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Simplified model to treat the electron attachment of complex molecules: Application to
H2CN and the quest for the CN− formation mechanism
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We present a simplified approach to the dissociative electron attachment of polyatomic molecules. A reduced
nuclear coordinate driving the dissociative process immediately following the resonance capture is introduced
and allows an estimation of the cross section. The model is applied to the H2CN molecule, which is considered
as a precursor in the formation of the CN− anion observed in the IRC +10216 carbon star. The computed rate
coefficient suggests that the dissociative electron attachment of H2CN may not be an efficient reaction to form
CN− in the circumstellar envelope of IRC +10216.
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I. INTRODUCTION

The theoretical study of dissociative electron attachment
(DEA) in large molecules is notoriously difficult due to the
multidimensional nature of the problem. Because treatments
of DEA in full dimensionality for complex systems is beyond
current computational capabilities, a great deal of work has
been conducted to unravel the underlying DEA mechanisms,
e.g., by singling out one specific bond breaking, sorting out
main dissociative pathways, or considering a subspace of
coordinates [1–11]. Review of recent progress for DEA can be
found in Ref. [12]. Only for a few triatomic systems, namely,
HCN [13,14], ClCN, and BrCN [15], could a complete treat-
ment be performed, while DEA for such “basic” triatomic
molecules as H2O [16–21] and CO2 [22,23], where multiple
electronic states of the target molecule and nonadiabatic cou-
plings should be taken into account, are still actively studied,
presenting a great deal of difficulty.

The formidable task of describing DEA in polyatomic
molecules has often hindered the computation of DEA rate
coefficients crucial for astrophysical models [24–26]. In fact,
even an estimate of such rates is usually sufficient to under-
stand the role played by specific reactions in the formation
and destruction of molecules in the interstellar medium (ISM).
Here, we propose a simplification of the computation of DEA
cross sections by generalizing the model of O’Malley [27]
and Bardsley [28] to systems with many coordinates in order
to obtain an estimation of the resonant capture cross section.
The model is applied on the DEA of H2CN, which is closely
related to the unsolved problem of CN− formation in the ISM.

The density distribution of CN− molecular anions ob-
served in IRC +10216 [29] still puzzles physicists to date.
Indeed, the carbon chains Cn

− and CnH− are considered to
play a predominant role in the formation of CN− upon colli-
sion with N atoms [30,31]; however, chemical models predict
CN− density produced by these reactions to peak in the outer
region of the circumstellar envelope of IRC +10216 while the
fitted density distribution peaks in the inner region [29].

This discrepancy suggests that reactions responsible for
the CN− production in the inner region of the envelope have
been overlooked. Other than the reaction with Cn

− and CnH−,
collision of HCN with H− and radiative electron attachment
(REA) of CN also produce CN− in the inner region. In the
chemical model used by Agúndez et al. [29], the temperature-
independent Langevin rate of the former reaction was used
and was shown to contribute less than 0.2% of the total
amount of CN−. This reaction has recently been studied by
Satta et al. [32] using variational transition state theory. They
found a strong temperature dependence on the rate coefficient
and suggested that an extensive chemical model may produce
CN− more efficiently in the hotter inner region. In addition,
a high density of H− in the inner region could enhance this
barrierless reaction. On the other hand, an ab initio calculation
by Douguet et al. [33] found that the rate coefficient for
formation of CN− via REA is too slow to produce CN− in
the inner region.

In this article, we propose that a significant part of CN−

observed in the inner region originates from the DEA of the
open-shell molecule H2CN, i.e.,

H2CN(X 2B2) + e− → (H2CN)−∗(1A1)

→ CN−(X 1�+) + H2(X 1�+
g )

→ HCN(X 1�+) + H−(1S), (1)

where the first and second dissociation channels are both
exothermic by 1.92 and 0.6 eV, respectively. The H2CN
molecule was first detected in the cold dark molecular cloud
TMC-1 in 1994 [34]. Soon after, Millar and Herbst proposed
the existence of H2CN in the circumstellar envelope of the
carbon-rich star IRC +10216 by including the neutral-neutral
reaction N + CH3 → H2CN + H in their chemical model
[35,36].

Since the gas density in the ISM is low, open-shell species
have a longer lifetime than in the laboratory. Therefore, if the
rate coefficient for reaction (1) is fast enough, it could resolve
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TABLE I. Calculated and experimental harmonic frequencies ω (in cm−1) for each q. Our result is compared with the result from the
CISD+Q/cc-pVTZ method [41]. Experimental frequencies are obtained from Ref. [42], except for ω5, which is from Ref. [43].

ω1 ω2 ω3 ω4 ω5 ω6

CH2 rock (B2) Out of plane (B1) CH2 scissor (A1) CN stretch (A1) CH2 sym stretch (A1) CH2 asym stretch (B2)

This study 967.2 995.3 1420.6 1706.6 3080.0 3140.7
Ref. [41] 957.1 994.4 1401.6 1692.4 3031.9 3102.7
Experiment 912.8 954.1 1336.6 1725.4 2820 3103.2

the discrepancy of CN− density between the chemical model
and observation.

II. TARGET AND RESONANCE CALCULATION

We employ the MOLPRO suite of programs [37] to deter-
mine the electronic structure and vibrational frequencies of
H2CN. We first perform the calculation using multireference
configuration interaction (MRCI) [38,39] with Hartree-Fock
(HF) orbitals. The basis set for all atoms is chosen to be
cc-pVQZ [40]. In the MRCI calculation, the 1s and 2s carbon
and nitrogen core orbitals are frozen and we include eight
active orbitals in the complete active space. At the equilibrium
geometry, the bond lengths CH, NH, and the HCH angle are
found to be 1.088 Å, 1.246 Å, and 121.1◦, respectively. H2CN
at the equilibrium possesses C2v point-group symmetry, with
the ground-state electronic configuration

X 2B2 : 1a2
12a2

13a2
14a2

11b2
25a2

11b2
12b2.

We then computed the harmonic frequencies and compared
with theoretical [41,44–48] and experimental studies available
in the literature [42,43]. In Table I we compare our results with
Ref. [41] and the experimental studies [42,43]. We observe a
good agreement between our results and the calculations [42]
and only small discrepancies with the experimental results.
We will use normal coordinates in the present study.

To compute the resonance position �(�q) and width �(�q) at
a given molecular geometry �q, we use the UK R-matrix code
[49,50] in the QUANTEMOL-N suite [51] for electron-molecule
scattering to obtain the R matrix. To be consistent with the
MOLPRO calculation, we use a complete active space configu-
ration interaction (CASCI) model to compute the electronic
structure of the target using the same basis set, molecular
orbitals, number of frozen orbitals, and complete active space.
Eigenphase sums are fitted to the Breit-Wigner form, provid-
ing resonance energies and widths [52]. At electron energy
below 5 eV and at H2CN equilibrium geometry, we found
three shape resonances; 1A1 (� = 0.277 eV, � = 8.24 meV),
3A2 (� = 2.56 eV, � = 1.2 eV), and 1A2 (� = 3.15 eV, � =
1.49 eV).

Figure 1 displays the eigenphase sum obtained from the
static exchange model and the CASCI model for total sym-
metry 1A1,

3A2, and 1A2. Since H2CN has large polarizability
α, the static exchange model neglects a substantial gain of
kinetic energy of electrons from the −α · r/2r5 potential,
with α ≈ 1.33 a3

0 r̂. Therefore, the positions of resonances
from the static exchange model are at higher energies than
the CASCI model. Nevertheless, the fact that those three
resonances are seen in the static exchange model implies that
all the resonances are shape resonances.

A similar R-matrix calculation was reported by Wang et al.
[53], who also found the 3A2 and 1A2 shape resonance at
similar positions but with widths 2 orders smaller than our
results. Moreover, they did not find the 1A1 shape resonance
at low energy, most likely because they used a relatively small
basis set. We have ascertained that the position and width of
the lowest resonance remain relatively stable with respect to
the variation of the size of the R-matrix box, the size of the
complete active space, and the basis set.

Analyzing the symmetry, one can deduce the possible
dissociation products from certain resonance states. For the
two dissociation channels in (1), the total spin of the system
is zero so that resonance in the triplet state cannot lead to
dissociation. To dissociate into CN−(X 1�+) + H2(X 1�+

g ) or
HCN(X 1�+) + H−(1S), the system must be symmetric with
respect to reflection on the plane spanned by CN− + H2 or
HCN + H−. However, upon symmetry breaking, 1A2 becomes
the 1A′′ irreducible representation in the Cs group, such that it
is antisymmetric with respect to such reflection. Therefore,
only the 1A1 resonance could lead to dissociation to either of
the two channels.

Inspection of the continuum wave function shows that the
partial waves of the scattering electron contributing to the 1A1

resonance transform as the B2 irreducible representation, as
expected, because the electronic state of the target is B2.

Figure 2 shows the resonance energies �(�q) for different
normal-mode displacements. Because certain normal modes
reduce C2v symmetry to Cs symmetry, the total electronic
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FIG. 1. The scattering eigenphase sum for total symmetry
1A1,

3A2, and 1A2. The solid and dashed lines are the results obtained
from the CASCI model and the static exchange model, respectively.

032701-2



SIMPLIFIED MODEL TO TREAT THE ELECTRON … PHYSICAL REVIEW A 99, 032701 (2019)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Normal coordinates

0.2

0.25

0.3

0.35

Δ 
(e

V
)

FIG. 2. The variation of resonance energies �(�q) (in eV) over
q1 (black circles), q2 (red squares), q3 (green diamonds), q4 (blue
triangles up), q5 (brown triangles down), and q6 (violet crosses) for
H2CN.

wave function with such normal displacements of the nuclei is
represented in a different symmetry group, which introduces
an uncertainty in the position and width of the resonance.
Indeed, the resonance energies for the normal modes with Cs

symmetry are found to differ from the ones with C2v sym-
metry by about 25% near the equilibrium geometry. This is
within the relative errors of resonance energies obtained from
different basis sets and complete active space. To improve
visualization, we manually shifted up the resonance energies
for q1, q2, and q6. For symmetry reasons, the resonance ener-
gies depend at least quadratically on the normal displacements
q1, q2, and q6 near the equilibrium. One the other hand,
we observe a strong linear variation of � over q3 and q5,
which suggests that these coordinates are the most relevant
for electron capture. Of course, the latter vibrational motions
are coupled on the resonance energy surface, and the system
should follow the steepest descent of the resonance energy
for stabilization such that we can regard the nuclei moving
initially in a one-dimensional space near the capture region.
Note that such an analysis can in general be extended to other
systems.

Following electron capture, the system may reach some
branching points on the anionic potential energy surface
and eventually dissociate. Alternatively, the anionic transient
could emit an electron (autodetachment) or radiatively cool
towards lower vibrational states. To unravel the wave-packet
dynamics, the potential energy surface of the 1A1 electronic
ground state of H2CN− would need to be explored in full
dimensionality. Such a study, however, is out of scope of the
present work, where we focus instead on presenting a simple
model to describe the initial electron capturing step and thus
obtain the upper bound to the DEA cross section.

III. THEORY OF RESONANT CAPTURE

In order to find the steepest descent or capture coordinate,
we seek an orthogonal matrix which transforms (q3, q5) to

(s1, s2): (
α β

−β α

)(
q3

q5

)
=

(
s1

s2

)
. (2)

Choosing s1 as the capture coordinate leads to

∂�

∂s1
= α

∂�

∂q3
+ β

∂�

∂q5
, (3)

where the constants α and β are

α = |∂�/∂q3|√
(∂�/∂q3)2 + (∂�/∂q5)2

; β =
√

1 − α2.

Since the width of the resonance is narrow, we neglect the
explicit energy dependence of the width, i.e., we only consider
the on-shell width. In the so-called local complex potential
approach [27,54,55], the metastable state ξd becomes the
solution of the following equations:

[
T̂ + Ud (�q) − i�(�q)

2
− E

]
ξd (�q) = Vd (�q)ζ (�q), (4)

Vd (�q) =
√

�(�q)

2π
, (5)

where T̂ is the nuclei kinetic energy operator, Ud is the
resonance energy plus the neutral potential energy, and ζ is
the ground vibrational wave function of the target.

In our model, only the coordinates q3 and q5 participate
in the capture process. Thus, in the spirit of the sudden
approximation, we write the nuclei wave function ξd as

ξd (�q) ≈ ξc(q3, q5)χ (�q′), (6)

where �q′ collects all the spectator coordinates and χ (�q′) is the
product of vibrational wave functions in the spectator coordi-
nates. Similarly, we express the vibrational wave function of
the target as

ζ (�q) = ζc(q3, q5)χ (�q′). (7)

We further express

T̂ = − h̄ω3

2

∂2

∂q2
3

− h̄ω5

2

∂2

∂q2
5

+ T̂spec, (8)

T̂spec = −
∑

i′

h̄ωi′

2

∂2

∂q2
i′
, (9)

and

Ud (�q) = Un(q3) + Un(q5) + �(�q) + Uspec(�q′), (10)

Uspec(�q′) = ∑
i′ Un(qi′ ), (11)

where Un are the neutral potential energies, and the summation
on i′ runs over all spectator coordinates. Note that χ (�q′) is the
eigenfunction of T̂spec + Uspec with the eigenvalue equals to
the sum of zero-point energies of all spectator coordinates.

Next, multiplying χ (�q′) on the left in Eq. (5) and inte-
grating over �q′, we obtain the two-dimensional equation in
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dimensionless coordinates,[
− h̄ω3

2

∂2

∂q2
3

− h̄ω5

2

∂2

∂q2
5

+ Un(q3) + Un(q5)

+�(q3, q5,�0) − i�(q3, q5,�0)

2
− E

]
ξd (q3, q5)

= Vd (q3, q5,�0)ζc(q3, q5), (12)

where we approximate the integrals of resonance energy and
width with χ2 over spectator coordinates at the resonance
energy and width at �q′ = 0.

Transforming (q3, q5) to (s1, s2), we then obtain[
T̂s + Ud (s1, s2) − i�(s1, s2)

2
− E

]
ξd (s1, s2)

= Vd (s1, s2)ζc(s1, s2), (13)

where the operator T̂s is given by

T̂s = − h̄ω̃1

2

∂2

∂s2
1

− h̄ω̃2

2

∂2

∂s2
2

− h̄αβ(ω5 − ω3)
∂2

∂s1∂s2
, (14)

while the potential Ud takes the form

Ud (s1, s2) = 1
2 h̄ω̃1s2

1 + 1
2 h̄ω̃2s2

2 + �(s1, s2)

+ h̄αβ(ω5 − ω3)s1s2, (15)

with

ω̃1 = α2ω3 + β2ω5,

ω̃2 = β2ω3 + α2ω5,

ζc(s1, s2) = ζc(q3, q5) = 1√
π

exp
[ − (

s2
1 + s2

2

)
/2

]
.

Denoting ζi(si ) ≡ π−1/4 exp(−s2
i /2), we apply the sud-

den approximation again and have ξd (s1, s2) ≈ ξ1(s1)ζ2(s2).
Multiplying ζ2(s2) on both sides and integrating, we finally
arrive at[−h̄ω̃1

2

d2

ds2
1

+ Ud (s1, 0) − i�(s1, 0)

2
− E

]
ξ1(s1)

= Vd (s1, 0)ζ1(s1), (16)

Ud (s1, 0) = 1

2
h̄ω̃1s2

1 + �(s1, 0), (17)

where the cross terms of s1 and s2 vanish as ζ2(s2) is an even
function. The energy E is the sum of zero-point energy of s1

and energy of the scattering electron ε.
Finally, following the WKB approach by O’Malley [27]

or Bardsley [28] and assuming the survival probability of the
complex is unity, the capture cross section is given by

σcap(ε) = g
2π2

k2

�(sε )

|U ′
d (sE )| |ζ1(sE )|2, (18)

where g is the ratio of statistical weight of product to re-
actant, and the classical turning point sE and Frank-Condon
point sε are obtained by solving Ud (sE ) = E and �(sε ) = ε,
respectively. We abbreviate Ud (s1, 0) and �(s1, 0) as Ud (s1)
and �(s1). The statistical weight for the product H2 + CN−

(X 1�+
g ⊗ X 1�+) is 1, while for the reactant H2CN (2B2) it is

2, such that g = 1/2.

IV. RESULTS AND DISCUSSION

Figure 3 displays the resonance energy, anionic and neutral
potential energies as functions of the capture coordinate s1.
The red line shows the first-order approximation of �(s1),

�(s1) ≈ �(0) + d�

ds1
(0)s1,

which is seen to agree well with the data points for −1 < s1 <

1. The blue dashed line is obtained by adding the resonance
energy to the neutral potential energy. However, we note that
as the electronic wave function of the neutral target may not be
well represented with the limiting complete active space, the
minimum of the anionic potential energy is above the neutral,
in contradiction to the photodetachment experiment [43]. In
order to obtain the correct electron affinity, we use the ab initio
data obtained from RCCSD(T)/aug-cc-pVQZ [45] and shift
the anionic potential energy down by 0.65 eV, which is shown
as a blue solid line. Since there is a local minimum for the
anion potential, it suggests that there is at least one barrier in
the dissociation pathway to CN− + H2 or HCN + H−. In our
simplified model, we assume that the barrier height is smaller
than 0.6 eV, such that there is no reflection of the outgoing flux
from the barrier and the complex will eventually dissociate
without autodetachment. At zero electron energy, the classical
turning point sE is around –1.4, such that the capture process
occurs in a well-defined region of normal coordinates, thereby
justifying our approach.

Figure 4 shows the effective width against effective reso-
nance energy �(sε ), which is equal to electron energy ε in
this approach so as to enforce the threshold behavior [55]. The
electronic structure calculations give the value 0.957 ea0 for
the permanent dipole moment of H2CN as at s1 = 1.25. This
value of s1 is only 0.04 a0 away from the crossing point of
the original anionic and neutral potential energy curves (blue
dashed and black curves in Fig. 3). Since s-wave scattering
is forbidden by symmetry, an estimation of the off-diagonal
element of the dipole moment between p, d , and f partial
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FIG. 3. The anionic potential energy Ud (blue dashed line), neu-
tral potential energy Un (black line), and resonance energy � (circles)
and its linear approximation (red straight line) along s1 for H2CN at
s2 = 0. The black dashed line is the zero-point energy of the nuclei
for coordinate s1.
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FIG. 4. The effective width � against effective resonance energy
�(sε ). The solid line is the fitted width (see the text for details).

waves reveals that the lowest three effective orbital angular
momenta �̃ becomes 0.939, 2.01, and 3.02, respectively [56].
To include the contribution from the lowest three partial
waves, the effective width is fitted as

�(ε) =
∑

i

aiε
�̃i+1/2, (19)

where a1 = 0.0356, a2 = 0.0258, and a3 = 0.137. Near
threshold, we then have �(ε) ∝ ε�̃+1/2 = ε1.439.

To calculate the cross section with the shifted anionic po-
tential curve, we use the same effective width as a function of
electron energy. This is justified because the electron energy
is set to equal the resonance energy in our approach. As we
offset the resonance energy, the effective width will be zero at
the new crossing point between the shifted potential and the
neutral potential. Therefore, the effective width is also shifted
in terms of coordinate implicitly. In addition, the threshold
behavior of the width changes only slightly as we shifted the
anionic potential curve. Indeed, at s1 = −1.5, the permanent
dipole moment of H2CN differs by only about 6% from the
value at s1 = 1.25. By fitting the effective width with new
�̃, we found that the capture cross section also changes by
about 6%.
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FIG. 5. Electron capture cross section for H2CN.
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FIG. 6. Thermally averaged rate coefficient for electron capture
by H2CN (solid line) and its fit (dashed line, not distinguishable from
the solid line).

Figure 5 displays the capture cross section versus electron
energy. Near threshold, the cross section grows with electron
energy as ε0.439. The peak of the cross section is located
near 0.1 eV. Around 1 meV, the cross section is about 3.68
× 10−20 cm2, which is about 2 orders of magnitude larger
than the cross section for the radiative electron attachment to
CN [33].

Using the standard formula

k(T ) = 8π

(2πkbT )3/2

∫
ε σ (ε)e−ε/kbT dε,

where kb is the Boltzmann constant, we obtain the thermally
averaged capture rate coefficient, which is shown in
Fig. 6. The rate coefficient is fitted within 1% relative
error using the form k(T ) = a1(T/300)a2 ea3T a4 , with
a1 = 2.43 × 10−12, a2 = 0.97025, a3 = −9.20 × 10−3, and
a4 = 0.677. The rate coefficient at 30 K is found to be about
2.36 × 10−13 cm3/s, which is 2 orders larger than the REA
of CN [33] and 1 order larger than the reaction of HCN +
H− [32]. Assuming the rate coefficient of electron capture is
equal to the rate coefficient of forming CN− by DEA and the
ratio of H2CN density to CN to be 1000 [36], we have

[e−][CN]kREA

[e−][H2CN]kDEA
≈ 10,

at 30 K, such that DEA of H2CN is at least 10 times less
efficient in producing CN− than REA of CN. Hence, our result
suggests that DEA of H2CN may not play a major role in
the formation of CN− in the circumstellar envelope of IRC
+10216. Other possible radicals that could produce CN− by
DEA in IRC +10216 are MgNC [57,58], MgCN [59], SiCN
[60], SiNC [61], FeCN [62], and CCN [63], where all species
have been detected in IRC +10216. It is possible that CN− an-
ions are produced by DEA of several of the above molecules
efficiently in the inner region of the circumstellar envelope.

V. UNCERTAINTY ESTIMATION

As in many similar theoretical studies, there are two types
of uncertainties [64]. One is related to the uncertainties of the
theoretical model, and the second type is related to the choice
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of parameters of the model (such as a limited basis set and
uncertainties in ab initio or fitted data employed in the given
model). In the present case, the main source of the first type
of uncertainties is probably due to the reduced dimensionality
approximation used in the present treatment and the neglect of
the autodetachment process once the electron is captured into
the dissociative coordinate. The uncertainties of the model can
only be estimated if there is another more accurate model.
For example, a fully dimensional time-dependent propagation
model similar to that used in Ref. [3] could be used to
benchmark the present results.

The evaluation of the second type of uncertainties is pos-
sible. The uncertainty of the cross section can be estimated
by performing R-matrix calculations with various complete
active spaces, R-matrix radii, and R-matrix basis sets. At
equilibrium geometry, the position and width of the resonance
differ, respectively, by at most 20% and 25% by varying the
complete active space from 8 to 11 molecular orbitals and
R-matrix radii from 10 to 14 bohrs with basis sets cc-pVTZ
or cc-pVQZ. As a result, the capture cross section, which is
proportional to the effective width, has associated uncertainty
of about 25%.

Another source of uncertainty arises from the offset of the
anionic potential energy. The relative error between the ab
initio data used [45] and the experiment is about 2%. We
found that changing the shifting by 2% leads to the change
of cross section by about 7%. In the most unfortunate case,
if we decrease the shift by 20%, the capture cross section
increases by about a factor of 2. Therefore, our approach for
H2CN gives reasonable orders of magnitude of the capture
cross section.

VI. CONCLUDING REMARKS

The approach presented in this article is based on the fact
that, in general, the resonance energy varies substantially

over only a subset of normal coordinates. As the resonance
energy is nearly constant over H2CN normal coordinates
of the Cs symmetry, we expect our approach to work also
for other polyatomic molecules. For instance, the DEA of
acetylene starts with bending the molecule [3] such that
the corresponding normal coordinate is responsible for the
capture step in the process.

The present approach has several limitations: The survival
probability is assumed to be unity. Therefore, our approach
gives an upper bound of the DEA cross section within the
Frank-Condon and WKB approximations. Also, the width is
assumed to be on-shell, so that our approach would work only
for systems with narrow resonances [55]. But if the width is
narrow enough, the survival factor is closed to unity so that the
two limitations are in fact equivalent. Finally, our approach
cannot predict branching ratios of the dissociation products.
By constructing a multidimensional anionic potential energy
surface, it is possible to determine branching ratios by prop-
agating wave packets. But this method is computationally
expensive and will be reserved for future study.

To date, it is still a very challenging task to include the
nonlocal operator to polyatomic molecules with several dis-
sociation coordinates. Even for the local complex potential
model, it is computationally demanding to compute resonance
positions and widths at different geometries and perform time-
dependent calculations. Besides, to obtain ab initio energy-
dependent widths is difficult, even for diatomic molecules.
Our approach can thus provide an ab initio estimation of the
DEA cross section when other more accurate approaches are
computationally expensive or unavailable.
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