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Electron correlation in the lanthanides: 4 f 2 spectrum of Ce2+
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Atoms and ions of lanthanides have multiple opens shells along with an open 4 f k subshell. This paper studies
the effect of electron correlation in such systems and how wave functions can be determined for the accurate
prediction of atomic properties in the case of Ce2+ where k = 2, using the multireference single- and double-
excitation method. An efficient higher-order method is recommended for more reliable results.
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I. INTRODUCTION

Lanthanides were detected recently in the electromagnetic
counterpart to a gravitational wave source from a binary
neutron star merger (GW170817) [1]. Knowledge of their
atomic structure is essential for estimating the ejecta opacity
and understanding the r nuclear process at the origin of their
synthesis [2,3]. Lanthanides and related actinides are also
the elements of the Periodic Table that pave the way to the
transfermium elements (Z � 100) that do not occur naturally
on earth and are produced at large accelerator facilities, for
which the atomic structure is almost unknown [4], and to
superheavy elements (Z � 104) that are good candidates for
the island of stability of nuclear astrophysics interest [5].

To estimate the r-process opacities that are dominated by
bound-bound transitions, the radiative transition rates have to
be calculated for tens of millions of lines in lanthanide ions,
using atomic structure models that determine the approximate
ion energy-level structure and the wavelengths and oscillator
strengths of all permitted radiative transitions [6]. Although
these models do not provide exact results, the hope is that
they capture the statistical distribution of levels and lines to
derive reliable estimates of the pseudocontinuum opacity [7].
Benchmark calculations for a few elements have been per-
formed [8] to confirm that the opacities from bound-bound
transitions of open f -shell elements are higher than those
of the other elements over a wide wavelength range. The
present work does not consider this category of calculations.
It mainly focuses on the search of the relevant correlation
configurations entering in the description of atomic energy
levels of complex atomic systems and to the development
of ab initio computational strategies allowing their efficient
inclusion. The ultimate goal is to improve the reliability
of theoretical atomic energy levels, excitation energies, and
wave-function compositions, in line with other recent works
[9,10].

*cff@cs.ubc.ca

Parametric studies can be performed to unravel the com-
plex spectra of lanthanides (and actinides) (see, for instance,
[11] for Ce2+) but needed are the observed atomic line fre-
quencies and intensities, which are precisely the targets of ab
initio approaches. The effect of correlation in atoms and ions
of lanthanides and actinides is not well understood. Safronova
et al. [12] summarize the situation well: “Though tremendous
progress has been made, calculations for the lanthanides with
the open 4 f shell remain a challenge”. In their paper, they
report results from applying two hybrid approaches to the
elements La, La+, Ce, Ce+, Ce2+, and Ce3+. In their studies,
not all levels of a configuration are included. In particular, in
Ce2+ (Z = 58) only five levels were reported, namely, 3H4,5,6,
1G4, and 1D2, instead of the 13 levels arising from a single-
open-subshell f 2 configuration [13]. Their method is based on
the use of an effective Hamiltonian for including correlation
within the closed subshells and configuration interaction for
electrons in open subshells (referred to as valence electrons)
and perturbation theory methods of various orders.

The present paper discusses similar strategies based on
variational methods for determining wave functions that can
be used to predict atomic properties and not only energies,
methods that have been implemented in the general relativistic
atomic structure package computer codes (GRASP2K [14] and
GRASP2018 [15]). What makes the calculations challenging
is the rapid explosion in the number of basis states asso-
ciated with configurations with multiply occupied subshells
with large angular momenta and the need for higher-order
corrections. The configuration [Kr]4d84 f 45s25p45d2 of Ce2+

has associated with it 1 608 502 basis states, for 0 � J � 6.
In addition, strong interactions require treatments for

higher-order effects and standard procedures rapidly produce
expansions of 10 × 106 basis states or more. Once wave func-
tions have been determined, other properties can be computed.

II. UNDERLYING THEORY

In the multiconfiguration Dirac-Hartree-Fock (MCDHF)
method [16], the wave function �(γπJMJ ) for a state labeled
γπJMJ , where J and MJ are the angular quantum numbers
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and π is the parity, is expanded in antisymmetrized configu-
ration state functions (CSFs)

�(γπJMJ ) =
N∑

j=1

c j�(γ jπJMJ ). (1)

The label {γ j} denotes other appropriate information about
the CSFs, such as orbital occupancy and the subshell cou-
pling tree. The CSFs are built from products of one-electron
orbitals, having the general form

ψnκ,m(r) = 1

r

(
Pnκ (r)χκ,m(θ, ϕ)

iQnκ (r)χ−κ,m(θ, ϕ)

)
, (2)

where χ±κ,m(θ, ϕ) are two-component spin-angular functions.
The radial functions {Pnκ (r), Qnκ (r)} are represented numeri-
cally on a grid.

Radial functions are solutions of systems of differential
equations that define a stationary state of an energy functional
for one or more wave-function expansions. It is possible
to derive the MCDHF equations from the usual variational
procedure by varying both the large and small components
so that

wa

[
V (a; r) −c

[
d
dr − κa

r

]
c
[

d
dr + κa

r

]
V (a; r) − 2c2

][
Pa(r)
Qa(r)

]

=
∑

b

εab δκaκb

[
Pb(r)
Qb(r)

]
, (3)

where V (a; r) = Vnuc(r) + Y (a; r) + X̄ (a; r) is a potential
consisting of nuclear, direct, and exchange contributions aris-
ing from both diagonal and off-diagonal matrix elements
〈�α|HDC|�β〉 of the Dirac-Coulomb Hamiltonian [16]. In
each κ space, Lagrange related energy parameters εab = εκ

nanb

are introduced to impose orthonormality constraints in the
variational process. In spectrum calculations, where only en-
ergy differences relative to the ground state are important,
wave functions for a number of targeted states are determined
simultaneously in the extended optimal level scheme. This
ensures that different eigenstates of the symmetry are or-
thonormal even though the solutions are approximate. Given
initial estimates of the radial functions, the energies E and
expansion coefficients c = (c1, . . . , cN )t for the targeted states
are obtained as solutions to the configuration-interaction (CI)
problem

Hc = Ec, (4)

where H is the CI matrix of dimension N × N with elements

Hi j = 〈�(γiπJMJ )|H |�(γ jπJMJ )〉. (5)

In GRASP, expansions in terms of CSFs are obtained
through single and double (SD) excitations from a multiref-
erence (MR) set of CSFs that contain the important contribu-
tions to the wave-function composition. In systematic calcu-
lations the excitations are to orbital sets of increasing size that
include both unfilled and virtual orbitals. Calculations often
are classified by their maximum principal quantum number,
so an n = 5 calculation has associated with it excitations to all
orbitals up to 5g. When the orbital set is increased in size, only
the new orbitals need be determined. Expansions may grow

rapidly in size, so partitioning CSFs and omitting interactions
between new CSFs can drastically reduce the computation in
the self-consistent process.

A GRASP calculation consists of three phases: (i) generating
the expansions, (ii) building the orbital basis using variational
theory for the Dirac-Coulomb Hamiltonian, and (iii) perform-
ing a relativistic configuration-interaction calculation that in-
cludes the transverse photon and QED corrections. This pro-
cess is described in detail in the manual for GRASP2018 [17].

III. LARGE EXPANSIONS

When expansions become exceedingly large, which is the
case when millions of small effects (small expansion coeffi-
cients) are present, it is useful to partition the set of CSFs
according to some criterion to produce a zeroth-order set
and a first-order correction, respectively [18]. Suppose the
expansion coefficients were vectors c(0) and c(1), respectively.
This partitioning also divides the interaction matrix H into
blocks so that the eigenvalue problem becomes(

H (00) H (01)

H (10) H (11)

)(
c(0)

c(1)

)
= E

(
c(0)

c(1)

)
, (6)

where H (00) is the interaction matrix between zeroth-order
components, H (11) is for interactions between first-order com-
ponents of the wave function, and H (01) = H (10)† represents
the interactions between CSFs of the two blocks. This equa-
tion can be rewritten as a pair of linear equations, namely,

(H (00) − EI )c(0) + H (01)c(1) = 0, (7a)

H (10)c(0) + (H (11) − EI )c(1) = 0. (7b)

Solving for c(1) in Eq. (7b) and substituting into (7a), we
get an eigenvalue problem for c(0),

[H (00) − H (01)(H (11) − EI )−1H (10) − EI]c(0) = 0. (8)

This deflates the matrix in that it reduces the eigenvalue
problem for a matrix of size N × N (several million) to an
eigenvalue problem of size m × m (several tens of thousands),
where m is the expansion size of c(0). Of course, once E
and c(0) have been determined, the other components can be
generated from the expression

c(1) = −(H (11) − EI )−1H (10)c(0) (9)

and a full wave function is defined. Note that the eigenvalue
problem is now nonlinear in the eigenvalue that can be solved
by an iterative process. When H (11) − EI is replaced by the
diagonal matrix such as H (11)

ii − E0I , Eq. (8) is again a linear
eigenvalue problem.

In the CI plus many-body perturbation theory (MBPT)
approach, referred to as CI+MBPT [19,20], when c(1) is
associated with correlation in the core and c(0) with valence
correlation, the matrix of Eq. (8) represents the matrix from
an effective Hamiltonian. Consequently, interactions between
first-order core corrections to the wave function are not in-
cluded. Thus, contributions to the wave function need to be
small. When other atomic properties are evaluated, it would be
desirable for c(1) to be sufficiently small so that contributions
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TABLE I. Mean radii 〈r〉nl (in a0) of Ce2+ orbitals for two
configurations 4 f 25s25p6 and 5s25p65d2.

〈r〉nl

nl 4 f 25s25p6 5s25p65d2

j = l − 1/2 (κ > 0)
4p− 0.659 0.657
4d− 0.745 0.733
4 f− 1.152
5p− 1.752 1.659
5d− 2.408

j = l + 1/2 (κ < 0)
4s 0.638 0.635
4p+ 0.684 0.679
4d+ 0.757 0.742
4 f+ 1.165
5s 1.569 1.504
5p+ 1.830 1.727
5d+ 2.443

from the relevant operator between small corrections can be
omitted.

Partitioning the configuration-interaction matrix so that the
CSFs in c(1) space have small coefficients has been supported
already in the ATSP code [21], but in variational methods,
omitting interactions between these CSFs comes at a cost. The
total energy associated with a wave function is an upper bound
to the exact energy, but when off-diagonal matrix elements of
H (11) are neglected, the total energies often are too low. In the
present work, the final relativistic configuration-interaction
calculation always included the full matrix but used as many
as 96 parallel processors for execution of the task.

Partitioning can also be introduced in the building of an
orbital basis. Suppose the n = 5 orbitals have already been
determined and important contributors to the wave-function
composition have been identified. These define c(0). Then the
energy functional for the variational process could neglect
interactions within the c(1) space, greatly reducing the time
to determine orbitals that satisfy orthogonality constraints.
Variational methods optimize the orbital basis. The effect on
the calculation of neglecting some interactions is a slower rate
of convergence of the systematic procedure and an extra layer
of orbitals may ultimately be needed. This process was used
effectively in the study of Pr3+ [9]. In the present study, this
option was only used when expansions were large, in which
case the c(0) space was defined as the MR set, unless indicated
otherwise.

IV. TWO-ELECTRON SYSTEM

A simple Dirac-Hartree-Fock calculation for the ground-
state configuration [Xe]4 f 2 of Ce2+ shows that the 4 f orbitals
are not outer orbitals, but orbitals with mean radii between
those for {4s, 4p, 4d} and {5s, 5p} orbitals as shown in Table I.
Results are given for two configurations, one with 4 f 2 and the
other with 5d2. Normally, for a given electron, the nucleus
is screened by other electrons with a smaller mean radius.
However, Table I shows that when the 4 f 2 electrons are

FIG. 1. Large components of 4 f+ = 4 f7/2 (nodeless) and 5p+ =
5p3/2 (oscillating) orbitals from the configurations 4 f 25s25p6 (black)
and 5s25p65d2 [red (gray)].

replaced by 5d2 electrons, the common orbital parameters
hardly change. Figure 1 shows how close to each other the
large components of 5p orbitals of 4 f 25s25p6 (black line) and
5s25p65d2 [red (gray) line] are. Also shown for comparison is
the nodeless 4 f orbital. Because the 4 f orbital amplitude is so
small near the origin, it affects the potential for other electrons
only at larger values of the radius.

By expanding the wave function for a two-electron system
outside a core through SD excitations to an increasing set
of orbitals, the 4 f 2 spectrum converges rapidly as shown in
Table II. Because of the strong interaction between 4 f 2 and
5d2, radial functions were optimized (equally weighted) for
levels of both configurations. For the converged results, the
ground-state energy Eg was −8848.36Eh. For comparison,
the observed energy levels from Ref. [22] are provided as
well as the best results reported by Safronova et al. [12].
Note, however, that the 1G4 level is not in the observed order.

TABLE II. The 4 f 2 energy levels (in cm−1) from a two-electron
calculation compared with observed energy levels [22]. The ground-
state energy is −Eg = 8848.36Eh. The results from Ref. [12] were
calculated using a CI all-order method.

LSJ n = 5 n = 6 n = 7 n = 8 Ref. [22] Ref. [12]

3H4 0 0 0 0 0.00 0
3H5 1246 1250 1249 1251 1528.32 1565
3H6 2571 2573 2567 2570 3127.10 3227
3F2 3870 3852 3808 3801 3762.75
3F3 4679 4663 4620 4614 4764.76
3F4 6399 6267 6206 6181 5006.06
1G4 4678 4510 4442 4403 7120.00 7650
1D2 13639 13316 13175 13103 12835.09 13786
3P0 17067 16944 16825 16807 16072.04
3P1 17485 17368 17253 17237 16523.66
3P2 18171 18037 17921 17903 17317.49
1I6 19668 19157 19104 19045 17420.60
1S0 32006 30967 30512 30362 32838.62
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TABLE III. Wave-function expansion for the largest basis states
of the supercomplex. Included are the CSFs, their expansion coeffi-
cient, and the excitation producing the CSF.

CSF Coefficient Excitation

4d105s25p6 0.9734
4d94 f (1P)5s25p55d 0.0854 4d5p → 4 f 5d
4d8(3P)4 f 2(3P)5s25p6 −0.0715 4d2 3P → 4 f 2 3P
4d8(3F )4 f 2(3F )5s25p6 −0.0596 4d2 3F → 4 f 2 3F
4d105s25p4(3P)5d2(3P) −0.0559 5p2 3P → 5d2 3P

...
4d8(3P)4 f 2(3P)5s25p4(3P)5d2(3P) 0.0059 4d2 3P → 4 f 2 3P

5p2 3P → 5d2 3P

This first analysis reveals the importance of the mixing of
4 f 25s25p6 with 5s25p65d2.

V. SOME PROPERTIES OF CORRELATION

The lanthanides all have two incomplete shells, namely,
the n = 4 shell that is missing 4 f electrons and the n = 5
shell missing 5d , 5 f , and 5g electrons. Each of these shells
has a complex of configurations that may interact strongly
through near degeneracy [23]. Let us consider Ce4+ where
all subshells are filled. In this case the complexes are defined
as {4s + 4p + 4d}18 = 418 and {5s + 5p}8 = 58, respectively,
where the exponent denotes the number of electrons in a given
shell. These two complexes can be merged into a supercom-
plex 41858. The importance of correlation in the latter can
be seen from a study of Ce4+, 4s24p64d105s25p6 1S0 where
occupied orbitals are excited by the SD process, to unfilled or
unoccupied orbitals. Variational calculations yielded a wave-
function expansion for which some of the larger basis states
in LSJ coupling are given in Table III. Of special interest are
excitations without a change in the principal quantum num-
ber since they represent excitations between near-degenerate
states of a complex.

This investigation shows that the largest excitation is
4d5p → 4 f 5d , namely, a double excitation consisting of
single excitations from each of the two complexes. This is
followed by 4d2 → 4 f 2 and then 5p2 → 5d2 excitations.
The above contributions are too large to be considered as
a small correction for most applications. Also tested was
the effect of adding the quadruple excitations 4d2LS →
4 f 2LS and 5p2L′S′ → 5d2L′S′ to the expansion. As shown in
Table III, the coefficient for LS = L′S′ = 3P was 0.0059,
which might be important in some circumstances. Contribu-
tions to the wave function from 4p6 or 4s2 are less than 0.0244
and 0.0173, respectively. Notice that all the large excitations
within or between complexes did not change their principal
quantum number. Ce2+ differs in that the n = 4 complex 420

now has an extra unfilled subshell 4 f 2 that leads to many
states and the analysis is not as simple but the concepts are the
same. For Ce4+, the (unnormalized) wave function generated
from SD excitations of a supercomplex can be written as

�(41858 1S0) = [1 + Ŝ2(4) + Ŝ2(5) + Ŝ1(4)Ŝ1(5)]

�(4s24p64d10 · 5s25p6 1S0), (10)

where Ŝ1(n) and Ŝ2(n) are the operators performing, respec-
tively, all single and double excitations among the desig-
nated nl orbital set and, when applied to the configuration
designating the complex, preserve parity and total quantum
numbers. Here we have used the fact that Ŝ1(n) excitations
by themselves are not allowed for 1S0 states. The Ŝ1(4)Ŝ1(5)
excitation is a double excitation involving one orbital from
each group.

A wave function of the form

�(41858 1S0) = [1 + Ŝ2(4)]�(4s24p64d10 1S0)

× [1 + Ŝ2(5)]�(5s25p6 1S0)

+ Ŝ1(4)Ŝ1(5)�(4s24p64d10 · 5s25p6 1S0)

(11)

includes also some higher-order terms and would be appropri-
ate when large effects are present in both groups. Here the ×
operator represents the vector coupling of CSFs from the left
set with those of the right and the required antisymmetriza-
tion. Notice that in this form the correlation in the n = 4 group
is applied to each excitation of the n = 5 group. If the size of
the expansion is N4, N5, and N45, respectively, the number of
basis states is N4 × N5 + N45. When the expansion for n = 4,
for example, is fixed, then N4 = 1 and the expansion coeffi-
cients that need to be determined may reduce dramatically.

VI. TEN VALENCE ELECTRONS OUTSIDE A 4d10 CORE

In a GRASP calculation, instead of complexes, the elec-
trons are classified as inactive core, active core, and valence
electrons. In this study we treat 4d10 as an active core and
4 f 25s25p6 as ten valence electrons. The 4s24p6 subshells are
relegated to the inactive core since the complex study showed
that their contribution to the energy was smaller. In these
calculations SD excitations were applied to both 4 f 25s25p6

and 5s25p65d2, which define the MR set. Optimization was
on all states of 4 f 2 weighted equally, with increasing orbital
active sets up to h orbitals but omitting 8h. Orbital sets for
n = 6–8 were determined from interactions with the MR set
as well as 4 f 5s25p65 f in order to take into account any pos-
sible term dependence when the 4 f orbitals were optimized
separately. The expansions for n = 8 were extended to also
include excitations from the 4d10 core of each member of
the MR set, expanded to include 4 f 25s25p45d2, in order to
estimate the effect of adding some core-core (CC) correlation
without any orbital optimization. The CC orbital set was
limited to allow only excitations to 4 f , 5d , and 5 f orbitals.
Results are shown in Table IV.

The results from these n = 5 to n = 8h valence-valence
(VV) correlation calculations have levels in their correct order.
The fine structure for the 3H level has improved somewhat.
Notice that the total energies have converged except for the
highest level, namely, 1S0, for which convergence is slower.
An investigation of the wave-function composition for n = 8h
showed that the 4 f 25s25p45d2 CSF had expansion coeffi-
cients larger than 0.09 for the 1S0 state. Comparison with the
spectrum from the two-electron study (Table II) shows that
including correlation for the additional 5s25p6 electrons has
not had a large effect on the spectrum but did lower the total
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TABLE IV. The 4 f 2 energy levels (in cm−1) from a ten-electron
calculation compared with observed energy levels and the ground-
state energy (Eg in hartree units). The n = 8h results are extended to
include an estimate of the core correlation in +CC.

LSJ n = 5 n = 6h n = 7h n = 8h +CC

3H4 0 0 0 0 0
3H5 1400 1452 1464 1467 1619
3H6 2869 2905 2917 2919 3124
3F2 4375 4230 4123 4102 3859
3F3 5231 5092 4994 4976 4800
3F4 5357 5175 5047 5012 4752
1G4 7245 7045 6914 6878 6665
1D2 15130 14597 14232 14107 13522
3P0 19038 18475 18068 17931 17527
3P1 19376 18783 18386 18257 17708
3P2 20006 19377 18986 18859 18238
1I6 19531 19425 19308 19221 19634
1S0 40094 37501 36141 35386 33956
−Eg 8848.58 8848.65 8848.66 8848.66 8848.82

energy of the ground state by about 0.30 Eh ≈ 66 000 cm−1.
The largest effect is on the 1S0 level.

VII. CONTRIBUTIONS FROM THE 4d10 CORE

In the preceding section, 5s25p6 was considered to be
part of the valence electrons, with relatively small excitation
energies. The 4d10 electrons are different in that the 4d2 →
4 f 2 excitation has a large effect on the total energy, although
not on the 4 f 2 spectrum.

A. Core-valence correlation

In the supercomplex of Ce4+, a strong effect on the
wave-function composition arose from the 4d5p → 4 f 5d
excitation. In our computational method, such interactions
are between core and valence electrons and account for
the polarization of the 4d10 core by outer electrons. The
Ce2+ results are similar. The largest component arises from
4d94 f 35s25p55d and 4d94 f 5s25p55d3 CSFs, but many are
small corrections that could be included as a first-order
correction.

B. Properties of core correlation

Core correlation has some special properties in that all
subshells are filled and have 1S0 quantum numbers. Though
GRASP is fully relativistic, we will discuss this property in the
nonrelativistic case.

The SD excitations from the core shells of a CSF consist
of all excitations of the type (ab)πLS → (vv′)πLS, where a
and b are core orbitals, π designates the parity of the pair of
orbitals, and vv′ is any pair of unfilled or virtual orbitals. In
the case of 4d10, the pairs can be derived by first uncoupling
two equivalent electrons using the coupling relationship

|4d10 1S〉 =
∑
LS

|4d8 (LS), 4d2(LS)〉(d8 LS, d2 LS|}d10 1S),

TABLE V. The 4 f 25s25p6 energy levels (in cm−1) from calcu-
lations that include correlation with the 4d10 active core, compared
with observed energy levels [22]. Also reported is the total energy
−Eg of the ground state and the number (No.) of CSFs in the
expansions. The results from Ref. [12] were calculated using a CI
all-order method.

LSJ n = 4 n = 5 n = 6 n = 7 Ref. [22] Ref. [12]

3H4 0 0 0 0 0 0
3H5 1636 1516 1598 1593 1528.32 1565
3H6 3296 3116 3233 3204 3127.10 3227
3F2 4685 4250 4305 4299 3762.75
3F3 5749 5321 5393 5371 4764.76
3F4 7899 5496 5513 5477 5006.06
1G4 5680 7542 7620 7555 7120.00 7650
1D2 16693 15350 15242 15109 12835.09 13786
3P0 21043 19059 19053 18941 16072.04
3P1 21541 19451 19408 19264 16523.66
3P2 22411 20138 20118 19953 17317.49
1I6 23391 20158 19992 19829 17420.60
1S0 41547 40504 39452 38758 32838.62
−Eg 8848.62 8848.85 8849.03 8849.07
No. 33 520 1 606 947 2 678 670 4 679 330

where (d8 LS, d2 LS|}d10 1S) is a coefficient of fractional
grandparentage [24]. The excited CSFs are obtained by the
replacement process 4d2LS → nln′l ′LS. The possible LS val-
ues for d2 are {1G,3F,1D,3P,1S} and these define the ex-
cited pair correlation functions for a correlated core. In the
relativistic case, additional quantum numbers are needed as
described in [25]. The matrix element for the interaction from
this excitation is the same for all CSFs, provided the nln′l ′
orbitals are not present in the valence portion of the CSF.
As a result, certain excitations may reduce the total energy
(and affect the wave function) significantly but have a minor
effect on a spectrum, since the latter is defined as an energy
difference relative to the ground state.

Core correlation can be treated as a correction to an atomic
state function by correlating the core of all CSFs in the MR
set. This may be appropriate when the effect is small, but for
cases where the effect is large, the core of every CSF of the
valence space should be correlated. One way of doing so is
to use an effective Hamiltonian as is done in CI MBPT [19].
In this case core correlation is a first-order correction of the
wave function and is applied to all CSFs defining the valence
space, including those that are introduced by the SD process.
At no point are the interactions between these corrections
introduced. A more general approach is given by Eq. (11).

C. Results for an active 4d10 core

Table V shows some results for calculations that include
VV, core-valence (CV), and CC correlation effects on the 4 f 2

spectrum with an active 4d10 core. Expansions increase in size
rapidly, so the orbital set for CC needs to be controlled as well
as the MR set. In the n = 4 calculation, the MR set included
both 4 f 25s25p6 and 5s25p65d2 and an orbital set with orbitals
up to {5s, 5p, 5d, 4 f } or simply {5554}. The inactive core or-
bitals were the same as those of the two-electron calculation.
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Excitations were SD excitations from all shells. Double exci-
tations from 4d10 were limited to excitations to {4 f , 5d, 5 f }
orbitals with the 5g orbital participating only in CV and VV
in the n = 5 calculation with a {55555} excitation orbital set.
The MR set then also contained 4 f 5s25p65 f , 4 f 5s25p55d2,
and 5s25p45d4, although the latter two did not contribute
to CC, the number of excitations being too numerous for
inclusion. The effect of including CC correlation was the
contraction of the (4 f−, 4 f+) orbitals from a mean radius of
(1.174a0, 1.189a0) to (1.095a0, 1.091a0). The fine-structure
splitting of the lowest term is now in excellent agreement with
observation. The n = 5 expansion was reduced by extracting
those CSFs with an expansion coefficient greater in magnitude
than 0.000 01 in at least one eigenvector. To this were added
CSFs from an n = 6 expansion including at least one n = 6
orbital in a CV-VV expansion from the five members of the
MR set. Again, the n = 6 results were reduced and n = 7
CSFs added to the reduced expansion. The new CSFs have
had a small effect on the lower levels but make a significant
contribution to higher levels. Note that the 3P fine structure is
in fairly good agreement with observation in that all levels of
the latter are shifted by a similar amount. At the same time,
comparing the final ground-state energy for the ten-electron
system reported in Table IV, the ground-state energy has
been lowered by 0.25 Eh or 54 869 cm−1. In other words,
correlation shifts the total energies more than it modifies the
spectrum. Except for the 1D2 level, the lower levels of the
n = 5 calculation agree with observation slightly better than
the best results reported by Safronova et al. [12].

VIII. ANALYSIS

Comparison of computed energy levels with those derived
from observation is a common method for assessing the
accuracy of a calculation. However, as we have already seen,
not all contributions to a wave function affect the computed
spectrum. For the prediction of other atomic properties such as
lifetimes or transition rates, the accuracy of the wave-function
composition is a more important factor. For the analysis of a
wave function it is convenient to transform the expansion to
LSJ coupling [26]. The expansion coefficients depend on the
radial basis, but a wave function can also be viewed as a linear
combination of multielectron spin-angular functions that are
not affected by radial transformations.

Table VI shows how the expansion coefficients for major
contributors to the 4 f 2 1S0 wave function change with the
correlation model. Given are the coefficients of some CSFs
(the contribution to the composition is the square of the coeffi-
cient) for the three approximations: the 4 f 2 two-electron sys-
tem outside inactive closed shells, the 4 f 25s25p6 ten-electron
system outside closed shells, and finally the 4d104 f 25s25p6

20-electron system outside closed shells. For the first method,
there is strong interaction between 4 f 2 and 5d2 partly because
the 5d2 energy levels overlap those of 4 f 2 and the energy
difference of the two is too small. The lowest 5d2 level
is 3F2 (not included in any table) and its computed energy
level is 33 558 cm−1 compared with the observed value of
40 440.20 cm−1. Including the correlation of 4 f 2 with 5s25p6

increases the separation between the levels and reduces the
expansion coefficient. Including also the correlation with 4d10

TABLE VI. Analysis of the wave-function composition and total
energy (in Eh) for the 4 f 2 1S0 state from the three types of calcu-
lations. Included are the expansion coefficient and the CSF when
converted to LSJ coupling.

Coefficient CSF

4 f 2 1S0: E = −8848.2204
0.8522 4 f 2 1S0

0.4794 5d2 1S0

−0.1351 4 f 5 f 1S0

−0.1246 4 f 2 3P0

−0.0638 5 f 2 1S0

4 f 25s25p6 1S0: E = −8848.5021
0.9020 4 f 2(1S)5s25s25p6 1S0

0.2780 5s25p65d2 1S0

−0.0903 4 f 2(1S)5s25p4(3P)5d2(3P) 1S0

−0.0864 4 f 2(3P)5s25p6 3P0

−0.0820 4 f 2(1S)5s25p4(1D)5d2(1D) 1S0

−0.0798 4 f 5s25p66 f 1S0

−0.0719 5s25p65d6d 1S0

−0.0696 4 f 5s25p65 f 1S0

0.0695 4 f 2(1S)5s25p4(1S)5d2(1S) 1S0

−0.0652 4 f 5s25p5[1D]5d2(1D) 1S0

−0.0645 4 f 5s25p5[1G]5d2(1G) 1S0

0.0594 4 f 2(1D)5s[2D]5p65d 1S0

−0.0531 4 f 3(2F )5s[3F ]5p5[2D]5d 1S0

−0.0455 4 f 3(2P)5s25p5 1S0

−0.0448 5s25p65 f 2(1S) 1S0

4d104 f 25s25p6 1S0: E = −8848.8937
0.9029 4d104 f 2(1S)5s25s25p6 1S0

0.2579 4d105s25p65d2 1S0

−0.1263 4d104 f 5s25p65 f 1S0

−0.0865 4d104 f 2(3P)5s25p6 3P0

−0.0721 4d104 f 2(1S)5s25p4(3P)5d2(3P) 1S0

−0.0667 4d104 f 2(1S)5s25p4(1D)5d2(1D) 1S0

−0.0623 4d104 f 5s25p5[1G]5d2(1G) 1S0

0.0610 4d94 f 3(2F )[1P]5s25p5[2D]5d 1S0

−0.0587 4d104 f 5s25p5[1D]5d2(1D) 1S0

0.0558 4d104 f 2(1S)5s25p4(1S)5d2(1S) 1S0

0.0556 4d104 f 5s25p66 f 1S0

−0.0478 4d8(3P)4 f 4(3P)[1S]5s25p6 1S0

0.0474 4d104 f 2(1D)5s[2D]5p65d 1S0

0.0462 4d8(1S)4 f 4(1S)5s25p6 1S0

further decreases the contribution to the wave function by
a relatively small amount. At the same time, the computed
4d2 3F2 energy level is now 63 429 cm−1 and hence too
high.

Table VI also shows that the core correlation lowers the
total energy of the 1S0 level by slightly more than correlation
between 4 f 2 and the 5s25p6 closed shells in that the difference
in total energies of the state is slightly larger between the
last two results than the first two. Because the number of
SD excitations from 4d10 increases extremely rapidly with
the size of the excitation orbital set, the present work has
limited its size. As in the supercomplex discussed earlier,
the largest excitation is 4d5p → 4 f 5d but with a smaller
expansion coefficient, namely, 0.0610 compared with 0.0854
for the complex, as shown in Table III. Similarly, other exci-
tations also have smaller coefficients which may be related
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to the presence of the 4 f 2 electrons but may also be the
result of correlating the core of only a few CSFs, which
has the effect of increasing energy differences and thereby
decreasing the expansion coefficients. Further studies are
needed.

IX. CONCLUSION

Accurate predictions for lanthanide spectra with multiple
open shells provide a challenge for theory. In this work, results
were based on the GRASP code that computes a wave function
from an MR set along with SD excitations from members
of this set, thus including selected higher-order terms and
resulting in expansions with millions of basis states.

In effect, correlation is a local phenomenon arising from
corrections to the wave from the

∑
1/ri j singularities in

the Hamiltonian, but orbitals are global in nature, making
the calculations difficult, mainly because of the number of
basis states. In Ce2+, ignoring the inactive subshells, there are
three correlation regions for which correlation can be com-
puted without difficulty in GRASP, namely, �(4s24p64d10 1S0),
�(4 f 2πJ ), and �(5s25p6 1S0), where each � is an expansion
over CSFs. Then, following the concepts first introduced by
Chung [27] and applied successfully to Be-like systems [28],
the wave function for Ce2+ becomes

�(4s24p64d104 f 25s25p6πJ )

= �(4s24p64d10 1S0)�(4 f 2πJ )�(5s25p6 1S0)

+ Ŝ2o3 �(4s24p64d10 · 4 f 2 · 5s25p6 πJ ), (12)

where the three individual expansions � are vector coupled
and antisymmetrized similarly to the way in which CSFs for
a group of subshells are vector coupled. The last term repre-
sents the CSF expansion produced by an excitation operator
Ŝ2o3 involving at least two of the three subgroups separated
by a centered dot. Excluded are excitations for which all

excitations are from the same subgroup. This equation is
directly related to the equation for generating expansions for
a supercomplex, namely, Eq. (11), but here the limitation
on excitations has been removed and the equation is not
restricted to SD excitation. The fastest rate of convergence for
each group would require a different orbital basis for each,
leading to a nonorthogonal basis for the full wave function.
The present version of GRASP assumes one orthonormal or-
bital basis leading to larger expansions whose size would
be the product of the three sizes. However, this partitioned
approach could also provide valuable information about when
higher-order excitations such as triple-quadruple excitations
are needed.

In the present case, the configuration 4d84 f 45s25p45d2

is the coupled product of excitations 4d2 → 4 f 2 and
5p2 → 5d2, a special case of a quadruple excitation. From
Table VI we see that the largest expansion coefficient in
1S0 is −0.0721 for the 5p2 → 5d2 excitation whereas the
largest coefficient is −0.0478 for the 4d2 → 4 f 2 expansion.
Depending on the accuracy required for the wave function, the
higher-order term may be needed. At the same time, as shown
earlier, matrix elements for core correlation may be the same
for many CSFs. For example, the CC excitation 4d2 → 4 f 2

of a given πJ produces a matrix element for the interaction
that is the same for all CSFs that do not already include a 4 f
orbital in their definition. The present code treats each matrix
element independently.

A reorganization of the way core correlation is included in
GRASP has the possibility of greatly improving the efficiency
of the program for lanthanides and other heavy elements.
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