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Revisiting the recollisional (e, 2e) process in strong-field nonsequential double ionization of helium
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We present numerical simulations on the correlated two-electron momentum distributions for the recollisional
(e, 2e) process in nonsequential double ionization (NSDI) of helium by an 800-nm laser field at an intensity
around 4.5 × 1014 W/cm2, based on the improved quantitative rescattering model, in which the lowering of the
kinetic energy required for the electrons to escape from the parent ion due to the presence of electric field at
the time of recollision has been taken into account. According to the QRS model, the correlated two-electron
momentum distributions for laser-induced (e, 2e) collision in NSDI can be factorized as a product of the
returning-electron wave packet (RWP) and the field-free differential cross section (DCS) for ionization of the
parent ion by the impact of the laser-induced returning electron. The RWPs which describe the momentum
distribution of the returning electrons are obtained within the strong-field approximation for high-order above
threshold ionization. In the calculations of the DCSs for electron impact ionization of He+, the precollision
Coulomb interaction between the incident electron and the parent ion and the postcollision Coulomb interaction
between the two outgoing electrons are considered. In addition, the dynamic screening (DS) of the three-body
Coulomb interactions in the final state, due to the fact that the strength of the interaction of any two particles
is affected by the presence of the third one, has also been taken into account. It has been found that while the
postcollision Coulomb interaction is responsible for the observed fingerlike structure, the precollision Coulomb
interaction changes the orientation of the two fingers from V-type to parallel, the final state DS reduces the
separation of the two fingers, and the lowering of threshold energy shifts the two fingers towards smaller
momenta. All these effects improve the agreement of the simulated results with the experimental results.
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I. INTRODUCTION

The process of nonsequential double ionization (NSDI) has
attracted wide interest both experimentally and theoretically
for more than three decades and still remains one of the most
fundamental and attractive phenomena in strong-field laser
physics because it involves the correlated motion of two elec-
trons. The characteristic knee structure observed in the early
experimental measurements of the total double ionization
yield as a function of laser intensity [1–4] first unveiled the
principal underlying physical mechanisms leading to NSDI. It
has now been widely accepted that NSDI can be attributed to
two processes, one is the electron impact ionization, in which
the first electron, by recolliding with the core, immediately
releases a second electron, and the other one is recollision
excitation with subsequent ionization. Recently, it has been
found that NSDI could also take place through sequential
ionization of doubly excited states which are populated after
the laser-induced recollision [5,6].

Despite the great stimulation it created, the measured total
ionization yield could only give little insight into the ion-
ization mechanism compared to the correlated two-electron
momentum distributions which were first measured by Weber
et al. [7] at the turn of this century. The correlated two-electron
momentum distributions have been shown to provide the
most detailed information of NSDI since many characteristic
structures of that particular process are smoothed out in the

momentum distributions and the total yield of the resulting
doubly charged ions. Such coincident electron momentum
distributions yield direct and intuitive insight into the dynam-
ics of laser-atom interaction and shed light on the mechanism
leading to NSDI, and hence serve as a detailed testing ground
for various theoretical models.

One decade ago, the prominent fingerlike structure ob-
served in an experiment with high resolution and high statis-
tics on NSDI of helium in a strong laser pulse at 800 nm
[8] attracted considerable interest because it provided a par-
ticularly clear manner of the electron-electron correlation. A
lot of theoretical efforts have been devoted to this special
issue. Particularly noteworthy are the ab inito calculations
by solving the time-dependent Schrödinger equation (TDSE)
[8], the semiclassical quasistatic model [9], the classical
three-dimensional ensemble model [10], and the quantitative
rescattering (QRS) model [11,12]. Due to the high demand
of computer resources both in time and in memory, which
quickly grows with pulse duration and laser intensity, ab initio
time-dependent calculations are usually carried out with di-
mensional restriction as well as a restriction to a few cycles
of the laser field. In addition, the dynamical details of the
electron recollision process can hardly be extracted from the
solution of the TDSE, and hence the transparent physical
interpretation of the fingerlike pattern cannot be achieved.
Moreover, the semiclassical model allows one to disentangle
the physical mechanisms, such as the electron-electron and
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electron-ion interactions, and thus identify the influence of
each mechanism on the fingerlike structure. However, in
the semiclassical model, except for initial tunneling, other
physical effects are described classically. In contrast, the QRS
model is based on a full quantum formulation, in which all the
physical mechanisms are treated quantum mechanically.

The fingerlike structure in the NSDI of helium is attributed
to the laser-induced recollisional (e, 2e) process. Although
it has been confirmed that the observed fingerlike structure
in experiments is a consequence of the Coulomb interaction
between the two emitted electrons [9,11,12], obvious discrep-
ancies have been found between the existing theoretical simu-
lations and the experimental data. For example, the separation
of the two fingers has always been overestimated [8,9,11,12].
In this paper, we revisit this process by using the improved
QRS model [13,14] in which the lowering of the kinetic
energy required for the electrons to escape from the parent ion
due to the presence of electric field at the instant of recollision
has been taken into account. In addition, while both the
electron-electron and electron-nucleus interactions in the final
state have been included in the numerical simulations, as we
did in the previous work [11,12], the influence of the Coulomb
interaction between the incident electron and the target-ion
on the fingerlike structure is addressed. Furthermore, the
dynamic screening effect in the final state three-body system
is also examined.

The remainder of the present paper is arranged as follows.
The theoretical ingredients and the numerical procedures are
presented in Sec. II. The simulated results are shown and
discussed in Sec. III. Finally, our conclusions are given in
Sec. IV.

Atomic units (a.u.) (h̄ = |e| = m = 4πε0 = 1) are used
throughout the paper unless otherwise indicated.

II. THEORETICAL METHODS

According to the QRS model, the correlated two-electron
momentum distributions for laser-induced recollision direct
ionization can be factorized as a product of the returning-
electron wave packet and the field-free differential cross sec-
tions for electron impact ionization of the parent ion.

A. Theoretical models for the laser-free (e, 2e) process

Suppose we have an electron with momentum ki and
energy Ei, which collides with a He+ ion in its ground state;
after the collision two electrons, one with momentum k1 and
energy E1, and a second with momentum k2 and energy
E2, are detected in coincidence. For this process, the triple-
differential cross section (TDCS) is given by

d3σ

d�1d�2dE2
= (2π )4 k1k2

ki

[
3

4
| f (k1, k2) − f (k2, k1)|2

+ 1

4
| f (k1, k2) + f (k2, k1)|2

]
, (1)

where �1(θ1, φ1) and �2(θ2, φ2) are the solid angles of detec-
tors for the two electrons leaving the collision with momenta
k1 and k2, and f (k1, k2) and f (k2, k1) are the transition am-
plitudes for the direct and exchange processes, respectively. In
the prior form, the direct transition amplitude for the (e, 2e)

process is expressed by

f (k1, k2) = 〈�−
k1,k2

(r1, r2)|Vi|�ki (r1, r2)〉, (2)

where Vi is the perturbation interaction, and r1 and r2 are the
position vectors of the projectile and the bound-state electron,
respectively, with respect to the target nucleus.

The final-state wave function, which satisfies the
incoming-wave boundary condition, is a solution of the
following Schrödinger equation:

(H − E1 − E2)�−
k1,k2

= 0, (3)

where H is the exact Hamiltonian for the whole system,

H = −1

2
∇2

1 − ZN

r1
− 1

2
∇2

2 − ZN

r2
+ 1

r12
, (4)

with ZN = 2 being the nuclear charge of He. The approximate
three-body scattering wave function for the final state that sat-
isfies the asymptotic three-body Schrödinger equation exactly
was derived analytically by Brauner, Briggs, and Klar (BBK)
[15] and can be expressed as

�−
k1,k2

(r1, r2) = (2π )−3 exp(ik1 · r1) exp(ik2 · r2)

×C(α1, k1, r1)C(α2, k2, r2)C(α12, k12, r12),

(5)

where the Coulomb part of the wave function is defined as

C(α, k, r) = e−πα/2
(1 − iα)1F1[iα; 1; −i(kr + k · r)], (6)

and

k12 = 1

2
(k1 − k2), r12 = r1 − r2,

α1 = −ZN

k1
, α2 = −ZN

k2
, α12 = 1

2k12
. (7)

In Eq. (6), 
 is the Gamma function and 1F1 is the confluent
hypergeometric function. Since the BBK wave function in
Eq. (5) consists of a product of three Coulomb wave functions,
it is referred to as 3C, in which the Coulomb interaction
between the two outgoing electrons has been taken into ac-
count. If 1/r12 is dropped in Eq. (4), the interaction between
the two outgoing electrons is turned off. Consequently, the
final-state wave function becomes a product of two Coulomb
(2C) wave functions by setting α12 = 0 in Eq. (5). It should
be mentioned that the 2C wave function does not satisfy the
proper asymptotic three-body boundary condition.

The initial state �ki in Eq. (2) can be obtained by solving
the following Schrödinger equation:

(Hi − Ei − εi )�ki (r1, r2) = 0, (8)

where εi is the energy of He+ in the ground state, and Hi is the
approximate Hamiltonian for (e, 2e) processes on He+ ion in
the initial channel and is given by

Hi = −1

2
∇2

1 − Zeff

r1
− 1

2
∇2

2 − ZN

r2
, (9)

where Zeff = ZN − 1 is the asymptotic charge of the target
seen by the incident electron. With this approximation, the
initial state which consists of the incident electron and the
bound electron can be expressed as the product of two wave
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functions, one describing the incident electron and the second
describing the bound electron,

�ki (r1, r2) = ϕki (r1)φHe+ (r2), (10)

where ϕki (r1) describes the incident electron and satisfies[
−1

2
∇2

1 − Zeff

r1
− Ei

]
ϕki (r1) = 0, (11)

and φHe+ (r2) is an eigenfunction of the equation[
−1

2
∇2

2 − ZN

r2
− εi

]
φHe+ (r2) = 0. (12)

The eigenfunction of Eq. (11) is a Coulomb wave, which takes
the form

ϕki (r1) = 1

(2π )3/2
exp(−παi/2)
(1 + iαi)

× exp(iki · r1)1F1[−iαi; 1; i(kir1 − ki · r1)], (13)

where αi = −Zeff/ki. The ground-state wave function of He+

in Eq. (12) is taken to be

φHe+ (r2) =
(

Z3
N

π

)1/2

exp(−ZN r2). (14)

The perturbation interaction in the initial channel is then
given by

Vi = H − Hi = −ZN − Zeff

r1
+ 1

r12
. (15)

Due to the long-range Coulomb interaction occurring in the
initial channel, further complication arises in the theoretical
calculation for the ionization of ions. Alternatively, the inci-
dent Coulomb wave is replaced by a plane wave by setting
Zeff = 0 in Eq. (11), i.e.,

ϕki (r1) = 1

(2π )3/2
exp(iki · r1). (16)

Consequently, the perturbation interaction in the initial chan-
nel becomes

Vi = −ZN

r1
+ 1

r12
. (17)

It should be noted that in the previous work [11], we chose
the perturbation potential in Eq. (17) since only plane waves
were used to describe the incident electron. In this paper, we
always use the perturbation potential in Eq. (15) since using a
plane wave to describe the projectile in the initial channel for
the (e, 2e) process of ions is simply an alternative numerical
treatment rather than a reasonable approximation due to the
fact that Zeff = 0 is never valid.

So far the theoretical models employed in this work can
be classified according to the number of Coulomb waves
involved in the transition amplitude, which are 2C, 3C, and
4C. In the 2C and 3C models, the incident electron is repre-
sented by a plane wave and the two outgoing electrons are
represented by a product of two and three Coulomb waves,
respectively. In the 4C model, a Coulomb wave is used to
describe the incident electron, and a product of three Coulomb
waves is employed to represent the two outgoing electrons.

Although the 3C wave function for the two continuum
electrons in the final state satisfies the asymptotic three-body
Schrödinger equation exactly, it cannot be regarded as fully
satisfactory. The major limitation of the 3C wave function lies
in the fact that influence on the strength of the interaction of
any two particles by the presence of a third one has not been
taken into account. This deficiency was first corrected by Be-
rakdar and Briggs [16] by introducing effective Sommerfeld
parameters for the case in which the two outgoing electrons
have equal energies. Such a modification reflects the dynamic
screening (DS) of the three-body Coulomb interactions. This
prescription was later generalized by Chen et al. [17] for any
geometry and energy sharing. In this work, the DS effect has
also been considered in the 3C and 4C models, and hence
the improved 3C and 4C models are referred to as DS3C and
DS4C, respectively. The details of the DS3C model can be
found in Refs. [17,18].

B. Numerical procedures for the recollisional (e, 2e) process
in a strong field

For the recollisional (e, 2e) process of He+ in a strong field,
the first issue one needs to consider is the spin conservation.
The TDCS in Eq. (1) is spin averaged for regular (e, 2e)
collisions, in which a spin multiplication factor of 1/4 is
included for the singlet cross sections and a factor of 3/4 is
included for the triplet cross sections. Equation (1) has been
used in our previous calculations for the NSDI of He [11].
However, for the laser-induced recollisional (e, 2e) process
of He+, the two electrons involved in the process start in
the singlet ground state of He, and their singlet coupling is
preserved during ionization since the absorption of photons
does not affect spin [19]. Thus we need to multiply the singlet
scattering cross sections by a factor of 4, and we must neglect
the triplet scattering cross sections. Consequently the TDCS
for the recollisional (e, 2e) process of He+ in a strong field is
given by

d3σs

d�1d�2dE2
= (2π )4 k1k2

ki
| f (k1, k2) + f (k2, k1)|2. (18)

In the correlated two-electron momentum spectra for
NSDI, the experimental data are measured only for the mo-
mentum components of the two electrons along the laser
polarization axis. Thus, to compare with the experimental
data, the TDCS needs to be integrated over the transverse
momentum of both the two outgoing electrons. For this pur-
pose, we obtain the two-electron momentum spectra along the
incident direction for the laser-free (e, 2e) process at a given
incident energy by integrating the TDCS over φ2 and E2:

YEi

(
k||

1 , k||
2

) = 4π

k1k2

∫ Emax
2

0
dE2

∫ π

0
dφ2

d3σs

d�1d�2dE2

∣∣∣∣
φ1=0

,

(19)

where Emax
2 = Ei − Ip, and Ip is the ionization potential. In

the actual calculations, we set φ1 = 0 in Eq. (19) owing to the
cylindrical symmetry, and the integration over φ2 is performed
only from 0 to π since the TDCS is symmetric about the plane
formed by k1 and ki.
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For the recollisional (e, 2e) process taking place at tr when
the vector potential A(tr ) = Ar , the two electrons are still
under the influence of the laser field after the collision. As a
result, each electron will gain an additional momentum −Ar in
the direction of the laser polarization from tr to the end of laser
pulse. Therefore, the corresponding correlated two-electron
momentum distribution for the recollisional (e, 2e) process in
a strong field at an intensity I can be obtained from Eq. (19)
by shifting the momenta of two outgoing electrons using the
relation

p||
j = k||

j − Ar ( j = 1 and 2), (20)

where p||
1 and p||

2 are the parallel momenta of the two cor-
related electrons along the laser polarization, respectively.
Consequently, we have

DEi,I (p||
1, p||

2 ) = YEi (k
||
1 − Ar, k||

2 − Ar ). (21)

Based on the classical simulation [20], for laser-induced elas-
tic scattering which accounts for high-order above-threshold
ionization, the vector potential Ar at the collision time is
approximately determined by the relation

|Ar | = kr/1.26, (22)

where kr = ki is the momentum of the returning electron.
However, for laser-induced inelastic scattering, such as

electron impact excitation and electron impact ionization of
the parent ion in NSDI, the threshold energy could be lowered
due to the presence of an electric field [21]. The actual
threshold for electron impact ionization of a singly charged
ion in an external electric field of strength F0 cos(ωtr ) at the
instant of collision is lowered by [14,22]

E = 2
√

2|F0 cos(ωtr )|. (23)

Nevertheless, it is far from straightforward to perform the
actual numerical calculations including the lowering of the
threshold. This is partially due to the fact that the barrier
height of the combined atomic and electric fields varies with
the angle to the polarization axis. Alternatively, we choose an
“average” return time of t̄r = 290◦/ω in our calculations.

The average return time is determined by using the one-
dimensional (1D) classical model [23]. Suppose that an elec-
tron in the 1D atom is released into a monochromatic laser
field, F(t ) = ẑF0 cos(ωt ), then the Newton’s equation of mo-
tion for this system is given by

z̈(t ) = −F0 cos(ωt ). (24)

If the electron is initially tunneling ionized with zero initial
velocity at the birth time tb, the return time tr at which the
electron comes back to the origin can be simply identified
by solving Eq. (24) [20]. Based on the 1D classical model,
it has been found that electrons born before 13◦ return at
a time after 270◦ and they follow a long trajectory, while
those born after 13◦ return before 270◦ and they follow a
short trajectory. Since the electrons born before 13◦ have an
ionization rate higher than that of those born after 13◦, more
electrons return to the parent ion after 270◦. In Fig. 1, we
plot the relative ionization rate against the return time (bottom
horizontal axis) as well as the corresponding birth time (top
horizontal axis). Here, the ionization rate Wadk is calculated
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FIG. 1. Relative ionization rate (left vertical axis) and returning-
electron energy (right vertical axis) against the return time (bottom
horizontal axis) and the corresponding birth time (top horizontal
axis). The inset shows the monochromatic laser field used in the 1D
classical model. See text for detail.

using the Ammosov-Delone-Krainov (ADK) model [24]. By
taking into account the ionization rate at each return time, we
can obtain the average return time approximately by

θ̄r =
∫ θ2

θ1
θrWadk(θr )dθr∫ θ2

θ1
Wadk(θr )dθr

, (25)

where θr = ωtr . Furthermore, the returning-electron energy
Er = k2

r /2 can also be obtained from Eq. (24), as shown in
Fig. 1 (right vertical axis) in terms of Up, where Up is the
ponderomotive energy. It can be seen that, with the increase
of the return time, the returning-electron energy increases
until it reaches the maximum value of 3.17Up at a return
time of around tr = 252◦/ω and then it decreases to 0.5Up

at tr = 331◦/ω, corresponding to the photoelectron energy of
2Up in high-order above threshold ionization (HATI). Since
direct ionization dominates for photoelectron energy below
2Up, we choose θ1 = 180◦ and θ2 = 331◦ for the return time
interval in Eq. (25), which gives θ̄r = 288◦. It should be noted
that the average return time obtained from Eq. (25) is not very
sensitive to the upper limit of the integral. For example, one
gets θ̄r = 292◦ for θ2 = 340◦. The validity of this treatment
has been verified in our previous work [13,14], in which the
improved QRS model has been employed to evaluate the total
yield of the doubly charged ion for the NSDI of He and
Ne, and the simulated results are in good agreement with
experimental dat.

To account for the lowering of the threshold, Eq. (22)
should be modified and rewritten as

|Ar | =
√

2(Ei − E )/1.26. (26)

To obtain the correlated two-electron momentum distribu-
tions for a given intensity, one has to consider the contri-
butions from collisions at all incident energies such that the
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integral over Ei should be performed. This gives

DI (p||
1, p||

2 ) =
∫ ∞

Ip

dEiDEi,I (p||
1, p||

2 )WI (Ei − E ), (27)

where WI (Ei − E ) is the returning-electron wave packet
[20] in the laser field at a single intensity I , indicating the
weight of the contribution at incident energy Ei, which can
be calculated by using the improved strong-field approxima-
tion for HATI (see Ref. [13] for details). In Eq. (27), the
lowering of the threshold has been taken into account by
simply adjusting the collision energy [21]. Here, it is assumed
that the incident energy with respect to the maximum of the
barrier in the combined atomic and electric potential, which
is lower than zero, corresponds to the incident energy in the
laser-free case. For example, in a laser field at an intensity of
4.5 × 1014 W/cm2, the threshold is lowered by 15 eV. If the
energy of the laser-induced returning electron is 50 eV, the
scattering cross sections for the collision taking place in the
field correspond to the laser-free scattering cross sections at
an incident energy of 65 eV.

Finally, to compare with experimental measurements, the
integration over the focus volume should be performed,

DI0 (p||
1, p||

2 ) =
∫ I0

0
DI (p||

1, p||
2 )

(
∂V

∂I

)
dI, (28)

where I0 is the peak intensity of the laser field. This is due to
the fact that the intensity distribution of a focused laser beam
is not uniform in space, and the atoms located everywhere in
the interaction volume experience different peak intensities.
For a laser beam with Lorentzian distribution in the propa-
gation direction and Gaussian distribution in the transverse
direction, the volume of an isointensity shell between I and
I + dI is given by [25]

(
∂V

∂I

)
dI = πzRω2

0

[
4(c1 − c2)

3
+ 2

(
c3

1 − c3
2

)
9

− 4

3
(tan−1 c1 − tan−1 c2)

]
, (29)

where 2ω0 is the 1/e diameter of the focal spot, zR is the
Rayleigh range of the focus, c1 = [(I0 − I )/I]1/2, and c2 =
{[I0 − (I + dI )]/(I + dI )}1/2.

III. RESULTS AND DISCUSSION

We aim to simulate the correlated two-electron momentum
distributions for the recollisional (e, 2e) process in NSDI of
He in 45-fs linearly polarized laser pulses at 800 nm [8].
According to the rescattering model, the highest energy of
the laser-induced returning electron is 3.17Up. For the peak
laser intensity used in the experiment, which is claimed to be
4.5 × 1014 W/cm2, the maximum incident energy is 86 eV.

Following the numerical procedures presented in
Sec. II(B), we first calculate the momentum distributions
for two outgoing electrons in the laser-free (e, 2e) process
on He+ by using the 2C, 3C, 4C, DS3C, and DS4C models,
and the results for incident energies of 60, 65, and 70 eV
are displayed in Fig. 2, in which the momentum components

are along the incident direction, which is taken to be
+ẑ. First of all, one can see that without taking into
account the final-state e-e repulsion, the 2C model fails
to reproduce the fingerlike structure. In contrast, including the
postcollision Coulomb interaction between the two outgoing
electrons, all the theoretical models predict two fingers
with increasing separation as the incident energy increases.
This is due to the fact the Coulomb repulsion between the
two outgoing electrons prevent them from approaching
each other. The comparison between those calculations
including and excluding the final-state e-e repulsion clearly
demonstrates that the final-state e-e repulsion plays a vital
role in the formation of the two-finger structural momentum
distribution. Comparing the results of the 3C model with those
of the 4C model, one can see that including the precollision
Coulomb interaction between the incident electron and the
target ion increases the length of the two fingers. In the
meantime, the two fingers change the orientation such that
the momentum distributions exhibit a transition from V-type
to line-shaped structure parallel to the diagonal. On the other
hand, although it has been demonstrated that the dynamic
screening effect plays an important role in the process of
electron impact ionization of atoms at low incident energies
[17,18], for the (e, 2e) process on ions the dynamic screening
effect becomes weaker since the charge of the residual ion
becomes two times larger and thus the relative changes of
the Sommerfeld parameters due to dynamic screening are
smaller. The dynamic screening effect in the (e, 2e) process
on He+ can be seen by comparing the DS3C model with the
3C model and comparing the DS4C model with the 4C model.
While DS3C produces slightly more distributions between
the two fingers compared to 3C, the main pattern from DS4C
almost remains the same as that from 4C.

With the well-prepared momentum distributions for the
two outgoing electrons in the laser-free (e, 2e) process on He+

at all possible incident energies, the correlated two-electron
momentum spectra for the laser-induced (e, 2e) process in
NSDI of He can be obtained by using Eq. (21). The results
from the 4C model for the recollisional (e, 2e) process taking
place in the laser field with a wavelength of 800 nm at
an intensity of 4.0 × 1014 W/cm2 are shown in Fig. 3 for
incident energies of 65, 70, and 75 eV, respectively. It should
be noted that the results shown in Fig. 3 correspond to the
laser-free (e, 2e) processes along the incident direction −ẑ
[12]. To see the influence of the potential change due to the
presence of an electric field at the instant of recollision, we
take the momentum shift in Eq. (22) in the calculation of the
longitudinal correlated two-electron momentum distributions
in Figs. 3(a), 3(b), and 3(c), while in Figs. 3(d), 3(e), and
3(f), Eq. (26) is used for the momentum shift. It is clearly
demonstrated in Fig. 3 that, when the lowering of the threshold
is taken into account, the momentum distributions move to
smaller momenta since the momentum shifts are reduced.
Take the situation for an incident energy of 75 eV as an
example; the momentum shifts in Figs. 3(c) and 3(f) are 1.86
and 1.67, respectively.

The next step in the numerical simulations is to evaluate
the correlated two-electron momentum distributions for the (e,
2e) process in NSDI of He in the laser field at a given intensity.
For a given intensity, the recollisional (e, 2e) process could
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FIG. 2. Normalized momentum distributions for two outgoing electrons in the laser-free (e, 2e) process on He+ obtained by using the 2C
(first row), 3C (second row), 4C (third row), DS3C (fourth row), and DS4C (fifth row) models at incident energies of 60 eV (first column),
65 eV (second column), and 70 eV (third column), respectively. Shown are the momentum components along the incident direction, which is
taken to be +ẑ.

take place as long as the energy of the laser-induced electron
exceeds the ionization potential. Therefore, the integration of
the correlated two-electron momentum distributions over the
incident energy should be performed. For this purpose, one
needs to evaluate the contribution weight for the collision
process at each incident energy. This weight is represented by
the returning-electron wave packet, which can be calculated
by using the SFA2 model [20] for HATI. In Fig. 4, we plot
the wave packets against the kinetic energy of the laser-
induced returning electron in 45-fs and 800-nm laser pulses

at intensities of 3.0 and 4.0 × 1014 W/cm2, respectively. Each
wave packet starts with a fast drop at low energies before
becoming roughly flat in the plateau region with a cutoff at
3.17Up. As indicated in Fig. 4, the ionization threshold of a
free He+ ion is 54.4 eV, which is lowered to 39.7 eV at the
instant of recollision when the ion is exposed in the electric
field at an intensity of 4.0 × 1014 W/cm2. This indicates that,
with the lowering of the threshold taken into account, more
probabilities of ionization below the threshold potential of a
free ion contribute to the momentum distributions.
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FIG. 3. Normalized momentum distributions for two outgoing electrons in the laser-induced recollisional (e, 2e) process on He+ at incident
energies of 65, 70, and 75 eV, respectively. Lasers are at 800 nm with an intensity of 4.0 × 1014 W/cm2. The calculated results are obtained
by using the 4C model. Shown are the momentum components along the polarization direction. The potential change due to the presence of
electric field at the recollision time is taken into account in panels (d), (e), and (f), but not in panels (a), (b), and (c). The red lines along the
antidiagonal provide visual indication of the difference of momentum shifts between the results in the first and the second rows.

Using Eq. (27), we obtain the correlated two-electron
momentum distributions for the recollisional (e, 2e) process
of He+ in the laser field at each peak intensity. The simulated
results of the 4C model are shown in Fig. 5 for laser intensities
of 3.0 and 4.0 × 1014 W/cm2, respectively; both exhibit a
parallel two-finger structure with larger separation at higher
intensity.

The last step in the numerical simulations is to perform the
integration over the focus volume so that the obtained results
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FIG. 4. Wave packets against the kinetic energy of the laser-
induced returning electron in 45-fs and 800-nm laser pulses at in-
tensities of 3.0 and 4.0 × 1014 W/cm2, respectively. The two arrows
at 39.7 and 54.4 eV indicate the ionization potential with and without
taking into account the presence of the electric field at the recollision
time.

can be compared with the experimental measurements di-
rectly. After focal averaging, the final correlated two-electron
momentum distributions for the recollisional (e, 2e) process
in NSDI of He in 45-fs and 800-nm laser pulses at a peak
intensity of 4.0 × 1014 W/cm2 by using 2C, 3C, 4C, DS3C,
and DS4C models are displayed in Fig. 6 together with the
experimental measurements. The experimental data for the
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FIG. 5. Normalized momentum distributions for two outgoing
electrons for the laser-induced recollisional (e, 2e) process on He+ in
45-fs and 800-nm pulses at the intensities of (a) 3.0 × 1014 W/cm2

and (b) 4.0 × 1014 W/cm2, respectively. The calculated results are
obtained by using the 4C model in which the integral over all
possible incident energies is performed. Shown are the momentum
components along the polarization direction. The potential change
due to the presence of an electric field at the recollision time is taken
into account.
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FIG. 6. Normalized correlated two-electron momentum distributions for the laser-induced recollisional (e, 2e) process on He+ in 45-fs
and 800-nm laser pulses at a peak intensity of 4.0 × 1014 W/cm2. Shown are the momentum components along the polarization direction. The
potential change due to the presence of an electric field at the recollision time is taken into account, and focal volume integral is performed. The
calculated results are obtained by using the theoretical models (a) 2C, (b) 3C, (c) 4C, (d) DS3C, and (e) DS4C, respectively. The experimental
measurements shown in panel (f) were performed by Staudte et al. [8].

recollisional (e, 2e) process shown in Fig. 6(f) were obtained
by Chen et al. [11] from the original experimental data
[8] based on the role of excitation tunneling in NSDI [26].
It is not surprising to see from Fig. 6 that, while the 2C
model generates the momentum distributions with maximum
probabilities around the diagonal, the fingerlike structure is
reproduced by all the other theoretical models in which the
final-state e-e repulsion is taken into account. Similar to the
results presented in Fig. 2, including the precollision Coulomb
attraction between the incident electron and the target ion,
the length of the two fingers produced by the 4C model
increases with different orientation with respect to the 3C
model. Nevertheless, despite the very slight difference be-
tween the normalized momentum distributions of the 4C and
DS4C models for each incident energy, as shown in Fig. 2, the
focal-volume-averaged momentum distributions of the 4C and
DS4C models displayed in Figs. 6(c) and 6(e), respectively,
exhibit obvious differences. This is because the effect of
dynamic screening plays a more important role in collisions at
low incident energies and hence the relative contribution from
collisions at low energies is enhanced. As a result, the distance
between the two fingers in the DS4C model is reduced, and the
agreement with the experimental measurements is improved.
It is interesting to see that there exists a maximum along the
diagonal in the momentum distributions of the DS3C model.
This is due to the fact that in the DS3C model, the strength
of the final-state e-e repulsion is reduced compared to that in
the 3C model; consequently the two outgoing electrons have
more chance to approach each other.

It should be noted that the peak intensity of the laser
field used in the experimental measurements is claimed to
be (4.5 ± 0.5) × 1014 W/cm2 [8]. We have carried out the

numerical simulations at a few peak intensities below 4.5 ×
1014 W/cm2 and found that the simulated results at the peak
intensity of 4.0 × 1014 W/cm2 are in best agreement with the
experimental results. However, some discrepancies between
the simulated results and the experimental results still exist.
Even the DS4C model predicts the two fingers with separation
larger than what is observed in experiments. This might
indicate that the final-state e-e repulsion is still overestimated
even with the effect of dynamic screening taken into account.
Interestingly, in both the quantum calculation [8] and the
semiclassical simulation [9], a butterflylike structure emerges
in the correlated two-electron momentum distributions, which
deviates substantially from the fingerlike structure observed
in experiments, indicating that the final-state e-e repulsion is
magnified more significantly.

IV. CONCLUSIONS

Using the improved QRS model in which the potential
change due to the presence of the electric field at the instant
of recollision has been taken into account, we have calculated
the correlated two-electron momentum distributions for the
laser-induced recollisional (e, 2e) process of He+. The influ-
ences of several physical mechanisms including the final-state
electron-electron and electron-nucleus interactions as well as
the initial-state electron-target-ion interaction are investigated
based on the full quantum mechanical level. The effects of the
potential change and the dynamic screening in the final state
have also been addressed. It has been found that the initial-
state Coulomb interaction between the incident electron and
the parent ion also plays an important role in the orientation
of the two fingers and the dynamic screening reduces the
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separation of the two fingers; both improve the agreement
between theory and experiment. It should be emphasized
that despite the slight discrepancies between the present nu-
merical simulations and the experimental data, the DS4C
model achieves the best agreement with the experimental data
among all the existing theoretical results including those from
ab initio calculations. The only deficiency of the DS4C model
is that the short-range effect between the incident electron and
the target ion has not been taken into account, but we believe

this to be negligible for the situation considered in the present
paper.
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