative emission. Conversely,
the reverse process (electron photodetachment from anions)
has been the subject of many studies. Furthermore, exper-
imental data are available for the latter process for several
diatomic anions, thus allowing to benchmark our theoretical
results. On the theoretical side, the first methods which apply
equivalently to REA and electron photodetachment (EPD)
were proposed in [24] and were based on the use of first
Born approximation. These approaches rely on the fact that
for nonpolar systems, the long-range interaction potential
between the leaving or impinging electron and the neutral
molecule is negligible, thus allowing the use of a plane wave
for describing the electron wave function. Within this one-
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electron approach, the wave function of the departing electron
inside the anion is considered to be the highest occupied
molecular orbital (HOMO). This approach was revisited more
recently by several authors who improved this treatment by
taking into account the electronic correlation and relaxation
of the molecular target through the use of the Dyson orbital
calculated from coupled-cluster method [25] or from density
functional theory (DFT) [26]. The use of a computed scat-
tering wave function instead of a plane wave for the motion
of the electron in the continuum was also considered very
early in the field of molecular photoionization [27] but its
first use for EPD was only proposed in 2013 [28] for CN−

within the complex Kohn variational formalism. We present
here a similar approach than this later study, but use instead
the integral equation formalism [29] to obtain the scattered
electron wave function.

The paper is organized as follows. In Sec. II are given
the main steps of the scattering method used as well as
the description of the calculation of the Dyson orbitals. The
parameters of the different calculations are given in Sec. III
and a first test of the method is presented in Sec. IV which
reports the calculation of the EPD applied to O2

−, CN−, and
OH−, along with a comparison to the available experimental
data and to the other theoretical results obtained by the Kohn
variational principle and the R-matrix method. In the second
part of this section, the plane-wave approximation is used
to investigate the convergence of the REA and EPD cross
sections as a function of the size and type of the one-electron
basis set as well as different approximations for the calcula-
tion of the Dyson orbital. The conclusions of this study are
presented in Sec. V.

II. THEORY

In this section we give a brief account of the method
used to calculate the EPD and REA cross sections for linear
molecules. This method can be straightforwardly extended
to treat nonlinear molecules as well. It relies on a single-
center body-fixed expansion of the electronic bound state and
continuum wave around the center of mass of the molecule.

For a given value of the initial relative angular momentum
l0 and its projection � along the linear target molecule axis,
one writes the scattered electron wave function such as

ψScat
�l0 (�r) =1

r

∑
l

ϒScat
�l0,l (r)Y �

l (r̂). (1)

In a similar way, the single-electron wave function of the
anion is taken to be a Dyson orbital also expanded in spherical
harmonics,

ψ
Dyson
�′ (�r) =

∑
l ′

ϒ
Dyson
�′,l ′ (r)Y �′

l ′ (r̂), (2)

where �′ is the projection of the electronic angular momen-
tum l ′ of the anion along its molecular axis.

A. REA and EPD cross sections

The expressions of the cross section as a function of the
dipole moment matrix elements were given long ago for the
photoionization of neutral molecules [27] or for the EPD of

anions [30]. While the same expression is used for these two
processes, the departing electron is subjected to potentials
which differ strongly in strength and range. The cross section
for EPD is

σEPD(ω) = 4π2ω

9c

∑
l0�

[
μ��′

l0

]2
, (3)

where

μ��′
l0 = N

1
2

0

〈
ψScat

�l0

∣∣μπ

∣∣ψDyson
�′

〉
(4)

are the dipole matrix elements, N0 is the degeneracy factor
(see below Sec. III C), ω is the photon frequency, c the speed
of light, and μπ the components of the dipole moment with
π ∈ {−1, 0, 1}.

Using Eqs. (1) and (2), the expression (4) can be rewritten

μ��′
l0 =

∑
l,l ′

I��′
ll ′

∫ ∞

0
dr ϒScat

�l0,l (r)r3ϒ
Dyson
�′,l ′ (r) (5)

with

I��′
ll ′ = (−)�

√
(2l + 1)(2l ′ + 1)

(
l 1 l ′
0 0 0

)

×
(

l 1 l ′
−� π �′

)
(6)

which has a nonzero value only if π = � − �′.
The cross section for REA, which is the reverse process of

EPD, is straightforwardly obtained by microscopic reversibil-
ity [31]:

σREA(Ee) =
(

ganion

gneutral

)
h̄2ω2

2meEec2
σEPD(ω), (7)

where the quantities gneutral and ganion are the statistical
weights of the electronic states of the neutral molecule and
of the anion, respectively, Ee is the electron kinetic energy,
and me is the electron mass. Let us note that this principle
of microreversibility should be applied to processes with
well-specified internal quantum states (rotational, vibrational,
electronic) of the initial and final species. Since in this work
we are not considering the rovibrational states of the anion and
of the neutral molecule, the use of Eq. (7) is an approximation.

We will now detail the procedures used for obtaining the
radial coefficients ϒ

Dyson
�′,l ′ and ϒScat

�l0,l
of the Dyson orbital and

of the scattering wave function, respectively, in Secs. II B
and II C.

B. Calculation of the Dyson orbital

Let us consider an N-electron molecular system, neu-
tral or anionic, represented by the electronic wave function
ψN (�r1,�r2, . . . ,�rN ). After ionization or electron detachment,
this system has lost one electron and its (N − 1)-electron wave
function is represented by ψN−1(�r1,�r2, . . . ,�rN−1). The Dyson
orbital is then defined by the (N − 1)-dimensional integral

ψDyson(�r) =
√

N
∫

ψN−1(�r1, . . . ,�rN−1)

× ψN (�r1, . . . ,�rN )d�r1 . . . d�rN−1. (8)
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TABLE I. Basis set used in this work.

Type Basis H B–Ne

GTO aug-cc-pVQZ [5s4p3d2 f ] [6s5p4d3 f 2g]
GTO aug-cc-pV5Z [6s5p4d3 f 2g] [7s6p5d4 f 3g2h]
GTO aug-cc-pV6Z [7s6p5d4 f 3g2h] [8s7p6d5 f 4g3h2i]
GTO aug-cc-pV6Z++ [9s8p5d4 f 3g2h] [10s9p6d5 f 4g3h2i]
STO VB2 4s2p1d 6s4p2d1 f
STO VB3 5s3p2d1 f 7s5p3d2 f 1g

If ψN and ψN−1 are represented by accurate multiconfigu-
rational wave functions, then the Dyson orbital gathers the
effects of electronic correlation on both systems and therefore
the effects of the electronic relaxation which results from
the addition or subtraction of one electron in the molecular
electronic wave function.

A method for computing the Dyson orbital from multi-
configurational self-consistent field (MCSCF) wave functions
is detailed in the Appendix. It is based on the overlaps
between the orbitals of the N-electron system and the or-
bitals of the (N − 1)-electron system. Other ab initio methods
have been reported, using the equation-of-motion coupled-
cluster method [25] (EOM-CCSD) or the construction of
a biorthonormal set of two multiconfigurational wave func-
tions [32].

The calculated Dyson orbital is then conveniently repre-
sented by an expansion over the molecular orbital set of the
N-electron system

ψDyson(�r) =
∑

p

bpφp(�r), (9)

where the index p runs over all occupied molecular orbitals.
A simple approximation of the Dyson orbital is given by

the Hartree-Fock (HF) frozen-core (FC) approach [24,27].
Within this approximation, the HF orbitals of the anion are
used to describe those of the remaining neutral core. In that
case, the integral (8) is easily calculated. The Dyson orbital
is just the spatial orbital from which the electron is ejected.
This approximation neglects the electronic correlation and the
relaxation of the molecular orbitals after the photodetachment.

Kohn-Sham (KS) orbitals have been recently proposed
as good candidates for approximating the Dyson or-
bital [26,33,34]. Although KS orbitals were introduced as a
mere artifact only for calculating the total energy and charge
density, the latter proposition is based on the analogies found
between Dyson’s quasiparticle and KS equations.

In any case, the Dyson orbital is represented as a linear
combination of either Gaussian (GTO) or Slater (STO) type
orbitals. The radial expansion coefficients (2) are determined
from a set of analytical relations expressed in terms of modi-
fied Bessel functions [35,36]. The different basis sets [37,38]
used in this work are detailed in Table I.

C. Calculation of the electron’s continuum wave function

1. Scattered wave

In this section we present our adaptation to EPD and REA
of the integral equations approach developed long ago by

Rescigno and Orel [29,39] for electron–molecule collisions.
While only the main steps of the implementation of the
method for linear molecules will be presented, more details
can be found in the seminal references [29,39] and in some
of our previous works [40]. First, the electronic wave function
of the target is analytically expanded in symmetrized spherical
harmonics and the expansion coefficients are utilized to obtain
the static interaction potential with the impinging or leaving
electron. More specifically, we will consider here an MCSCF
wave function and use the natural orbitals and their occu-
pancies to obtain this contribution. The method also entails
obtaining a diagonal separable form of the exchange potential
kernel for the lowest symmetries 	, 
, and � of the scattered
electron wave function in the same atomic orbital basis set
than the one used for the Dyson orbital, possibly augmented
of a few functions centered around the center of mass

K (r, r′) =
∑

α

χα (r)ξαχα (r′), (10)

where ξα and χα (r) are, respectively, the eigenvalues and
eigenvectors of the exchange kernel represented in the atomic
orbital basis set. If needed, a density functional Hara’s free-
electron-gas exchange potential [41] (HFEGE) is used for
the higher symmetries. A density functional form of the
correlation-polarization potential, as introduced by Padial and
Norcross [42], is also obtained from the same electronic wave
function and included in the local interaction potential. The
scattering wave function is expanded in spherical harmonics
and the resulting single-center coupled equations for the radial
components of the scattering wavefunction take the usual
form(

d2

dr2
− l (l + 1)

r2
+ k2

)
�ll0 (r)

=
∑

l ′

[
Ull ′ (r)�l ′l0 (r)+

∑
α

χ l
α (r)ξα

∫ ∞

0
dr′χ l ′

α (r′)�l ′l0 (r′)
]
,

where, to make the notation less cluttered, the projection � of
the relative angular momentum associated with the symmetry
for which the calculations are performed is not mentioned.
In this expression, Ull ′ denotes the matrix elements of the
local contributions to the interaction potential which include
the static and correlation-polarization potentials. The integral
form of these equations is solved with the Sams and Kouri
method [43,44] extended by Rescigno and Orel to the mul-
tichannel case for a separable exchange potential [29,39].
The radial components of the wave function are expressed
as a linear combination of homogeneous and inhomogeneous
terms

ϒScat
�l0,l (r) ≡ �ll0 (r) = �0

ll0 (r) +
∑

α

�α
l (r)Cα

l0 (11)

which both satisfy a set of Volterra equations, which are for
the homogeneous term

�0
ll0 (r) = δll0 jl (kr)

+
∑

l ′

∫ r

0
dr′gl (r, r′)Ull ′ (r

′)�0
l ′l0 (r′)

(12)
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and for the inhomogeneous term

�α
l (r) =

∫ r

0
dr′gl (r, r′)χ l

α (r′)

+
∑

l ′

∫ r

0
dr′gl (r, r′)Ull ′ (r

′)�α
l ′ (r

′). (13)

The integral equations algorithm is very efficient but requires
the use of two kinds of well-documented stabilization meth-
ods [29] corresponding to a change of the initial conditions.
The upper triangular stabilization (UTS) entails decompos-
ing the homogeneous solution, at some given propagation
distance, into the product of the upper and lower triangular
matrices. The solution matrix is replaced by the resulting
upper triangular matrix whose columns are guaranteed to
be linearly independent. The second kind of stabilization,
referred to as physical by its authors [29], is designed to make
the solution matrix resemble the physical solution as much as
possible. In both kinds, the stabilization of the homogeneous
part of the solution can be written in terms of a transformation
matrix T such that

�0
ll0 → �̃0

ll0 =
∑

k

�0
lkTkl0 . (14)

For the same value of the propagation distance, an associ-
ated stabilization of the inhomogeneous part of the scattering
wave function needs also to be performed. Again, it can be
written for both kinds of stabilization method in terms of a
transformation matrix d and the stabilized homogeneous part
of the wave function:

�α
l → �̃α

l = �α
l +

∑
l ′′

�̃0
ll ′′d

α
l ′′ . (15)

The wave function is propagated outwardly and stabilized
regularly up to the asymptotic region where the boundary
conditions are applied. The reactance matrix and the elastic
cross section are then extracted.

If we now apply this method to the propagation of the
dipole moment matrix elements defined in Eq. (4), we see
that the two terms of the electron’s continuum wave function
[Eq. (11)] need to be taken into account. Thus, the dipole
moment matrix elements can be split into two contributions,
associated with the local and nonlocal parts of the interaction
potential, which are, respectively, referred to as the static and
exchange contributions

μ��′
l0 = [

μ��′
l0

]
Stat + [

μ��′
l0

]
Exc, (16)

where the static contribution is[
μ��′

l0

]
Stat =

∑
l,l ′

I��′
ll ′

∫ ∞

0
r3�0

ll0 (r)ϒDyson
�′,l ′ (r)dr (17)

and the exchange contribution is[
μ��′

l0

]
Exc =

∑
α

Cα
l0 M��′

α , (18)

where

M��′
α =

∑
l,l ′

I��′
ll ′

∫ ∞

0
r3�α

l (r)ϒDyson
�′,l ′ (r)dr. (19)

These two contributions are accumulated along the propaga-
tion of the continuum wave function and then need also to be
stabilized at the points where the wave function is stabilized.

We obtain straightforwardly from Eq. (14) that the sta-
bilization procedure of the homogeneous part of the dipole
matrix is simply given by

[
μ��′

l0

]
Stat → [

μ̃��′
l0

]
Stat =

∑
k

Tkl0

[
μ��′

k

]
Stat (20)

while using Eq. (15), the corresponding transformation of the
exchange part of the dipole matrix is found to be for the
intermediary matrix M:

M��′
α → M̃��′

α = M��′
α +

∑
l ′′

dα
l ′′
[
μ̃��′

l ′′
]

Stat. (21)

2. Plane-wave approximation

We have also applied the first Born approximation to the
REA and EPD problems as it is very simple to use and
allows huge computer time saving since neither the electron-
molecule interaction potential nor the scattering wave func-
tion need to be calculated. Indeed, within the first Born ap-
proximation, the scattering wave function is just a plane wave
and the interaction potential between the impinging electron
and the target is then implicitly considered to be zero. This is
a reasonable approximation in the case of the interaction be-
tween an electron and a nonstrongly dipolar molecule which
is relatively short ranged. The first implementation of the
method for the EPD from anions was proposed long ago [24].
In this early attempt, the Dyson orbital was approximated by
the HOMO of the anion. More recently, new implementations
of the method using instead a Dyson orbital calculated by
the DFT or coupled-cluster methods were shown to give very
good results for several systems [26,45].

The expansion coefficients in spherical harmonics of the
scattering wave function defined in Eq. (1) are easily obtained
from

ψScat
�l0 (�r) =

√
k

(2π )3
ei�k�r

=
√

k

(2π )3

∑
l

il jl (kr)Pl (cosθ ). (22)

The radial expansion coefficient ϒScat
�l0,l

(r) of Eq. (1) is then in
this case the Ricatti-Bessel functions.

III. PARAMETERS OF THE CALCULATIONS

All the calculations are performed using the following
assumptions:

(i) The electron affinities, the ionization energies, the
parallel and perpendicular polarizabilities of the neutral
molecules are fixed to the values shown in Table II.

(ii) We consider only the contributions from the electronic
ground states of both the anion and the neutral molecule to the
REA or EPD processes.
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TABLE II. Experimental bond length (re), Dipole moment (μ),
polarizabilities (α), ionization energies (IE), and electron affinities
(EA) used in the calculations. Dipole moments and polarizabilities
were calculated using the finite field method implemented in MOLPRO

at the CCSD(T)/aug-cc-pV6Z level.

Molecule re (a0) μ (Debye) α‖ (a3
0) α⊥ (a3

0) IE (eV) EA (eV)

O2 2.282 0 14.11 8.74 12.07 [46] 0.4480 [47]
CN 2.214 1.40 25.13 16.32 14.17 [48] 3.8620 [49]
OH 1.833 1.63 8.62 6.21 13.02 [50] 1.8277 [51]

A. Dyson orbital

Four approaches for calculating the Dyson orbital are com-
pared: HF-FC, KS-B3LYP, EOM-CCSD, and the complete
active-space self-consistent field (CASSCF) method with full
valence active space. In the case of the HF-FC and KS-B3LYP
methods, since CN− and OH− have a singlet ground state,
the Dyson orbital is just the HOMO. For O2

− which has a
2
 ground state with the configuration π3, and becomes after
photodetachment the O2 molecule with a 3

	− ground state
and the π2 configuration, the Dyson orbital is the π orbital
occupied by two electrons in the ground state of O−

2 .
The experimental equilibrium bond lengths of the anions

are employed in the calculations, namely, 2.224, 2.551, 1.833
a0 for CN− [49], O−

2 [52], and OH− [53], respectively. The
maximum value of l ′ for the expansion [Eq. (2)] of the Dyson
orbital in spherical harmonics is fixed to 35, 34, and 25 for
CN, O2, and OH, respectively.

All electronic calculations needed for the computation of
the HF-FC, KS-B3LYP, and CASSCF Dyson orbitals were
performed using the MOLPRO package [54] and the SMILES

package [55]. The calculations of the EOM-CCSD Dyson
orbitals were done with the Q-CHEM package [56]. In the latter
calculations, a reduced aug-cc-pV6Z basis set without h and i
shells was used, thus allowing a calculation of the EPD cross
sections with the EZDYSON program [57]. For O2

−, in order
to compute the EOM-CCSD Dyson orbital in a reasonable
amount of time and memory, the virtual space was reduced
by 50 orbitals.

B. Continuum wave function

1. Scattered wave

In order to solve the integrodifferential equations detailed
in Sec. II C, we need first to calculate the static, correlation-
polarization, and exchange potentials.

(a) Static potential. The fundamental electronic wave
functions of the CN, O2, and OH molecules are described at
the CASSCF level with full valence active space and using the
basis set shown in Table I and the experimental geometries
(Table II). A total of 150 values of l are included in the analyt-
ical expansions of the natural orbitals in spherical harmonics.
We then use this expansion together with the natural orbital
populations to obtain the 80 first terms of the static potential
multipole expansion.

(b) Correlation-polarization potential. We use the local
density functional form of Padiall and Norcross [42] and the

polarizabilities given in Table II to obtain the l = 0 and 2
contributions included in our calculations.

(c) Exchange potential. Two kinds of exchange potential
are employed. First, the local density functional Hara’s free-
electron-gas model [41] which is calculated for a maximum
values of l = 40 and using the ionization energies given in
Table II. Second, a nonlocal separable form [39] is computed
for the 	 and 
 symmetries in the Gaussian basis set which is
used to calculate the electronic wave function. The maximum
value of l considered for the expansion of the Gaussian
functions is 80 for the three systems. For the � symmetry,
a Hara’s free-electron-gas potential is used as it was shown to
give equivalent results.

2. Plane wave

In all calculations based on plane wave, the partial-wave
expansion [Eq. (22)] was truncated at a maximum value of 40
Riccatti-Bessel functions.

C. Spin and electronic degeneracies

As in any scattering problem we need to average the cross
section over all initial states and to sum it over all the final
states. In the case of photodetachment or photoionization
of a closed-shell system with no electronic degeneracy, the
calculated cross section must be multiplied by 2 [27,57,58].
This results from the fact that the final state combines two
electrons in two different orbitals and must be a singlet state.
The spin of the electron ejected from the initial closed-shell
system can be up or down. Both spin projections lead to
the same cross section and we have to sum over these two
cases. This applies to the photodetachment of CN−(X 1	+)
giving CN(X 2	+). Let us now consider the photodetachment
from OH−(X 1	+). The HOMO is a π orbital occupied by
four electrons. The final state is OH(X 2
) with the π orbital
occupied by three electrons. The ejected electron can be any
of the four initial electrons occupying the HOMO. The total
photodetachment cross section is then the sum of the four
equivalent cross sections calculated by considering only one
electron among the four available ones. Thus, we multiply
the calculated cross section by 4. Finally, let us turn to the
photodetachment from O2

−(X 2
) which has a π HOMO
occupied by three electrons. We consider only the final state
O2(X 3	−

g ). The final π HOMO is occupied by two electrons
and must be a triplet state. This requires two open shells. Let
us denote by πx and πy the two degenerate orbitals which form
the π orbital. The initial state has two electrons in the πx or πy

orbital and one electron in the other degenerate orbital. The
final state must have one electron in each πx and πy orbital.
Therefore, there is only the possibility to eject an electron
from the doubly occupied orbital. This case reduces to the
case of a closed-shell system with no electronic degeneracy
and, therefore, we multiply the calculated cross section by
2. Furthermore, we have to average the cross section over all
initial states. The two initial degenerate states of O2

−(X 2
)
are equivalent (two electrons in πx and one in πy or the
reverse). Therefore, the cross section of only one case needs
to be calculated.
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FIG. 1. Experimental [59,60] and calculated EPD cross section
of O2

−. The calculated cross sections correspond to the different
representations of the electron continuum wave function: plane wave
(PW), scattered wave using a separable exchange potential (SEPEX),
scattered wave using Hara’s free-electron-gas exchange potential
(HFEGE). The dotted red line shows the PW cross section of Oana
et al. [45].

IV. RESULTS

A. Comparison between theory and experiment

In this section we test our theoretical approaches by com-
paring the calculated EPD cross sections with the experimen-
tal data available for O2

−, OH− and CN− in Figs. 1, 2, and 4,
respectively. In these calculations the Dyson orbital as well
as the different contributions to the interaction potential were
calculated at the CASSCF level using the VB3 basis set.

For O−
2 , we see in Fig. 1 that there is a global good agree-

ment between theory and experiment whatever the theoretical
method used. The relatively good agreement between the
scattered-wave and plane-wave calculations was expected as
O2 has no dipole. Therefore, the interaction potential between
the ejected electron and O2 is driven by the charge-quadrupole
(∝r−3) and charge-induced dipole (∝r−4) interactions which
are not very strong. Thus, the continuum wave function is
well described by the plane-wave (PW) approximation for
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FIG. 2. Experimental [53,61–63] and calculated EPD cross sec-
tion of OH−. Notation as in Fig. 1.

this system. The present PW cross section is in very good
agreement with the PW cross section reported by Oana
et al. [45], although both calculations use different basis sets
and different methods for the calculation of the Dyson orbital.
But, the EPD cross section of O2

− is rather insensitive to
the basis set, as shown in Sec. IV B. Furthermore, due to
symmetry, the Dyson orbital is essentially the πg orbital with a
small contribution from the π∗

g orbital, therefore reducing the
discrepancy which could come from the different methods of
calculating the Dyson orbital.

In the case of OH− represented in Fig. 2, four sets of
experimental data are available which agree only for the
lowest photon energies. At higher energy it becomes difficult
to decide which set of experimental data are the most reliable.
But, let us note that the experimental work of Branscomb
et al. is the oldest one (1966) and gives the largest cross
section while the work of Lee and Smith is more recent
(1979) and is in good agreement with the most recent work of
Hlavenka et al. (2009). In Branscomb’s experiment, the anions
were produced in discharge with a high degree of internal
excitation, at an estimated temperature of ∼850 K, while the
later experiments were carried out between 8 and 300 K. Since
the potential energy curves of OH and OH− are very similar,
the EPD cross section is not expected to be significantly
affected by the vibrational excitation. Trippel et al. proposed
that rotational excitation explains the larger cross section
measured by Branscomb et al. but the cross section measured
by Hlavenka et al. in the range 8–300 K shows no temperature
dependence and, therefore, no rotational excitation depen-
dence. More experimental data are necessary to understand
this discrepancy.

Near the photodetachment threshold, the three sets of
calculations describe reasonably well the increase of the cross
section. At higher energy, a large discrepancy is observed
between the PW cross section and the other two calculated
cross sections which involve the calculation of the scattering
wave function. This can be understood by reminding that
OH is a strongly dipolar molecule and that, consequently, the
interaction potential of this molecule with the ejected electron
cannot be neglected. While the agreement between theory and
experiment is not as good as for O2

−, the set of experimental
points of Lee and Smith [61] is, however, reasonably well
reproduced by the SEPEX and HFEGE approaches, with a
better match of the HFEGE approach which exhibits the low-
energy bump observed in the experimental results. Among the
three molecules considered in this study, OH− is the one with
the largest dipole moment. It is known that rotation should be
taken into account in the case of strongly dipolar systems [64]
whereas it is neglected within our approaches. However, EPD
experiment [63] has shown there is no rotational dependence
at temperature lower than 300 K. Several deficiencies of
the first Born approximation are known, among which the
nonorthogonality of the PW with the Dyson orbital is probably
the most important one [24]. This later shortage is the most
probable cause of the failure of the plane-wave approximation
for this system.

A maximum is observed in the experimental and HFEGE
photodetachment cross sections below 2 eV. This feature
could indicate a resonance. However, the present calculations
include only the fundamental electronic states of OH and

033412-6



SINGLE-CENTER APPROACH FOR PHOTODETACHMENT … PHYSICAL REVIEW A 99, 033412 (2019)

2.0 2.5 3.0 3.5
Photon Energy (eV)

0.00

0.05

0.10

0.15

0.20

0.25

σ
P
D

Σ

Δ Π

HFEGE
SEPEX

(u
n
it
s 

o
f 
a
2 0
)

FIG. 3. � components of the EPD cross section of OH−.

OH− and both rotation and vibration are neglected, thus only
a shape resonance is possible. A check of the elastic cross
section did not reveal any resonance. This is backed by the fact
that some PW cross sections [24,26], for which no resonance
is possible, also display the same maximum. If one assumes
there is no resonance, what can cause the observed maximum?
The partial-wave decomposition of the cross section gives
the answer. At the photodetachment threshold energy, the
cross section is proportional to �Elmin+ 1

2 where �E is the
excess energy above threshold and lmin the value of the lowest
relative orbital angular momentum which contributes to the
cross section [24]. In the case of OH−, we have lmin = 0, and
therefore the cross section has an infinite slope at the threshold
energy. As the energy increases, therefore increasing the
relative orbital angular momentum, the l = 0 contribution
decreases while the l � 1 contributions increase. Figure 3
shows the amplitude of the � components of the cross section
(� is the projection of l on the internuclear axis). It appears
clearly that the maximum of the cross section is a consequence
of the early decrease of the � = 0 contribution above the 2-eV
energy.

The calculated EPD cross sections for CN− are compared
in Fig. 4 to the single experimental point available. While
the separable exchange cross section is too large, the PW
and HFEGE results agree reasonably well with experiment,
the HFEGE giving the best agreement. In order to assess
the energy dependence of the cross section, we compared
on the same figure our results with those obtained from
state-of-the-art R-matrix calculation of Khamesian et al. [13].
Again, the agreement with our calculations is relatively good,
especially for the plane wave and scattered wave using a
HFEGE potential. The EPD cross section reported by Sko-
morowski et al. [20] for CN−, calculated with the PW ap-
proximation, is slightly lower than the PW cross section of
this work. There are at least three reasons for this discrepancy.
First, Skomorowski et al. use a calculated value (3.99 eV)
for the photodetachment threshold energy, while we use the
experimental value, namely, 3.86 eV. The second origin of
differences is the basis set. Skomorowski et al. use a GTO
basis set while we use the VB3 STO basis set. As shown in

4.0 4.2 4.4 4.6 4.8

Photon Energy (eV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ
P
D

PW

SEPEX

HFEGE

ezDyson-PW

R-matrix

Kumar et al.

(u
n
it
s 

o
f 
a
2 0
)

FIG. 4. Experimental [65] and calculated EPD cross section of
CN−. The cyan area corresponds to the R-matrix calculations of
Khamesian et al. [13]. The dotted red line shows the PW calculation
of Skomorowski et al. [20]. Notation as in Fig. 1.

Sec. IV B, the latter basis set gives larger cross sections than
large GTO basis sets. Third, the cross section of Skomorowski
et al. is based on EOM-CCSD Dyson orbitals while we use
CASSCF Dyson orbitals.

There are unfortunately no experimental REA data for
these three systems, but two sets of theoretical calculations
are available for CN using the complex Kohn variational
principle [28] and the R-matrix method [13]. The results of
these calculations are compared with ours in Fig. 5. It can be
seen that the cross sections calculated with a scattered wave
agree quite well with the R-matrix and the Kohn variational
principle results. Conversely, the plane-wave approximation
does not reproduce the very low collision energy behavior.
This result is understandable as the plane-wave approximation
is expected to work well when the kinetic energy of the
electron is large enough compared to the electron affinity of
the target molecule. This suggests that the scattered wave
should in any case be preferred for REA calculations at very
low energy.
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FIG. 5. Calculated REA cross section of CN−. The cyan area
corresponds to the R-matrix calculations of Khamesian et al. [13].
The dotted red line corresponds to the Kohn variational principle
calculations of Douguet et al. [28]. Notation as in Fig. 1.
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TABLE III. REA rate constant at 300 K for the different
approaches discussed in the text. The notation a(b) stands for
a × 10b.

Molecule SEPEX HFEGE PW Herbst

O2 6.1(−20) 7.1(−20) 5.1(−19) 2.0(−17)
CN 1.6(−15) 1.1(−15) 4.4(−16) 4.0(−18)
OH 4.8(−16) 6.8(−16) 6.8(−16) 1.1(−18)

We eventually calculated the REA rate constant at 300 K
by Boltzman averaging of the SEPEX, HFEGE, and PW cross
sections (see Table III). In the case of CN, the best agree-
ment with the rate constant reported by Douguet et al. [28],
7 × 10−16 cm3 molecule−1 s−1, is obtained with the HFEGE
and PW methods. The Douguet et al. results lie between
the HFEGE and PW results. While not realistic at very low
energy, the plane-wave approximation also appears to give the
right order of magnitude of the REA rate constant at 300 K.
It then offers a simple alternative in this temperature range for
larger molecules for which the scattering-wave calculations
could be time consuming. Also shown in Table III are the
REA rate constants obtained using the statistical expression
proposed by Herbst [8]. The statistical rate constants differ
from our calculations by about two orders of magnitude.
However, all calculations agree with the fact that the REA rate
constants for diatomic molecules are particularly small.

B. Comparison of the methods and basis sets for the Dyson
orbital evaluations

As seen above, there are several methods available to
calculate the Dyson orbital and it is also necessary to select
a one-electron basis set. In this section, we investigate how
the REA and EPD cross sections are depending on the type
and size of the one-electron basis set and also on the method
used to calculate the Dyson orbital. We consider both Slater
and Gaussian basis sets and apply the various approaches
and basis sets to the three diatoms CN, O2, and OH. As
it was found in the previous section that the plane-wave
approximation gives reasonable results for a low computation
time, we decided to use this approximation to carry out this
study.

Figure 6 shows first a comparison of the EPD cross sections
obtained using different methods of electronic calculation
for obtaining the Dyson orbital, all with the aug-cc-pV6Z

basis set. The CASSCF approach is compared to the HF-
FC, EOM-CCSD, and KS-B3LYP approaches. The EZDYSON

program [57] was used to compute the cross sections from
the EOM-CCSD Dyson orbitals. As it can be seen in this fig-
ure, the HF-FC approximation moderately underestimates the
CASSCF cross sections as it neglects the electron correlation.
In spite of this shortcoming, the HF-FC approach may offer
a reliable first estimate of the EPD cross section when the
size of the system prohibits the use the CASSCF approach.
The EOM-CCSD approach gives larger cross sections than
the CASSCF approach. Since the electronic correlation is
accurately calculated by the EOM-CCSD method, this implies
that the Dyson orbital calculated with this method has small
contributions from many diffuse virtual molecular orbitals.
This is expected to increase the EPD cross section. As a
matter of fact, Fig. 6 shows that the discrepancy between
both EOM-CCSD and CASSCF approaches is more or less
proportional to the number of valence electrons

We also find that the KS-B3LYP calculation fail providing
the right magnitude of the EPD cross section since it always
overestimates its value. Since KS orbitals are proportional to
the Dyson orbitals [33], one can understand why KS orbitals
are able to reproduce relative measurements like momentum
distributions while they fail estimating absolute values of the
EPD cross section. This interpretation is confirmed by looking
at the scaled KS results in Fig. 6, which reproduce correctly
the energy dependence of the CASSCF EPD cross section.

We now focus our interest on the convergence of the EPD
and REA results as a function of the size and the type of the
one-electron basis set used to perform the computation of the
Dyson orbital. These results are shown in Fig. 7, all calculated
with the CASSCF method. The basis sets tested are those
defined in Table I. The largest basis set, aug-cc-pV6Z++,
corresponds to the aug-cc-pV6Z basis set augmented by a
tempered set of two extra-diffuse functions for the s and p
shells. The EPD cross section for O2

− shows almost no vari-
ation with respect to the choice of the basis set. Conversely,
the EPD cross sections for OH− and CN− show a significant
dependence on the choice of the basis set. This can be under-
stood by reminding that both OH and CN are polar molecules
while O2 is not. This means that the interaction between the
scattered electron and CN or OH is more long ranged than
for O2. More diffuse functions are then required to describe
properly the interaction of an electron with a polar molecule.
This is indeed what can be seen in Fig. 7. The largest STO
basis set give better results than the GTO ones since they are
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FIG. 6. Plane-wave EPD cross sections for different approaches to the calculation of the Dyson orbital.
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FIG. 7. Plane-wave EPD cross sections for different one-electron basis set employed in the CASSCF calculations of the Dyson orbital.

more diffuse. This is clearly seen when comparing the VB3
and aug-cc-pV6Z results in spite of the important difference
of size between these two basis sets (Table I). Adding more
diffuse functions to the large GTO basis set aug-cc-pV6Z does
not change the EPD cross sections, except a small change
for OH− in the range 1.8–2.5 eV where the aug-cc-pV6Z++
cross section is closer to the VB3 cross section than to the aug-
cc-pV6Z cross section. Since furthermore the STO orbitals
reproduce accurately the cusp of the atomic orbitals, a smaller
number of STO functions are sufficient to properly describe
the Dyson orbital in the short-range region.

If we now compare in Fig. 8 the results obtained for the
REA cross sections, we can see that only the low-energy
regime is significantly dependent on the choice of the basis
set. The explanation of this dependence is identical to the one
we discussed for the EPD cross sections.

V. CONCLUSION

A method based on a body-fixed single-center approach
and a variety of approximations of the Dyson orbital was
presented for the calculation of the EPD and REA cross
sections. Both the methods used to calculate the Dyson orbital
and the scattering wave function were reviewed in detail. The
methods were benchmarked by applying them to the three
molecules CN, O2, and OH for which experimental EPD data
are available. The results of these approaches compare well
with both experimental data and the only R-matrix and Kohn
variational principle calculations available. We, however,

expect that it may not be the case for strongly polar molecules
as it is based on a body-fixed approach.

We also compared available REA and EPD data for these
three systems with the results given by the combination of
the use of the first Born approximation and the calculation of
a Dyson orbital. For the systems where the dipole moment
is not too large, and provided that the kinetic energy of the
electron is large enough compared to the electron affinity of
the target molecule in the case of REA calculations, we found
that the plane wave is a good approximation of the scattering
wave which furthermore reduces drastically computer time.
This confirms the results of previous studies [24,26,45].

The plane-wave approximation was thus used to compare
the results of several kinds of methods for the evaluation of the
Dyson orbital which is a key ingredient in the calculation of
EPD and REA cross sections. We find that KS-B3LYP results
give the right energy dependence of the cross sections but
overestimates the absolute magnitudes, while CASSCF and
HF-FC give relatively close results. The effects of the size
and type of orbital basis set was also investigated still with
the plane-wave approximation. STO basis sets are found to
perform better for a smaller number of basis functions than
GTO basis sets. Among the three methods tested in this study,
it is HFEGE scattering-wave approach developed in this work,
which shows the best overall agreement with experiment.
While less accurate, the plane-wave approximation combined
with the use of HF-FC Dyson orbitals appears to be an
efficient alternative tool for computing REA and EPD cross
sections for large molecular systems with moderate dipole
moment.
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APPENDIX: DYSON ORBITAL CALCULATION

Let us consider a N-electron molecular system, neutral or
anionic. After ionization or electron detachment, this system
has lost one electron. If the electronic wave functions are
expanded over a set of determinants, such as CASSCF or CI
wave functions,

�N (x1, x2, . . . , xN ) =
kmax∑
k=1

CN
k �N

k (x1, x2, . . . , xN ), (A1)

�N−1(x1, x2, . . . , xN−1)

=
lmax∑
l=1

CN−1
l �N−1

l (x1, x2, . . . , xN−1), (A2)

then the Dyson orbital [25,32,66] is defined by

ϕD(xN ) =
√

N
lmax∑
l=1

CN−1
l

kmax∑
k=1

CN
k

×
∫

dx1dx2 . . . dxN−1�
N
k (x1, x2, . . . , xN )

×�N−1
l (x1, x2, . . . , xN−1). (A3)

We detail below how to calculate the (N − 1)-dimensional
integral, following closely Arbelo-González et al. [66].

Any N-electron Slater determinant can be rewritten as

�N
k (x1, x2, . . . , xN )

= 1√
N

N∑
i=1

(−)N+iψN−1
ki (x1, x2, . . . , xN−1)χdki (xN ), (A4)

where ψN−1
ki (x1, x2, . . . , xN−1) is the minor determinant ob-

tained by removing the column i and the line N from the de-
terminant �N

k (x1, x2, . . . , xN ), and where χdki is the molecular
spin-orbital appearing at column i in determinant k. The spin-
orbital number is given by the function dki. Using Eq. (A4),
Eq. (A3) can be rewritten

ϕD(xN ) =
lmax∑
l=1

CN−1
l

kmax∑
k=1

CN
k

N∑
i=1

(−)N+iχdki (xN )

×
∫

dx1dx2 . . . dxN−1�
N−1
l (x1, x2, . . . , xN−1)

×ψN−1
ki (x1, x2, . . . , xN−1). (A5)

The summation on k runs on all determinants of the N-
electron system, and the summation on i runs on all occupied
spin orbitals of the determinant k. Thus, we can replace the

summation on i by a summation on all spin orbitals of the
N-electron system. Let us define the b coefficients such as

bdki =
lmax∑
l=1

CN−1
l CN

k (−)N+i

×
∫

dx1dx2 . . . dxN−1�
N−1
l (x1, x2, . . . , xN−1)

×ψN−1
ki (x1, x2, . . . , xN−1), (A6)

ϕD(xN ) =
kmax∑
k=1

N∑
i=1

bdkiχdki (xN ). (A7)

dki will run on all the spatial orbitals which are occupied at
least one time in the list of the determinants. dki gives also
the spin state. Thus, all the quantities bdki which belong to the
same spatial orbital j and spin state σ can be summed and
Eq. (A7) can be rewritten

ϕD(xN ) =
No∑
j=1

∑
σ=α,β

b jσ χ jσ (xN ), (A8)

where No is the number of spatial orbitals (atomic or molecu-
lar).

The determination of the coefficients bdki involves the
calculation of the (N − 1)-dimensional integral

Ilki =
∫

dx1dx2 . . . dxN−1�
N−1
l (x1, x2, . . . , xN−1)

×ψN−1
ki (x1, x2, . . . , xN−1). (A9)

The integral involves the product of two Slater determinants
built over two nonorthogonal spin-orbital basis sets. The (N −
1)-dimensional integral can be reorganized into an antisym-
metrized product of N − 1 one-dimensional integrals

Ilki =
∑
p∈Sn

(−)pP̂
∫

dx ϕdl1 (x)χdk1 (x)

×
∫

dx ϕdl2 (x)χdk2 (x) . . .

×
∫

dx ϕdl (i−1) (x)χdk(i−1) (x)

×
∫

dx ϕdli (x)χdk(i+1) (x) . . .

×
∫

dx ϕdl (N−1) (x)χdkN (x), (A10)

where the antisymmetrization operator acts over the χdki func-
tions. This can be also written as a determinant in which
appear the overlaps of every occupied molecular orbitals of
the N-electron system with every occupied molecular orbitals
of the (N − 1)-electron system.
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The functions ϕdl j and χdki are spin orbitals, i.e., the prod-
ucts of a spin function σ ∈ [α, β] and a spatial molecular
orbital. The latter are expanded over the spatial atomic orbitals
basis set. Let us recall that both N-electron and (N − 1)-
electron systems have the same atomic orbitals’ basis set, the
same geometry, but different molecular orbitals’ basis sets.
Therefore, the overlaps between spin orbitals appearing in

Eq. (A10) are calculated with

〈
ϕdli

∣∣χdk j

〉 = δσdli ,σdk j

No∑
m=1

No∑
n=1

umdlivndk j Smn, (A11)

where u and v are the LCAO coefficients and S the atomic
orbital overlap matrix.
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