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Explicitly correlated calculations of interaction energies with wave functions that include all interparticle
distances have suffered so far from the lack of size consistency resulting from the difficulty of defining
monomer energies corresponding to the applied dimer basis. As a consequence, it has not been possible to obtain
interaction energies vanishing at infinite intermonomer distance R. This has dramatically reduced the accuracy
of calculations at distances where the error in the dimer energy was comparable with the interaction energy
itself. The same problem occurs in calculations of interaction-induced properties. In this paper, we show how to
circumvent this difficulty and obtain interaction energies or interaction-induced properties that vanish at large
R. This is achieved by relaxing the Pauli principle in the diagonalization of the Hamiltonian of noninteracting
monomers. The basis functions used for this diagonalization belong to the representation of the permutation
group of the dimer induced by the product of representations appropriate for the monomer spin states. Nonlinear
parameters of the basis set are optimized only for the dimer in the Pauli-allowed sector of the Hilbert space.
In this way, one obtains R-dependent energy of noninteracting monomers and the corresponding interaction
energy includes a counterpoise correction for the basis set superposition error. The efficiency of this procedure
is demonstrated for the interaction of two hydrogen atoms where accurate reference data are known.
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I. INTRODUCTION

In many applications of electronic structure theory, one is
concerned with changes of a certain property of the system
resulting from interactions with other atoms and molecules. In
the special case when the property of interest is expressed as
an expectation value of a Hermitian operator X̂ , one considers
the following quantity,

�X = 〈ψ |X̂ψ〉 − 〈ψA|X̂AψA〉 − 〈ψB|X̂BψB〉, (1)

for a system described by the wave function ψ and composed
of two subsystems (monomers A, B) with the wave functions
ψA, ψB. The operators X̂A and X̂B are defined analogously to
X̂ , but involve summations over only the particles belonging
to the subsystems A and B, respectively. Note that in the gen-
eral case X̂ �= X̂A + X̂B. The difference, �X , depends on the
distance, R, between the interacting systems and possibly their
mutual orientations. If the operator X̂ is the Hamiltonian of
the system, the quantity �X is called the interaction energy or
the Born-Oppenheimer (BO) interaction potential. Otherwise,
the name interaction-induced (or collision-induced) property
is used.

Any interaction-induced property can, in principle, be cal-
culated with help of Eq. (1)—this constitutes the so-called
supermolecular approach. In fact, most calculations of �X
rely on the supermolecular approach since the standard elec-
tronic structure methods are unable to yield the difference �X
directly. A notable exception from this rule is the symmetry-
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adapted perturbation theory (SAPT); see Refs. [1–4] for an
extended survey.

The biggest drawback of the supermolecular method is that
it involves a significant degree of cancellation between the
terms of Eq. (1). This is especially problematic in weakly
interacting systems where the value of �X can be several
orders of magnitude smaller than the subtracted terms on the
right-hand-side of Eq. (1). In practice, �X is often smaller
than the errors of computing the individual terms in Eq. (1).

A remedy for this problem is to calculate all terms on
the right-hand-side of Eq. (1) in a consistent manner, so that
these errors cancel out to a large extent, leaving an accurate
value of �X . To achieve this, one has to use electronic
structure methods that are size consistent, i.e., the energies or
properties of the system tend to the correct limit (the sum of
energies or properties of noninteracting monomers) when the
distance between the subsystems grows to infinity [5]. The
size-consistency requirement is critically important and is one
of the factors which has led to the success and widespread
popularity of the coupled-cluster theory; see Ref. [6] and
references therein.

Even if the applied electronic structure model is size con-
sistent, one has to face a problem stemming from the use of
finite basis set expansion of wave functions used in Eq. (1).
When the dimer and monomer energies are evaluated using
their respective basis sets, the dimer energy is artificially low-
ered as the monomers in the dimer calculations have access to
a larger basis set than their own basis. It has been recognized
a long time ago [7–9] that this artificial lowering, referred to
as the basis set superposition error (BSSE), cannot be viewed
as a legitimate part of the interaction energy. In calculations
employing one-electron basis sets (algebraic approximation),
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a prescription for removing the BSSE, called the counterpoise
(CP) correction, was proposed by Boys and Bernardi [10].
It amounts to performing calculations for the monomers by
using the whole dimer basis set [10,11]. While there is still an
ongoing discussion in the literature about the applicability of
this scheme [12–21], especially when the monomers undergo
geometrical deformations [22–24], when small basis sets are
used [25,26], or when basis set extrapolation schemes are
employed [27,28], the CP correction is nowadays universally
accepted as a default a posteriori method for elimination of
BSSE.

Unfortunately, the situation is different in explicitly cor-
related methods which include all interparticle distances di-
rectly into trial wave functions. Since these wave functions
are no longer composed solely of products of orbitals, it is not
clear how to define a monomer basis set that would correspond
to a given dimer basis and thus would allow consistent dimer
and monomer calculations (and an error cancellation). In
other words, in explicitly correlated calculations it has not
been possible thus far to compute the monomer quantities in
Eq. (1) in such a way that �X vanishes in the limit of infinite
monomer separations.

In this paper, we show how to solve this difficulty. We con-
sider the explicitly correlated Gaussian (ECG) basis, which
is arguably the most efficient basis for solving both clamped-
nuclei and fully nonadiabatic Schrödinger equation for few-
body systems [29,30]. It has been successfully applied both
to light atoms and to small molecules, and in many cases
the results obtained with ECG are the most accurate to date
[31–40]. It should be stressed, however, that the method
proposed by us can also be applied to calculations with
Slater geminals [41–44], Hylleraas configuration interaction
expansions [45–47], and other multielectron basis sets where
finite basis size consistency problem arises.

It should be noted that attempts to achieve the size con-
sistency of the ECG method or to reduce the impact of its
violation have been made and are described in the literature.
Conceptually the simplest yet practically the most challenging
strategy is to calculate the dimer term in Eq. (1) as accurately
as possible and use the exact or near-exact monomer values
to get �X . This brute-force approach typically works well
for separations where �X is much larger than the error
in 〈ψ |X̂ψ〉. However, it does nothing to restore the size
consistency. As �X does not vanish at large R, the results
deteriorate strongly with increasing R and are difficult to
match to an appropriate asymptotic formula. Examples of
brute-force ECG calculations can be found, for example, in
Refs. [48,49].

Another strategy, called the monomer-contraction (MC)
method, has been proposed by Cencek et al. [33,34,50]. The
main idea of this method is to build the product of the best
available monomer wave functions into the dimer basis and
represent ψ as

ψ = c0�(ψAψB) +
∑

k

ckφk, (2)

where ψA, ψB are wave functions optimized separately for
monomers A and B, and fixed during the calculations for
the dimer, � is a projection operator ensuring that ψ has
the correct permutation and spatial symmetry, and φk are

elements of the conventional ECG basis for the dimer. The
rationale behind the MC method is that if the monomer wave
functions are accurate enough, the nonlinear optimization of
φk is directed mostly toward the interaction-induced part of
the dimer wave function. The monomer quantities entering
Eq. (1) can be computed from ψA, ψB or more accurate
literature values can be used if available. While this approach
does not fully eliminate the error due to size inconsistency
and, consequently, the accuracy breakdown at large R, it has
been shown to give very accurate results for the helium dimer
in the area of the van der Waals well [40].

A different approach to solve the size-consistency problem
in the ECG method was proposed by Piszczatowski et al.
[51]. In this approach, related to SAPT but not relying on
the convergence of a perturbation expansion, the difference
�X is computed directly and, by construction, vanishes at
large R. However, this method is much more computationally
expensive than the previous two, as there is a need to solve a
set of response equations for each property of interest. This
method has never been applied to the interaction energy itself.

In the subsequent sections, we shall present our method to
achieve size consistency and to eliminate BSSE in explicitly
correlated calculations and demonstrate its usefulness for the
ECG wave functions. Specifically, we shall show how to
calculate the R-dependent sum of monomer energies (or other
properties), corresponding to a given basis set of the dimer,
such that �X vanishes at large R. Therefore, the method
can be viewed as a generalization of the conventional CP
correction [10] beyond the orbital approximation. In fact,
our CP correction plays a much more important role than
in the orbital calculations because without it finite basis
set explicitly correlated calculations are not size consistent.
Taking the interaction of hydrogen atoms as a model system,
for which practically exact results are known, we shall demon-
strate numerically that the proposed technique guarantees size
consistency both in calculations of the interaction energy and
interaction-induced properties.

Atomic units are used throughout the present work unless
explicitly stated otherwise.

II. THEORY

We assume that the wave functions ψ , ψA, and ψB, em-
ployed in Eq. (1) to compute �X , are approximations to the
exact eigenfunctions of the electronic Hamiltonians Ĥ , ĤA,
and ĤB and are obtained using the Rayleigh-Ritz variational
procedure with the ECG basis. For a diatomic molecule (or
a dimer) consisting of atoms with NA and NB electrons, the
generic ECG function can be expressed in the form

φ =
N∏

i=1

e−αi|ri−a|2
N∏

i=1

e−βi|ri−b|2
N∏

i> j=1

e−γi j |ri−r j |2 , (3)

where ri, i = 1, . . . , N , are vectors containing Cartesian co-
ordinates of electrons, a and b are vectors specifying the
nuclear positions, R = |a − b|, and N = NA + NB. The ex-
ponents αi, β j , and γi j are different for each basis function
and are optimized by minimizing the lowest eigenvalue of
the Hamiltonian matrix. For simplicity, we assumed that the
dimer is in a 	+ state. The functions of the form of Eq. (3)
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constitute a potentially complete basis set in the space of 	+
symmetry [52,53]. To construct ECGs of other symmetries,
one can follow the prescription of Ref. [52]. The ECG basis
functions for the monomer A (B) can also be expressed using
Eq. (3), provided that N is replaced by NA (NB) and the factors
e−βi|ri−b|2 (e−αi|ri−a|2 ) are eliminated.

We assume that the Hamiltonians Ĥ , ĤA, and ĤB are
nonrelativistic and do not act on spin variables. Therefore,
we can employ the spin-free formalism where the correct
spin symmetry and fulfillment of the Pauli exclusion prin-
ciple are simultaneously guaranteed by imposing the appro-
priate permutation symmetry of the wave function [54–56].
Specifically, for a system with N electrons and spin S, the
wave function must transform according to the irreducible
representation of the permutation group SN corresponding to
the Young diagram containing N/2 − S rows of length 2 and
2S rows of length 1, denoted conventionally as [2N/2−S12S].
This symmetry of the wave function can be enforced with
the help of appropriate Young operators [56]. Within the
present computational capabilities, this spin-free ECG method
is applicable to systems containing up to seven or eight active
particles; see Refs. [57,58] as a representative examples.

By inspection of Eq. (3), we see that for a given N-electron
dimer basis it is difficult to construct the corresponding NA-
electron and NB-electron bases for the monomers such that
finite basis set calculations will be size consistent. Indeed,
to the best of our knowledge, no such construction has been
proposed in the literature. One reason for this difficulty is
the inherent delocalization of the dimer basis set functions.
Another reason is the fact that the basis functions used to
expand ψ and ψA or ψB depend on different number of
electrons. The latter difficulty can be circumvented if Eq. (1)
is rewritten in the form

�X = 〈ψ |X̂ψ〉 − 〈ψ0|X̂0ψ0〉, (4)

where X̂0 = X̂A + X̂B, and ψ0 = ψAψB is the appropriate
eigenfunction of Ĥ0 = ĤA + ĤB, i.e.,

Ĥ0ψ0 = (EA + EB)ψ0, (5)

where EA = 〈ψA|ĤAψA〉 and EB = 〈ψB|ĤBψB〉. We assume
for simplicity that the E0 level of Ĥ0 is nondegenerate. The
functions ψ and ψ0 depend on the same number electronic
coordinates and thus can, in principle, be obtained by diago-
nalizing matrices of the Hamiltonians Ĥ and Ĥ0, respectively,
within the same basis set. The calculations performed in this
way would indeed be consistent, so that one could expect both
the error cancellations to occur and �X to correctly vanish at
large separations.

The problem with this idea is that ψ and ψ0 have different
symmetries and, even at large R, reside in distant locations
of the Hilbert space [59]. This is a consequence of the fact
that Ĥ and Ĥ0 have different symmetry groups, denoted by
G and G0 further in the text. It is impossible to perform
calculations for ψ and ψ0 in a common basis adapted to
irreducible representations of both G and G0. The main idea
of our method is to perform calculations with the basis that
is adapted to G ∩ G0, i.e., the largest subgroup of G and G0.
To guarantee that ψ is a pure spin state, we also impose the
condition that this basis is invariant under all operations of G.

To illustrate this idea with a simple example, we assume
that A and B are ground-state hydrogen atoms. In this case,
G = D∞h × S2 and G0 = Oa(3) × Ob(3) × GI , where Oa(3)
and Ob(3) are symmetry groups of HA and HB, respectively,
and GI = {E , P∗} is the two-element group containing the
identity element E and the permutation-inversion operation
P∗ = ÎP12. The latter is a combination of the inversion Î with
respect to the center of the diatom and the transposition Pi j of
the coordinates of the ith and jth electrons. The groups Oa(3)
and Ob(3) contain all rotations and the inversion with respect
to the respective nuclear positions a and b (the accidental
SO(4) symmetry of hydrogen atom can be neglected as it is
not relevant in further discussion).

It is easy to see that the largest common subgroup of G
and G0 is the group C∞v × GI . The primitive ECG function of
Eq. (3) is already adapted to C∞v . To additionally adapt this
basis to GI , we project it with (1 + P∗)/2 (we take the plus
sign in the projector since both ψ0 and ψ are symmetric under
the action of P∗). The basis adapted to G ∩ G0 consists thus of
functions of the form

φ′ = e−α1r2
a1 e−α2r2

b1 e−β1r2
a2 e−β2r2

b2 e−γi j r2
12

+ e−β2r2
a1 e−β1r2

b1 e−α2r2
a2 e−α1r2

b2 e−γi j r2
12 , (6)

where rai = |ri − a|, rbi = |ri − b|, and ri j = |ri − r j |. This
basis is not invariant under the operations of G, so we have
to augment it by adding functions Îφ′ and P12φ

′. Both aug-
mentations lead to the same result, so the final basis consists
of functions of the form of φ′ and P12φ

′. In Sec. III, we
shall show that variational Rayleigh-Ritz calculations em-
ploying this basis both for the dimer and for the monomer
(diagonalizing the Ĥ and Ĥ0 Hamiltonians, respectively, and
optimizing nonlinear parameters only at the dimer level) are
consistent in the sense that the monomer errors cancel out and
the interaction energy approaches zero at infinity. In practice,
is it useful to follow the idea of the monomer-contraction
method [33,34,50] and extend this basis by two additional
functions: ψ̃Aψ̃B and P12ψ̃Aψ̃B, where ψ̃A is the best available
ECG approximation of the wave function for atom A and
ψ̃B = P∗ψ̃A. These two basis functions are fixed and, unlike
all functions of the form φ′ and P12φ

′, are not subject to the
nonlinear optimization.

Since the nonlinear optimization performed at the dimer
level is very time-consuming, it is useful to adapt the whole
basis at this stage of calculations. This is possible since the
whole basis is invariant under the operations of the dimer
symmetry group G. If one is interested in the triplet 3	+

u
state, then the size of the basis can be reduced by the factor
of 2 by taking only the functions of the form (1 − P12)φ′
[plus possibly the single function (1 − P12)ψ̃Aψ̃B]. These
basis functions are obviously antisymmetric under P12 (are
triplet functions) but are also ungerade under the action of the
inversion operator Î since Îφ′ = P12φ

′ and, consequently,

Î (1 − P12)φ′ = −(1 − Î )φ′ = −(1 − P12)φ′. (7)

It is easy to verify that Eq. (7) holds also when φ′ is replaced
by ψ̃Aψ̃B and that the singlet functions obtained by the sym-
metrization 1 + P12 have gerade symmetry, i.e., are invariant
under the inversion Î . It should be emphasized that a simple
diagonalization of H0 in the space of antisymmetric functions
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(1 − P12)φ′ only would lead to a completely wrong energy
E0 since at large R the exact function ψ0 has equally large
components in the spaces of symmetric and antisymmetric
functions. Thus, the diagonalization of H0 and calculation of
E0 must be done in the space containing functions of both
symmetries, i.e., in the space containing both φ′ and P12φ

′.
When the interacting one-electron systems are different,

as in the case of He+ . . . H interaction, G = C∞v × S2, G0 =
Oa(3) × Ob(3), and G ∩ G0 = C∞v . The inversion symmetry
is not present and the basis for the monomer calculations
is constructed from the functions φ and P12φ, where φ is
the two-electron primitive ECG [given by the first term on
the right-hand side of Eq. (6)]. In the dimer calculations
(involving the optimization of the nonlinear parameters), the
basis is half as large and consists of the functions (1 − P12)φ
(for the triplet state).

The generalization of this construction to the interaction
of many-electron atoms is natural but technically somewhat
complicated as a result of the multidimensionality of the
representations of the permutation group. The dimer group G
contains now the factor SN instead of S2 and one has to include
in G0 the product SNA × SNB of the monomer permutation
groups. As for the H2, the basis is constructed in two steps.
First, the primitive ECG basis of Eq. (3) is adapted to the
appropriate irreducible representation 
0 of G ∩ G0. Next,
one forms the basis of the induced representation 
↑G and
takes the functions adapted simultaneously to 
0 and to the
irreducible representations of G entering 
0↑G. Below we
shall illustrate this general procedure with three simple but
typical examples.

Example 1: Interaction of a singlet helium atom with a
hydrogen atom

In this case, the dimer symmetry is G = C∞v× S3, while
G0 = Oa(3) × Ob(3) × S2, and G ∩ G0 = C∞v× S2. For the
singlet state of helium, the function ψ0 = ψHeψH is sym-
metric under the permutation P12 and the molecular 2	+
function can be chosen to be symmetric under P12 as well.
Therefore, we can symmetrize the ECG basis and consider
further the functions φ′ = (1 + P12)φ, where φ is a primi-
tive, three-electron, two-center ECG function of the form of
Eq. (3). To obtain the basis invariance under the action of
S3, we have to perform the induction process, i.e., act on φ′
with all permutations from S3. In this way, we obtain three
ECG functions φ′, P13φ

′, and P23φ
′, forming a basis for the

induced representation [2] ↑ S3. The representation [2] ↑ S3,
referred to also as the outer product [2] ⊗ [1] (see Ref. [56]),
is reducible and decomposes as

[2] ↑ S3 = [21] + [3]. (8)

which can also be represented with help of the Young
diagrams as

⊗ = + . (9)

One of the two functions transforming according to the [21]
representation is antisymmetric under the action of P12 and
can be disregarded. We are left with the functions

φ′′ = (2 − P13 − P23)φ′ (10)

that can be used in calculations of the physical, spin doublet
state of the molecule, and the functions

φ′′′ = (1 + P13 + P23)φ′ (11)

that are Pauli forbidden (cannot be used to construct an anti-
symmetric spin-dependent function) but must be used together
with φ′′ in consistent calculation of the sum of monomer en-
ergies. Equation (10) can be obtained by acting on φ′ with the
character projector of the [21] representation of S3, or directly
from φ by acting with the Young operator ω

[21]
11 corresponding

to the orthogonal Young-Yamanouchi representation [21] of
S3. In general,

ω
[λ]
rt =

∑
P∈SN



[λ]
rt (P) P, (12)

where 

[λ]
rt (P) are matrices of the representation [λ] [56].

Since the nonlinear parameters are optimized only for the
dimer, these parameters are identical in φ′′′ and φ′′. Equations
(8) and (11) show that to obtain size-consistent energy one has
to violate the Pauli principle in calculations of the sum of the
monomer energies.

Example 2: Interaction of a doublet lithium atom with a
hydrogen atom

This case considered, e.g., in Refs. [54,55], is somewhat
more complicated, since we have the exchange degeneracy for
lithium and the S4 group is larger than S3. The groups G, G0,
and G ∩ G0 are the same as in the previous example except
that the S3 factor in G is replaced by S4, and the S2 factor in
G0 by S3. The doublet states of lithium exhibit (unphysical)
exchange degeneracy since the [21] representation is two
dimensional and we have two standard Young tableaux

1 2
3

and 1 3
2

1 2
3

and 1 3
2

. (13)

We (arbitrarily) chose the first one and require that the lithium
wave function ψLi as well as the molecular function ψLiH

be symmetric with respect of the exchange of the electrons
1 and 2. Thus, diagonalizations for both the supermolecule
and the noninteracting monomers can be performed in the
space with the permutational symmetry specified by the first
tableau in Eq. (13). To construct a basis of this symmetry
for consistent molecule and separated atom calculations, we
start by projecting the primitive four-electron ECG function
of Eq. (3) with ω

[21]
11 ,

φ′ = (2 − P13 − P23)(1 + P12)φ, (14)

and generate the induced representation by acting on φ′ with
all S4 permutations. Using, e.g., the Littlewood theorem for
the outer product decomposition [56], we find

[21] ↑ S4 = [31] + [22] + [211]. (15)

or by using the Young diagrams

⊗ = + +⊗ = + + .
(16)

The dimension of the [21]↑ S4 representation is 8 but by
inspecting the standard Young tableaux we find that there are
only three functions of the S3 symmetry corresponding to the
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first tableau of Eq. (13). These three functions can be obtained
directly from φ using the Young operators ω

[31]
22 , ω

[22]
11 , and

ω
[211]
11 or by acting with the [31], [22], and [211] character

projectors on φ′. The explicit form of these three functions is

φ[31] = (3 + P34)(1 + P14 + P24)φ′, (17)

φ[22] = (1 + P34)(1 − P14 − P24)φ′, (18)

φ[211] = (1 − P34)(3 − P14 − P24)φ′. (19)

If we are interested in the singlet or the triplet states, we use
the functions of the form of φ[22] or φ[211], respectively, while
for the monomer energy calculation we must use (without
further nonlinear optimization) both of these functions plus
the Pauli forbidden one, φ[31]. Thus, the basis of the monomer
calculations is three times as large as in the dimer case.

Example 3: The ground state of the helium dimer
In this case, we have to consider both the permutation

and the inversion symmetry. The groups G, G0 and G ∩ G0

have now the following direct product structure: G = D∞h ×
S4, G0 = Oa(3)×Ob(3) × S2×S2×GI , and G ∩ G0 = C∞v×
S2×S2×GI , where GI = {E , ÎPab} is a two-element group
containing the product of the inversion operation Î and a
permutation Pab that swaps all electrons between atoms A and
B. Assuming that HA and HB act on electrons 1,2 and 3,4,
respectively, the permutation Pab can be taken arbitrarily as
any of the four P13P24, P14P23, P1324, or P1423 without changing
the S2×S2×GI group.

Since we are interested in the interaction of singlet states,
we can adapt the ECG basis to the fully symmetric represen-
tation of G ∩ G0 and use the symmetrized ECG functions of
the form

φ′ = (1 + P12)(1 + P34)(1 + ÎPab)φ, (20)

where φ is the primitive ECG function of Eq. (3) with N = 4.
Performing the induction of the fully symmetric representa-
tion of S2×S2 to S4, one finds

[2]×[2]↑S4 = [4] + [31] + [22], (21)

which can be written by using the Young diagrams as

⊗ = + +⊗ = + + . (22)

The induction from C∞v to D∞h is not needed since one can
show that the space spanned by Pφ′, P ∈ S4 is invariant under
the inversion Î . The induced representation [2]×[2]↑S4 is six
dimensional but, since we can work only with functions fully
symmetric under S2×S2, only three functions are necessary:

φ[4] = (1 + P13 P24 + P13 + P14 + P23 + P24)φ′, (23)

φ[31] = (1 − P13P24)φ′, (24)

φ[22] = (2 + 2 P13P24 − P13 − P14 − P23 − P24)φ′. (25)

Only the last of these functions is Pauli allowed and appears
in the dimer calculations. The first two are Pauli forbidden but
must be used in calculations for the noninteracting monomers
to obtain size-consistent results.

The functions φ[22] and φ[4] are already of the gerade
symmetry under inversion. To prove this, we note that

Îφ′ = Pab φ′ (26)

for any of the four permutations Pab. One can show that the
parts of φ[4] or φ[31] generated by 1 + P13 P24, by P13 + P24,
and by P23 + P14 are separately invariant under the action of
Î . Specifically,

Î (P13+P24)φ′ = (P13+P24)P13P24φ
′ = (P13+P24)φ′,

Î (P23+P14)φ′ = (P23+P14)P23P14φ
′ = (P23+P14)φ′,

and similarly for (1 + P13P24)φ′. Analogously, one can show
that φ[31] is ungerade under inversion.

In all examples considered here, the induced representation
is simply reducible. However, there are cases when there
are multiplicities. For instance, for the interaction of three
ground-state hydrogen atoms, the representation [21] occurs
two times. Therefore, in the trimer calculations, we have two
ECG functions of the [21] symmetry for one primitive ECG
function. To obtain the energy of the monomers, all six ECG
functions spanning the induced (regular in this case) repre-
sentation must be used. Similar multiplicity problem occurs
for the interaction of two doublet lithium atoms when the
representation [321] appears two times in the direct product
[21] ⊗ [21].

III. NUMERICAL RESULTS

A. Computational details

As a numerical illustration, we performed variational ECG
calculations of the interaction energy of hydrogen atoms in
the ground (1	g

+) state of H2. We employed the monomer
contraction method of Cencek et al. and assumed the trial
wave function in the form

(1 + P12)
(
1 + Î

)[
c0 φ1s(r1a) φ1s(r2b) +

K∑
k=1

ckφk

]
, (27)

where φk are the primitive geminal functions, cf. Eq. (3) with
N = 2,

φk = e−ak r2
1a−bkr2

1b−ckr2
2a−dkr2

2b−wkr2
12 , (28)

and φ1s(r) is the hydrogenic 1s orbital expanded as a linear
combination of Gaussian 1s functions. Two distinct basis sets
were optimized—the first composed of 150 geminal functions
with the monomer contraction length of nine functions (9/150
basis set) and the second composed of 300 geminal functions
with the monomer contraction length of twelve functions
(12/300 basis set). The relevant properties of the hydrogen
atom obtained for each monomer contraction function are
given in Table I.

The nonlinear parameters ak , bk , etc., in all functions (28)
were optimized to minimize the total energy of the molecule.
We employed the conventional optimization strategy where
the primitive functions are optimized one at a time using the
Powell’s conjugate direction method [60]. Technical details of
this procedure can be found, for example, in Refs. [61,62].
About one thousand optimization sweeps over the whole
basis set were performed for each internuclear distance. The
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TABLE I. Properties of the hydrogen atom calculated with the
orbital 1s expanded in 9 or 12 primitive Gaussian functions. E is the
electronic energy and 〈δ(r)〉 is the expectation value of δ distribution
centered at the nucleus. Errors with respect to the exact values are
given below each entry.

9 12

E −0.499 998 136 −0.499 999 904
Error 0.000 001 864 0.000 000 096
〈δ(r)〉 0.317 799 920 0.317 840 649
Error 0.000 509 966 0.000 469 238

monomer contraction functions were kept fixed during the
optimization procedure. The distance-dependent energies of
noninteracting monomers were obtained according to the
prescription given in the previous section.

In the present case, the monomers are one-electron atoms
and thus it would theoretically be possible to use even more
accurate monomer contraction functions, i.e., accurate down
to the level of the arithmetic precision. However, our goal here
is to simulate the situation found in other systems, e.g., the
helium dimer, where such accurate monomer contractions are
practically unfeasible.

B. Interaction energies

The simplest numerical confirmation of the size consis-
tency of the proposed counterpoise correction can be obtained
by applying it to compute the interaction energy with only
a single ECG basis set function. This test can be viewed as
the most demanding one as it is well known that the size-
consistency problems are much more pronounced in smaller
basis sets. For the purposes of this test, we did not use the
MC method. The single ECG basis function was optimized
separately for each R to get the best possible energy of the
molecule.

The results of the test for the hydrogen molecule are
reported in Table II and demonstrate that the dimer energy and
the energy of noninteracting monomers tend to the same value
for large R. Thus, the interaction energy vanishes at large R

TABLE II. Dimer energy and the counterpoise-corrected energy
of noninteracting atoms for the hydrogen molecule (H2) in the 1	g

+

state calculated with a single ECG function. The difference between
the two energies is given in the last column. The symbol X [±n]
stands for X × 10±n.

R Dimer energy Monomer energies Diff.

1.40 −1.080 150 157 −0.851 504 752 2.29[−1]
2.00 −1.047 848 806 −0.877 907 811 1.70[−1]
3.00 −0.962 272 248 −0.892 953 363 6.93[−2]
4.00 −0.916 883 089 −0.902 594 831 1.43[−2]
5.00 −0.906 403 817 −0.904 962 697 1.44[−3]
6.00 −0.905 161 164 −0.905 046 809 1.14[−4]
7.00 −0.905 054 674 −0.905 048 043 6.63[−6]
8.00 −0.905 048 301 −0.905 048 052 2.50[−7]
9.00 −0.905 048 057 −0.905 048 052 5.79[−9]
10.0 −0.905 048 052 −0.905 048 052 8.17[−11]

TABLE III. Molecule energy and the counterpoise-corrected en-
ergy of noninteracting atoms for the HeH molecule in the lowest 2	+

state calculated with a single ECG function. The difference between
the two energies is given in the last column. The symbol X [±n]
stands for X × 10±n.

R Molecule energy Monomer energies Diff.

3.00 −2.761 101 011 −2.757 017 204 4.08[−3]
3.50 −2.755 780 617 −2.754 959 925 8.20[−4]
4.00 −2.753 543 972 −2.753 404 364 1.40[−4]
5.00 −2.751 558 211 −2.751 555 878 2.33[−6]
6.00 −2.750 556 963 −2.750 556 942 2.13[−8]
7.00 −2.749 956 748 −2.749 956 747 1.03[−9]
8.00 −2.749 568 092 −2.749 568 092 3.47[−10]

and one obtains size-consistent results. It is of note that for
R > 7.0 the energy of the noninteracting monomers becomes
practically independent of R. We performed a similar test also
for the HeH molecule in the ground (2	+) state; see Table III.
This provides a verification that the proposed counterpoise
correction works for a three-electron system with a nontrivial
permutation symmetry. During the optimizations for the HeH
molecule, we frequently encountered multiple local minima
and had to pay attention to avoid jumping between them when
the internuclear distance was increased. We checked that after
applying the counterpoise correction the interaction energy
vanished at large R, independently of which local minimum
was selected in the calculations.

Let us now discuss calculations with a larger number of
ECG functions. In Table IV, we present absolute errors in the
interaction energy of H2 obtained using the 9/150 and 12/300
basis sets. The reference values used in both tables are taken
from the work of Pachucki [63] and can be considered exact
for the present purposes. For each internuclear distance, the
interaction energy was calculated employing the same total
dimer energy and by subtracting:

(a) monomer energies calculated from the MC function
alone (pure MC method);

(b) exact monomer energies (exact monomer method);
(c) the counterpoise-corrected energy of the noninteract-

ing monomers calculated according to the scheme given in
Sec. II (CP method);

(d) the large-R asymptotic energy of the noninteract-
ing monomers; in practice, the energy of noninteracting
monomers computed at the largest available interatomic dis-
tance (asymptotic CP method).

Table IV presents results near the minimum of the potential
energy curve (R = 1.4) and in the long-range tail of the po-
tential. It is clearly seen that the methods based on subtracting
the exact or MC monomer energies are not size consistent, as
the interaction energies calculated with these methods tend
to some spurious nonzero values. This is best visible for
the 9/150 basis set even for quite moderate R, whereas for
the larger 12/300 basis set the deterioration of the results
is less pronounced. In contrast, the counterpoise-corrected
interaction energy vanishes as R → ∞.

It is obvious that the relative errors in the interaction en-
ergies computed using the MC method or the exact monomer
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TABLE IV. Absolute errors in the interaction energy of the hydrogen molecule (1	g
+ state) as a function of the internuclear distance (R).

The symbol X [±n] stands for X × 10±n.

9/150 12/300

R MC Exact mon. CP Asym. CP MC Exact mon. CP Asym. CP Ref. [63]

1.0 −3.62[−6] 1.10[−7] −2.05[−6] 8.65[−8] −1.67[−7] 2.58[−8] −5.13[−8] 2.16[−8] −1.24540[−1]
1.4 −3.61[−6] 1.14[−7] −2.07[−6] 9.02[−8] −1.70[−7] 2.25[−8] −7.57[−8] 1.83[−8] −1.74476[−1]
2.0 −3.62[−6] 1.12[−7] −2.35[−6] 8.82[−8] −1.72[−7] 2.04[−8] −9.53[−8] 1.62[−8] −1.38133[−1]
4.0 −3.59[−6] 1.34[−7] −1.15[−6] 1.11[−7] −1.51[−7] 4.17[−8] −1.54[−8] 3.75[−8] −1.63903[−2]
6.0 −3.69[−6] 3.42[−8] −4.87[−7] 1.09[−8] −1.77[−7] 1.57[−8] −1.75[−8] 1.15[−8] −8.35708[−4]
7.0 −3.70[−6] 2.67[−8] −2.07[−7] 3.43[−9] −1.84[−7] 7.95[−9] −1.11[−8] 3.77[−9] −1.97914[−4]
8.0 −3.71[−6] 1.61[−8] −6.15[−8] −7.19[−9] −1.88[−7] 4.65[−9] −8.84[−9] 4.74[−10] −5.56050[−5]
9.0 −3.71[−6] 1.61[−8] −9.11[−8] −7.18[−9] −1.89[−7] 3.40[−9] −2.40[−9] −7.79[−10] −1.97818[−5]
10.0 −3.71[−6] 1.47[−8] −5.80[−8] −8.66[−9] −1.89[−7] 3.19[−9] −4.25[−9] −9.91[−10] −8.75575[−6]
11.0 −3.72[−6] 1.11[−8] −4.75[−8] −1.22[−8] −1.90[−7] 2.42[−9] −3.52[−9] −1.76[−9] −4.50599[−6]
12.0 −3.72[−6] 1.31[−8] −3.32[−8] −1.02[−8] −1.90[−7] 2.32[−9] −1.65[−9] −1.86[−9] −2.54597[−6]
14.0 −3.71[−6] 1.32[−8] −2.43[−8] −1.01[−8] −1.90[−7] 2.67[−9] −1.50[−9] −1.51[−9] −9.60681[−7]
16.0 −3.71[−6] 1.45[−8] −1.36[−8] −8.84[−9] −1.90[−7] 2.62[−9] −1.34[−9] −1.56[−9] −4.19586[−7]
18.0 −3.71[−6] 1.45[−8] −8.81[−9] −8.81[−9] −1.89[−7] 3.38[−9] −8.01[−10] −8.01[−10] −2.03341[−7]

energies must grow to infinity at large R. Inspecting the results
of Table IV, one can find, however, that the relative error
in both CP approaches also grows with R although moder-
ately. This seems discouraging but we believe that this is
unavoidable in methods where the wave function is optimized
variationally at each R. For large R, the monomer energies
constitute the dominating contribution to the total energy of
the supermolecule and thus the optimization is biased toward
improving the monomer energies rather than describing the
bonding. This is not a serious problem in practice since at very
large R the interaction energy can be accurately represented by
its asymptotic expansion based on monomer properties only
(e.g., dynamic polarizabilities).

The main purpose of the present work was to correct the
interaction energies in the long-range region, i.e., where the
size-consistency errors are the most pronounced, but it is
equally important to validate the proposed strategy for smaller
internuclear separations. Rather surprisingly, the asymptotic
CP turns out to be superior to other methods near the bottom
of the potential energy curve and is capable of recovering at
least one additional significant digit as compared with the
CP technique. The method based on subtracting the exact
monomer energies also gives at small R more accurate results
than the CP method. This situation changes for larger R. When
the 12/300 basis set is used, the relative error in the interaction
energies calculated with the CP method becomes smaller
already at R ≈ 12.0. For large internuclear distances, the
standard and asymptotic CP methods give, on average, results
of a comparable quality. In view of its very good behavior at
small R, the asymptotic CP appears to be the most promising
method for calculation of accurate potential energy surfaces
for larger systems. While this method introduces a degree of
arbitrariness, i.e., the choice of a internuclear distance used to
evaluate the noninteracting monomer energies, it seems to be
a pragmatic way to extract the best possible results out of a
given dimer wave function.

The sum of noninteracting monomer energies obtained
with the counterpoise method is distance dependent, as in the
standard Boys-Bernardi scheme. Therefore, it is interesting

to investigate what is the dependence of this quantity on
R. In Table V, we show results obtained with 9/150 and
12/300 basis sets. Near the bottom of the potential energy
curve, the energy of noninteracting monomers is only slightly
more accurate than the energy corresponding to the monomer
contraction function. For example, with the 12/300 basis
set at R = 1.40, the errors of these energies are 98 nH and
192 nH, respectively. In the region R = 4.0–10.0 the former
error drops sharply by one to two orders of magnitude. This is
a manifestation of the fact that for larger internuclear distances
the optimization is biased toward the monomer. Finally, for
R > 12.0 this error decays slowly or fluctuates around some
constant value, amounting to about 30.0 nH and 4.0 nH for the
9/150 and 12/300 basis sets, respectively. These fluctuations
are at a low 0.1 nH level and are artifacts of the nonlinear
optimization procedure.

TABLE V. Absolute errors in the energy of two noninteracting
hydrogen atoms (with respect to the exact value of −1) calculated
with the counterpoise method as a function of the internuclear
distance. X [±n] stands for X × 10±n.

R 9/150 12/300

1.00 2.163[−6] 7.712[−8]
1.40 2.181[−6] 9.815[−8]
2.00 2.465[−6] 1.158[−7]
4.00 1.279[−6] 5.708[−8]
6.00 5.209[−7] 3.324[−8]
7.00 2.332[−7] 1.902[−8]
8.00 7.761[−8] 1.350[−8]
9.00 1.072[−7] 5.799[−9]
10.0 7.267[−8] 7.439[−9]
11.0 5.859[−8] 5.947[−9]
12.0 4.634[−8] 3.972[−9]
14.0 3.752[−8] 4.166[−9]
16.0 2.804[−8] 3.956[−9]
18.0 2.331[−8] 4.181[−9]

032712-7



MICHAŁ LESIUK AND BOGUMIŁ JEZIORSKI PHYSICAL REVIEW A 99, 032712 (2019)

TABLE VI. Absolute errors in the interaction-induced one-electron Darwin correction to the interaction energy of the hydrogen molecule
in the 1	g

+ state calculated with the 9/150 and 12/300 basis sets. The symbol X [±n] stands for X × 10±n.

9/150 12/300

R MC Exact mon. CP MC Exact mon. CP Refs. [51,64]

1.00 5.16[−3] −8.92[−4] −3.56[−4] 1.26[−3] −9.17[−4] −3.53[−4] 3.25779[−1]
2.00 5.52[−3] −5.30[−4] −1.21[−4] 1.65[−3] −5.20[−4] −2.25[−5] 2.20827[−2]
4.00 5.57[−3] −4.83[−4] −2.00[−5] 1.74[−3] −4.33[−4] 4.29[−5] −1.83425[−2]
6.00 5.54[−3] −5.09[−4] −2.43[−6] 1.75[−3] −4.23[−4] 3.72[−6] −1.64743[−3]
7.00 5.54[−3] −5.16[−4] −8.85[−8] 1.72[−3] −4.53[−4] 3.80[−6] −4.32567[−4]
8.00 5.54[−3] −5.09[−4] −5.18[−7] 1.72[−3] −4.53[−4] 1.51[−6] −1.23034[−4]
9.00 5.54[−3] −5.11[−4] −2.65[−6] 1.70[−3] −4.69[−4] 3.70[−7] −4.13107[−5]
10.0 5.54[−3] −5.12[−4] −1.70[−6] 1.71[−3] −4.60[−4] −4.28[−7] −1.69241[−5]
11.0 5.54[−3] −5.12[−4] −1.65[−6] 1.70[−3] −4.70[−4] −4.10[−7] −8.30538[−6]
12.0 5.54[−3] −5.12[−4] −2.13[−6] 1.70[−3] −4.69[−4] −1.12[−7] −4.57135[−6]

C. Interaction-induced properties

In this section, we apply the counterpoise correction pro-
posed above to calculation of interaction-induced first-order
properties defined by Eq. (1). As exemplified by the recent
papers devoted to the helium dimer, this task is considerably
more challenging than computation of the interaction energy
alone [33,34,50]. As a benchmark, we chose as X̂ the follow-
ing operator,

D̂1 = π

2

∑
a

Za

∑
i

δ(ria), (29)

where Za denotes the nuclear charges. The expectation value
of the operator D̂1 will be referred to as the one-electron Dar-
win correction. It appears, e.g., in the relativistic Breit-Pauli
theory [65] or in calculation of hyperfine interactions [66].
Because of the singular character of the Dirac distribution
δ(r), the calculation of the expectation value of D̂1 is known
to be very demanding and slowly convergent with the size of
the Gaussian basis set [40,51].

In Table VI, we show absolute errors in the interaction-
induced one-electron Darwin correction for the ground state
of H2. The results obtained with the asymptotic CP method
are not shown in this case because they offered no significant
improvement over the standard CP. Our results are compared
with accurate data of Puchalski et al. [64], whenever available
(R � 10.0), and the remaining reference values are from
Ref. [51]. The error of the results from Refs. [51,64] is
negligible in the present context.

The results presented in Table VI show that the
counterpoise-corrected method is superior to other techniques
in calculation of interaction-induced properties. Similarly, as
in the previous case, cf. Table IV, the counterpoise correction
gives size-consistent results. In fact, this method is much more
effective than in the case of interaction energy calculations,
especially at large R. Also, at small R, it performs better
than any other scheme. For example, at R = 1.40 (basis set
12/300), the errors in the one-electron Darwin correction are
about 1.1% and 0.5% with the pure MC method and with
subtraction of the exact monomer quantities, respectively. The
proposed method reduces this error to less than 0.08%. It
appears that the CP method is particularly well suited for

calculation of interaction-induced properties with explicitly
correlated wave functions.

We close this section by making several observations con-
cerning the computational cost of the proposed scheme. Since
in the CP method there is no need to reoptimize the nonlinear
parameters in the individual basis functions, the additional
task of constructing and diagonalizing the H0 matrix adds only
a relatively small contribution to the total cost of ECG calcu-
lations (dominated by massive nonlinear optimizations). Once
the optimal supermolecular wave function has been obtained,
the corresponding counterpoise-corrected monomer energies
become available essentially for free, i.e., at a cost of a single
diagonalization for each R. In the asymptotic CP, this cost
is reduced only for a single R. We also believe that existing
computer programs for explicitly correlated calculations can
be modified without significant difficulties to incorporate the
proposed scheme.

A possible problem related to the calculation of the coun-
terpoise correction is that the basis set used for the diago-
nalization of H0 is usually a few times larger than that used
in diagonalizing the dimer Hamiltonian H . This might cause
linear dependencies in the basis and, consequently, problems
in numerical stability of results. We did not observe this in
the calculations presented in this work. This stable behavior
is due to the fact that the basis consists of functions adapted
to several different representations of the permutation group
so the resulting overlap matrix is block diagonal. One should
note, however, that the H0 matrix is not only larger, but
also formulas for its matrix elements are somewhat more
complicated than in the case of the dimer Hamiltonian (H0

does not commute with all permutations and some of them
cannot be moved to only one side of the bracket).

IV. CONCLUSIONS

In this work, we have presented a technique, analogous to
the counterpoise correction in the Boys-Bernardi scheme, to
restore size consistency and eliminate basis set superposition
error in explicitly correlated electronic structure calculations.
This method is based on relaxing the Pauli principle in com-
putation of the expectation value of the sum of monomer
Hamiltonians (or other monomer property operators). This
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leads to distance-dependent monomer energies and/or prop-
erties corresponding to the given supermolecular basis set and
monomer spin states. It has been shown that the proposed
method yields interaction energies and interaction-induced
properties which vanish at large intermonomer separations.

We would like to stress that the proposed method does
not provide a way to construct individual basis sets for the
monomers from a given supermolecular basis set. Similarly,
the presented method does not allow us to calculate contribu-
tions to Eq. (1) coming from individual monomers but only
the sum of monomer quantities.

Exemplary ECG calculations for the hydrogen molecule
(H2) indicate that the counterpoise correction significantly
improves the quality of the results, especially in the long-

range regions of the potential energy curve. This is true for
the interaction energies, but especially for a more challeng-
ing case of first-order interaction-induced properties (one-
electron Darwin correction has been tested). The additional
computational cost of the proposed scheme is small compared
to the necessary optimizations of the supermolecular wave
function.

ACKNOWLEDGMENTS

This work was supported by the National Science Centre,
Poland, within the project 2017/27/B/ST4/02739. The authors
are grateful to Jacek Komasa for making his ECG program
available to us.

[1] B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. 94,
1887 (1994).

[2] E. G. Hohenstein and C. D. Sherrill, WIREs Comput. Mol. Sci.
2, 304 (2011).

[3] K. Szalewicz, WIREs Comput. Mol. Sci. 2, 254 (2012).
[4] G. Jansen, WIREs Comput. Mol. Sci. 4, 127 (2014).
[5] R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
[6] R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
[7] E. Clementi, J. Chem. Phys. 46, 3851 (1967).
[8] N. R. Kestner, J. Chem. Phys. 48, 252 (1968).
[9] H. Jansen and P. Ros, Chem. Phys. Lett. 3, 140 (1969).

[10] S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
[11] B. Liu and A. D. McLean, J. Chem. Phys. 59, 4557 (1973).
[12] M. Gutowski, F. V. Duijneveldt, G. Chałasiński, and L. Piela,
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