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Angle-dependent magic wavelengths for the 4s1/2 → 3d5/2,3/2 transitions of Ca+ ions
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The dynamic polarizabilities of the atomic states with angular momentum j > 1/2 are sensitive to the angle
between the quantization axis êz and the polarization vector ε̂ owing to the contribution of anisotropic tensor
polarizabilities. The magic wavelength at which the differential Stark shift of an atomic transition nullifies
depends on this angle. We identified the magic wavelengths for the 4s1/2 → 3d3/2,5/2 transitions of Ca+ ions at
different angles between êz and ε̂ in the case of linearly polarized light. The magic wavelengths near 395.79 nm,
which lie between the 4s1/2 → 4p1/2 and 4s1/2 → 4p3/2 transition wavelengths, remain insensitive to the angle,
while the longest magic wavelength, which is around 1000 nm, for each of the magnetic sublevel transitions is
very sensitive to the angle. We suggest that accurate measurements on the longest magic wavelengths for the
4s1/2 → 3d5/2 and 4s1/2 → 3d3/2 transitions can be used to determine the oscillator strengths for the 4s1/2 →
4p1/2,3/2, 3d5/2 → 4p3/2, and 3d3/2 → 4p1/2,3/2 transitions, and the difference of the static polarizabilities of the
4s1/2 and 3d5/2 states, and the tensor polarizability of the 3d5/2 state.
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I. INTRODUCTION

Techniques involving laser cooling and trapping of neutral
atoms or ions have a lot of applications in quantum informa-
tion [1–4], and in high-precision frequency and spectroscopy
measurements [5–12]. However, the laser field can cause Stark
shifts of atomic energy levels and transitions. The problem
of eliminating the Stark shifts for a given transition can be
solved by trapping an atom or ion at magic wavelengths at
which the Stark shifts of both the upper and lower states are
the same and the shifts of the transition frequency vanish
[13,14]. Also, the systematic uncertainties of high-precision
measurement can be reduced by optical traps at the magic
wavelengths [15,16]. In order to theoretically determine the
magic wavelength of an atomic transition, accurate dynamic
polarizabilities are required for the relevant atomic states,
which consist of isotropic scalar and anisotropic vector and
tensor parts [16–18]. The anisotropic parts resulting in the
light shift depend on not only on the angular momentum
projection m but also the angle between the quantization axis
êz and the electric polarization vector ε̂ of the laser. This will
make accurate determinations of the magic wavelengths much
more difficult in experiments.

Due to the simple energy-level structure and the long
lifetime of the 3d5/2 state, calcium ions have been chosen as
one of the candidates for optical frequency standard [19–26].
In a recent experiment with a radio-frequency Paul trap, the
accuracy of 40Ca+ optical clocks has achieved a level of
3.4 × 10−17 [12]. In this experiment, excess micromotion
was identified as the biggest factor affecting the accuracy of
the 40Ca+ clock [12]. If the weak micromotions of trapped
ions can be handled with more accuracy, such kinds of 40Ca+
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clocks could achieve a systematic fractional uncertainty of
about 10−18. Therefore, all-optical magic trapping of Ca+

ions is worth being tried for diminishing substantially the
micromotion-induced shifts [12,15]. The magic wavelengths
of Ca+ ions have been studied both in theories and experi-
ments [15,27,28]. Two magic wavelengths of the 40Ca+ 4s →
3d5/2(m = 1/2, 3/2) clock transitions near 395.79 nm for
linearly polarized light have been measured with very high
accuracy and they agree with all existing theoretical results
very well [15,27,28]. However, these magic wavelengths are
very close to the 4s1/2 → 4p3/2 and 4s1/2 → 4p1/2 resonant
transition wavelengths of 393.366 and 396.847 nm. Therefore,
they are not good for the use of magic trapping, as the near-
resonant light has high photon spontaneous scattering rates
which result in a high heating process [29,30].

Another important application of magic wavelengths and
magic-zero wavelengths, at which the dynamic polarizability
is zero, is to test the atomic structure and determine atomic
parameters [31–37]. For example, the ratio of 87Rb D-line
dipole matrix elements was determined with an accuracy up
to 15 ppm by using the high-precision measurement of the
magic-zero wavelength [32]. The accuracy of atomic tran-
sition matrix elements can arrive at the 10−3 level by the
measurement of the ac Stark shift around magic-zero wave-
length [31]. Measurement of the two magic wavelengths at
395.7992(7) and 395.7990(7) nm of the Ca+ clock transition
determined the ratio of the oscillator strengths for the 4s1/2 →
4p3/2 and 4s1/2 → 4p1/2 transitions as 2.027(5) [15].

In this manuscript, the variations of the magic wavelengths
with the applied laser direction are determined in detail. More-
over, we suggest that the oscillator strengths for the 4s1/2 →
4p1/2,3/2, 3d5/2 → 4p3/2, and 3d3/2 → 4p1/2,3/2 transitions,
the difference of the static polarizabilities of the 4s1/2 and
3d5/2 states, and the tensor polarizability of the 3d5/2 state can
be determined by measuring the longest magic wavelengths
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FIG. 1. Representation of the electromagnetic plane-wave geo-
metrical parameters. The surface represents the ellipse swept out
by the electric field vector in one period. The unit vector ε̂maj(ε̂min )
aligns with the semimajor (-minor) axis of the ellipse. êz is the
quantization axis, which selects the direction of the magnetic field
in the experiment. k̂ represents the direction of the wave vector. θk

is the angle between êz and k̂. The parameters ε̂maj, ε̂min, and k̂ are
mutually orthogonal. θmaj (θmin) is the angle between ε̂maj (ε̂min) and
êz. ψ is directly related to the degree of circular polarization.

for the 4s1/2 → 3d3/2,5/2 transitions. Finally, a brief summary
is given in Sec. IV. Atomic units, h̄ = m = |e| = 1, are used
throughout this paper unless stated otherwise.

II. THEORY

The necessary atomic parameters of Ca+ ions such as
energy levels, matrix elements, and polarizabilities have been
calculated using the relativistic configuration interaction with
the core polarization (RCICP) approach [38] in our previous
work [39]. These data are not repeated here for the sake of
brevity.

For a polarized light, the dynamic polarizability of an
atomic state i is given by [17,18,40]

αi(ω) = αS
i (ω) + A cos θk

mji

2 ji
αV

i (ω)

+ 3 cos2 θp − 1

2

3m2
ji − ji( ji + 1)

ji(2 ji − 1)
αT

i (ω), (1)

where αS
i (ω), αV

i (ω), αT
i (ω) represent the scalar, vector, and

tensor polarizabilities as given in Refs. [17,18,40], respec-
tively. mji is the component of total angular momentum ji.
There are no tensor polarizabilities for the states with j �
1/2. θk is the angle between the wave vector k̂ and the
quantization axis êz, cos θk = k̂ · êz. The relevant diagram is
shown in Fig. 1. The θp relates to the polarization vector ε̂ and
the êz axis. For a more general geometrical interpretation of
θp, it is useful to further introduce the parameters θmaj, θmin,
and ψ . cos2θp can be written in the form [18]

cos2 θp = cos2 ψ cos2 θmaj + sin2 ψ cos2 θmin, (2)

where the parameter θmaj (θmin) is the angle between the
major (minor) axis of the ellipse and the êz axis. From
a geometrical consideration, θk and θp satisfy the relation
cos2 θk + cos2 θp � 1 [17,40]. The angle ψ is directly related
to the degree of polarization of light. A represents the degree
of polarization, which is given by

A = sin 2ψ. (3)

In particular, A = 0 corresponds to linear polarization, while
A = +1 (or −1) corresponds to right- (or left-) circular polar-
ization. In the experiment, however, A could not absolutely be
equal to zero. In this case, the vector polarizability contributes
to the total dynamic polarizability. In order to get rid of the
vector part in the experiment, one can set cos θk equal to zero,
i.e., êz ⊥ k̂.

In the case of cos θk = 0, the quantization axis êz is per-
pendicular to the wave vector k̂, and the angle between the
direction of polarization and êz varies in the plane of polariza-
tion. When A = 0 or cosθk = 0, the dynamic polarizability
can be easily simplified from Eq. (1) as follows:

αi(ω) = αS
i (ω) + 3 cos2 θp − 1

2

3m2
ji − ji( ji + 1)

ji(2 ji − 1)
αT

i (ω).

(4)

The dynamic polarizability depends on not only the value of
m but also the θp in a certain frequency ω.

In the case of cosθk = 0, parameters θmaj and θmin satisfy
the relation

θmaj + θmin = π

2
. (5)

With the use of Eqs. (3) and (5), Eq. (2) can be further
simplified to

cos2 θp = 1

2
+

√
1 − A2

2
cos 2θmaj. (6)

Therefore, for a given value of A, cos2θp satisfies

1

2
−

√
1 − A2

2
� cos2 θp �

1

2
+

√
1 − A2

2
. (7)

As seen from Eq. (7), A = 0 corresponds to 0 � cos2 θp �
1, in which cos2θp covers the largest range [0,1], while
|A| = 1 just gives rise to cos2θp = 1/2. In the following part,
we mainly discuss the case of linearly polarized light with
cosθk = 0 and 0 � cos2 θp � 1.

III. RESULTS AND DISCUSSION

A. Magic wavelengths for the 4s1/2 → 3d5/2 transition

First, two particular cases are considered. One of them is
cos2 θp = 1. This means the êz axis is perpendicular to the
wave vector but parallel to the polarization vector, i.e., êz ⊥ k̂
and êz ‖ ε̂. In this case, Eq. (4) becomes

αi(ω) = αS
i (ω) + 3m2

ji − ji( ji + 1)

ji(2 ji − 1)
αT

i (ω). (8)

Another case is cos2 θp = 0, which means the êz axis is
perpendicular to the wave vector and the polarization vector,
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FIG. 2. Dynamic polarizabilities (in a.u.) of the 4s and
3d5/2(m = 1/2, 3/2, 5/2) states in the wavelength range 300–
1400 nm. The upper panel plots the dynamic polarizabilities in the
case of êz ⊥ ε̂. The lower panel plots the dynamic polarizabilities in
the case of êz ‖ ε̂. The approximate position of the 3d5/2 → 4p3/2

resonance is indicated by the vertical dotted line.

i.e., êz ⊥ k̂ and êz ⊥ ε̂. Equation (4) is simplified as follows:

αi(ω) = αS
i (ω) − 3m2

ji − ji( ji + 1)

2 ji(2 ji − 1)
αT

i (ω). (9)

Figure 2 shows the dynamic polarizabilities of the 4s and
3d5/2 states in the wavelength range 300–1400 nm for the
laser polarization direction perpendicular (upper panel) and
parallel (lower panel) to the quantization axis, respectively.
Since the dynamic polarizability of the 4s1/2 state has only the
isotropic scalar part, the dynamic polarizability of the 4s1/2

state in the case of êz ⊥ ε̂ is the same as the one in êz ‖ ε̂.
However, the dynamic polarizabilities of the 3d5/2 state for
both cases êz ⊥ ε̂ and êz ‖ ε̂ are completely different for each
of the magnetic components due to the contribution from the
anisotropic tensor part. For example, when the wavelength
is close to the 3d5/2 → 4p3/2 resonant transition wavelength
(854.21 nm), the dynamic polarizability of the 3d5/2(m =
5/2) state is infinite in the case of êz ⊥ ε̂ but it is finite in
êz ‖ ε̂. To be more specific, as per the explanation in Ref. [39],
the contributions of the tensor and scalar terms from the
3d5/2 → 4p3/2 transition cancel each other out in the case
of êz ‖ ε̂. The intersections of the dynamic polarizabilities
of 4s1/2 and each magnetic state of 3d5/2 give rise to magic
wavelengths. For a given magnetic sublevel transition, we
can see the magic wavelengths are different for the cases
êz ⊥ ε̂ and êz ‖ ε̂. Two magic wavelengths have been found
for each of the 4s → 3d5/2 magnetic transitions [except that
the 4s → 3d5/2(m = 5/2) transition with êz ‖ ε̂ has only one
magic wavelength]—one lies between the 4s1/2 → 4p1/2,3/2

transition wavelengths, and the other is the longest magic
wavelength, longer than the 4p3/2 → 3d5/2 transition wave-
length (854.21 nm).

Furthermore, we investigate the variation of the magic
wavelengths for the 4s → 3d5/2 transition with cos2 θp. Fig-
ure 3 shows the dependence of the magic wavelengths near
395.79 nm upon cos2 θp, which lie between the 4s1/2 →
4p1/2 and 4s1/2 → 4p3/2 transition wavelengths. As shown

FIG. 3. The dependence of magic wavelengths, which lie be-
tween the 4s1/2 → 4p1/2 transition wavelength (393.37 nm) and
4s1/2 → 4p3/2 transition wavelength (396.85 nm), of each magnetic
sublevel transition of 4s1/2 → 3d5/2 upon cos2θp in the case of
linearly polarized light.

clearly from the Fig. 3, the magic wavelengths change nearly
linearly with cos2θp. Also, the difference of magic wave-
lengths is small for different magnetic sublevel transitions.
Meanwhile, the magic wavelengths of each magnetic tran-
sition change weakly with cos2 θp as well. For example,
for the 4s1/2 → 3d5/2(m = 5/2) transition, the difference in
magic wavelengths is just 0.0012 nm for cos2 θp = 0 and
cos2θp = 1. The absolute values of derivatives of magic wave-
lengths for the 4s1/2 → 3d5/2(m = 1/2, 3/2, 5/2) transitions,
|dλmagic/dcos2θp|, are 0.00099, 0.00025, 0.0012, respectively,
which means that these magic wavelengths are not sensitive
to the quantity cos2 θp.

Figure 4 shows the cos2 θp dependence of the longest
magic wavelengths for the 4s1/2 → 3d5/2 transition. As
seen from Fig. 4, the magic wavelengths for the 4s1/2 →
3d5/2(m = 1/2, 3/2) transitions become longer with the

FIG. 4. Same as Fig. 3 but for magic wavelengths longer than the
3d5/2 → 4p3/2 transition wavelength (854.21 nm).
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TABLE I. The contributions of individual transitions to the polarizabilities (in a.u.) of the 4s1/2 and 3d5/2(m = 1/2) states at the magic
wavelengths for the different cos2θp. The contribution to the polarizability of the 4s1/2 state from all other transitions (excluding the 4s1/2 →
4p1/2,3/2 transitions) is noted as “Rest”. The contribution to polarizability of the 3d5/2 state from all other transitions (excluding the 3d5/2 →
4p3/2 transition) is noted as “Rest”.

cos2θp 0 0.2 0.4 0.6 0.8 1.0
ω (a.u.) 0.04853208 0.04628478 0.04378998 0.04088149 0.03779304 0.03407102
λ (nm) 938.8296 984.4132 1040.4972 1111.6229 1205.6017 1337.3054

4s1/2

4p1/2 29.4065 29.2935 28.9528 28.3787 27.5610 26.4827
4p3/2 58.1152 57.8966 57.2372 56.1254 54.5404 52.4473
Rest 3.4142 3.4141 3.4138 3.4132 3.4124 3.4112
Total 90.9360 90.6043 89.6037 87.9174 78.6890 82.3412

3d5/2(m = 1/2)
4p3/2 82.2143 81.7986 80.5469 78.4443 75.4632 71.5585
Rest 8.7217 8.8057 9.0569 9.4731 10.0506 10.7828
Total 90.9360 90.6043 89.6037 87.9174 85.5138 82.3412

increase of cos2 θp, while the magic wavelengths for the
4s1/2 → 3d5/2(m = 5/2) transition become shorter. More-
over, the magic wavelength of each magnetic sublevel tran-
sition changes strongly with cos2 θp. For example, for the
4s1/2 → 3d5/2(m = 1/2) transition, the difference in magic
wavelengths is 398 nm for cos2 θp = 0 and cos2θp = 1. The
minimum absolute values of derivatives, |dλmagic/dcos2θp|,
for the 4s1/2 → 3d5/2(m = 1/2, 3/2, 5/2) transitions are 228,
77, and 217, respectively. That means these magic wave-
lengths that are longer than the 3d5/2 → 4p3/2 transition
wavelength vary sensitively with cos2 θp.

As shown in Figs. 3 and 4, however, different curves inter-
sect at one point. The magic wavelengths are independent of
magnetic sublevels at this intersection, and the contribution of
tensor polarizabilities is zero. This condition can be attained
when cos2θp = 1/3 for linearly polarized light. This angle θp

is referred to as a “magic angle” [41] and is given by

θp = arccos

(
1√
3

)
≈ 54.74◦. (10)

According to Eq. (7), the determination of the “magic angle”
requires the condition |A| � 2

√
2

3 . The magic wavelengths
corresponding to the magic angle are determined for the
4s1/2 → 3d5/2 transition as shown in Figs. 3 and 4. For
instance, at the magic angle, the magic wavelengths are
395.79572(5) and 1024.40(21.30) nm for the 4s1/2 → 3d5/2

transition.
In Table I, we list the contributions from some individual

transitions on the polarizabilities of the 4s1/2 and 3d5/2(m =
1/2) states at the longest magic wavelengths for the different
cos2 θp. It can be found that the polarizability of the 4s1/2

state is dominated by the 4s1/2 → 4p1/2 and 4s1/2 → 4p3/2

resonant transitions, which contribute more than 96%. The
contribution from all other transitions to the polarizability of
4s1/2, noted as “Rest”, is very small and changes slowly with
the changes of frequency (or cos2 θp) of the magic wavelength.
The main contribution to the polarizability of the 3d5/2 state

comes from the 3d5/2 → 4p3/2 transition and is as high as
86%. The contribution from all other transitions to the 3d5/2

state, noted as “Rest”, is just about 14% and changes slowly
also with the changes in frequency of the magic wavelength.

At the magic wavelength, the total dynamic polarizabilities
of the 4s1/2 and 3d5/2 states are equal, i.e.,

α4s1/2 (ω) − α3d5/2 (ω, cos2 θp) = 0, (11)

in which the total dynamic polarizability of the 4s1/2 state,
α4s1/2 (ω), depends only on ω, since there is no tensor polar-
izability for the state with j � 1/2. According to the data
in Table I and the definitions of the dynamic polarizability,
Eq. (11) can be written as

f4s1/2→4p1/2


E2
4s→4p1/2

− ω2
+ f4s→4p3/2


E2
4s→4p3/2

− ω2
− C

f3d5/2→4p3/2


E2
3d5/2→4p3/2

− ω2

= G(ω, cos2 θp), (12)

where 
Ei→ j is the transition energy from i to j states; fi→ j

is the oscillator strength of the i → j transition; and C can be
simplified as

C = 1 − (3 cos2 θp − 1)
(
12m2

ji − 35
)

80
, (13)

where mji is magnetic quantum number of the 3d5/2 state.
G(ω, cos2 θp) can be written as

G(ω, cos2 θp) = αR
3d5/2

(ω, cos2 θp) − αR
4s1/2

(ω), (14)

where αR
4s1/2

(ω) represents the dynamic polarizability of the
4s1/2 state, excluding the contributions from the 4s1/2 →
4p1/2 and 4s1/2 → 4p3/2 transitions. That is the Rest value
for the 4s1/2 state in Table I. αR

3d5/2
(ω, cos2 θp) represents

the dynamic polarizability of the 3d5/2 state, excluding the
contribution from 3d5/2 → 4p3/2 transition. That is the Rest
value for the 3d5/2 state in Table I. By using the definitions of
polarizability, G(ω, cos2 θp) can also be written as

G(ω, cos2 θp) =
∞∑
n

f3d5/2→nl


E2
3d5/2→nl − ω2

+ 3 cos2 θp − 1

2

∞∑
n

Cn
f3d5/2→nl


E2
3d5/2→nl − ω2

−
∞∑

n=5

f4s1/2→np j


E2
4s1/2→np j

− ω2
, (15)
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TABLE II. Values of parameters Ak and Bk for each of the 4s1/2 → 3d5/2 magnetic sublevel transitions.

Transition A0 B0 A1 B1 A2 B2

4s1/2 → 3d5/2(m = +1/2) 5.8656 1.4073 67.7703 15.9049 922.6884 215.8052
4s1/2 → 3d5/2(m = +3/2) 5.8656 0.3518 67.7703 3.9762 922.6884 53.9513
4s1/2 → 3d5/2(m = +5/2) 5.8656 −1.7591 67.7703 −19.8812 922.6884 −269.7565

where the transitions of 3d5/2 → nl include the 3d5/2 → np3/2(n � 5) and 3d5/2 → n f5/2,7/2(n � 4) transitions. Cn is written as

Cn = (−1) ji+ jn
3m2

ji − ji( ji + 1)

ji(2 ji − 1)

{
1 1 2
ji ji jn

}√
30 ji(2 ji − 1)(2 ji + 1)

( ji + 1)(2 ji + 3)
. (16)

In Eq. (15), because the ω is the frequency of the longest magic wavelength, ω

E3d5/2→nl

and ω

E4s1/2→np j

are less than 1. G(ω, cos2 θp)

can be expanded as

G(ω, cos2 θp) =
∞∑

k=0

[
Ak + 3 cos2 θp − 1

2
Bk

]
ω2k, (17)

in which the Taylor-series expansion is used, and Ak and Bk are written as

Ak =
∞∑
n

f3d5/2→nl


E2+2k
3d5/2→nl

−
∞∑

n=5

f4s1/2→np j


E2+2k
4s1/2→np j

(18)

and

Bk =
∞∑
n

Cn × f3d5/2→nl


E2+2k
3d5/2→nl

. (19)

It can be seen that A0 is the difference in the static polarizabilities of the 4s1/2 and 3d5/2 states, excluding the contributions
of the 4s1/2 → 4p1/2 and 4s1/2 → 4p3/2 transitions to the 4s1/2 state and the 3d5/2 → 4p3/2 transition to the 3d5/2 state. B0 is
the contribution of the static tensor polarizabilities to the static polarizability for each of the 3d5/2 magnetic states, excluding
the contribution of the 3d5/2 → 4p3/2 transition. Table II lists the present calculations of A0, B0, A1, B1, A2, and B2. Ak and Bk

(k � 3) are not given because they contribute less than 10−5 to G(ω, cos2 θp). The present A0, 5.866, agrees with the relativistic
all-order single-double method result 5.928 [24] very well. The difference is about 1%. According to Eq. (12), the oscillator
strength of the 3d5/2 → 4p3/2 transition becomes

f3d5/2→4p3/2 =
(

f4s1/2→4p1/2


E2
4s1/2→4p1/2

− ω2
+ f4s1/2→4p3/2


E2
4s1/2→4p3/2

− ω2
− G(ω, cos2 θp)

)
×


E2
3d5/2→4p3/2

− ω2

C
. (20)

In this equation, the transition energies 
E4s1/2→4p1/2 ,

E4s1/2→4p3/2 , and 
E3d5/2→4p3/2 and the oscillator strengths
f4s1/2→4p1/2 and f4s1/2→4p3/2 have been determined in the other
experiments [15,42]. Therefore, we suggest that the high-
precision measurements of the longest magic wavelength for
the 4s1/2 → 3d5/2 transition can be used to determine the
oscillator strength of the 3d5/2 → 4p3/2 transition.

It should be noted in Eq. (20) that the accuracy of
f3d5/2→4p3/2 determined by measuring the longest magic wave-
length is related to four factors. The first factor is the accu-
racy of the transition energy. The experimental energies (in
hartrees) from the National Institute of Science and Tech-
nology (NIST) are correct to seven significant digits [42].
Therefore, this factor on the accuracy of f3d5/2→4p3/2 can be
ignored. The second factor is the accuracy of f4s1/2→4p1/2 and
f4s1/2→4p3/2 . As far as we know, the most accurate f4s1/2→4p3/2

is 0.682 [42], and the oscillator strength ratio of f4s1/2→4p3/2 :
f4s1/2→4p1/2 is 2.027(5) [15]. We have estimated the uncertainty
of f3d5/2→4p3/2 using these two values. We found that the
uncertainty of f3d5/2→4p3/2 is within 0.6%. The third factor

is the accuracy of frequency ω and angle θp measurement.
We found that the uncertainty of f3d5/2→4p3/2 does not exceed
0.06% when the angle θp has 1 deg of error. And if the
magic wavelengths have 0.01 nm error, it will lead to 0.02%
uncertainty for f3d5/2→4p3/2 . So, this factor is also very small
with regard to the uncertainty of f3d5/2→4p3/2 . The fourth factor
is the accuracy of G(ω, cos2 θp). The value of G(ω, cos2 θp)
is dominated by the first terms A0 and B0, which contribute
more than 98%. Moreover, as mentioned before, the present
A0 and B0 are in good agreement with the calculation of Arora
et al. [24], and the difference is about 1%. Changing the value
of G(ω, cos2 θp) by 5% (over estimated) leads to f3d5/2→4p3/2

changing by 0.3%. Therefore, taking all factors together,
the uncertainty of f3d5/2→4p3/2 determined by measuring the
longest magic wavelength does not exceed 1%.

In the above, only the f3d5/2→4p3/2 is determined by mea-
suring the longest magic wavelength at any one angle for the
4s1/2 → 3d5/2 transition. As shown in Eq. (12), if the three
longest magic wavelengths are measured at three different an-
gles, the f4s→4p1/2 , f4s→4p3/2 , and f3d5/2→4p3/2 will be determined
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simultaneously. We also have estimated the uncertainties of
these three oscillator strengths. The accuracies of f4s→4p1/2 and
f4s→4p3/2 are very sensitive to the accuracy of ω. If the errors of
the magic wavelengths are 0.001 nm, it will lead to 5%, 3%,
and 0.1% uncertainties for f4s→4p1/2 , f4s→4p3/2 , and f3d5/2→4p3/2 ,
respectively. Changing the value of G(ω, cos2 θp) by 5% leads
to f4s→4p1/2 , f4s→4p3/2 , and f3d5/2→4p3/2 changing by 5%. In order
to get high-precision oscillator strengths, the errors of the
magic wavelengths should be smaller than 0.0001 nm and the
uncertainty of G(ω, cos2 θp) should be smaller than 1%.

Combining the oscillator strength f4s→4p3/2 = 0.682 [42],
f4s1/2→4p3/2 : f4s→4p1/2 = 2.027(5) [15], and A1, A2, B1, and
B2 in Table II, as can be seen from Eqs. (12) and (17), the
f3d5/2→4p3/2 , A0, and B0 can also be determined simultaneously
using three magic wavelengths which are measured at three
different angles. By using the uncertainties of f4s→4p1/2 and
f4s1/2→4p3/2 : f4s→4p1/2 , we obtained that the uncertainties of
f3d5/2→4p3/2 , A0, and B0 are 1%. If the errors of the magic
wavelengths are 0.001 nm, the uncertainties of f3d5/2→4p3/2 , A0,
and B0 will be 0.7%, 3.6%, and 9%, respectively. When the
errors of the magic wavelengths are improved to 0.0001 nm,
the uncertainties of f3d5/2→4p3/2 , A0, and B0 will be reduced to
0.1%, 0.4%, and 1%, respectively. That means the accuracies
of A0 and B0 are very sensitive to the accuracy of the magic
wavelength. In order to get the values of A0 and B0 with
a very high degree of precision, the high-precision magic
wavelengths are required.

In principle, if the five longest magic wavelengths can be
measured at five different angles, the five parameters, f4s→4p1/2 ,
f4s→4p3/2 , f3d5/2→4p3/2 , A0, and B0, would be determined si-
multaneously. The uncertainties of these five parameters will
depend on the accuracies of Ak and Bk (k � 1). However,
at present, the accuracies of Ak and Bk (k � 1) cannot be
guaranteed to be smaller than 5%. So, the determination of
these five parameters by using five magic wavelengths is not
a good choice.

B. Magic wavelengths for the 4s1/2 → 3d3/2 transition

Three magic wavelengths are found for each of the 4s1/2 →
3d3/2 magnetic sublevel transitions. Figure 5 shows the de-
pendence of the magic wavelengths for each of the 4s1/2 →
3d3/2 magnetic transitions upon cos2 θp. Similarly, the magic
wavelength near 395.79 nm is insensitive to cos2 θp, while the
longest magic wavelength, which is longer than the 3d3/2 →
4p1/2 transition wavelength 866.21 nm, strongly depends on
cos2 θp.

A similar behavior occurs also for the longest magic
wavelengths of the 4s1/2 → 3d3/2 transition with those of the
4s1/2 → 3d5/2 transition. At the longest magic wavelength,
the oscillator strengths, f3d3/2→4p1/2 and f3d3/2→4p3/2 , satisfy the
following equation:

f4s1/2→4p1/2


E2
4s→4p1/2

− ω2
+ f4s→4p3/2


E2
4s→4p3/2

− ω2
− C1 f3d3/2→4p1/2


E2
3d3/2→4p1/2

− ω2

− C2 f3d3/2→4p3/2


E2
3d3/2→4p3/2

− ω2
= G′(ω, cos2 θp). (21)

FIG. 5. Magic wavelengths of the 4s1/2 → 3d3/2 transition of the
Ca+ ions for linearly polarized light. (a) Magic wavelengths longer
than the 3d3/2 → 4p1/2 transition wavelength (866.21 nm). (b) Magic
wavelengths which lie between the 3d3/2 → 4p3/2 transition wave-
length (849.80 nm) and the 3d3/2 → 4p1/2 transition wavelength
(866.21 nm). (c) Magic wavelengths which lie between the 4s1/2 →
4p1/2 transition wavelength (393.37 nm) and the 4s1/2 → 4p3/2

transition wavelength (396.85 nm).

G′(ω, cos2 θp) is defined as

G′(ω, cos2 θp) = αR
3d3/2

(ω, cos2 θp) − αR
4s1/2

(ω), (22)

where αR
3d3/2

(ω, cos2 θp) is the dynamic polarizability of the
3d3/2 state, excluding the contributions from the 3d3/2 →
4p1/2 and 3d3/2 → 4p3/2 transitions. C1 and C2 can be written
as

C1 = 1 + 3 cos2 θp − 1

2

(
5

4
− m2

ji

)
(23)

and

C2 = 1 + 3 cos2 θp − 1

2

(
4

5
m2

ji − 1

)
, (24)

where mji is magnetic quantum number of the 3d3/2 state.
G′(ω, cos2 θp) can also be simplified by using Taylor-series
expansion. The expanded form is similar to Eqs. (17)–(19),
except that the 3d5/2 state is replaced by the 3d3/2 state.

Table III lists the values of A0, B0, A1, B1, A2, and B2

for the 4s1/2 → 3d3/2 m = 1/2, 3/2 transitions, respectively.

TABLE III. Values of parameters Ak and Bk (k = 0, 1, 2) for each
of the 4s1/2 → 3d3/2 magnetic sublevel transitions. m is the magnetic
quantum number of the 3d3/2 state.

4s1/2 → 3d3/2

m = 1/2 m = 3/2

A0 5.8321 5.8321
B0 1.2233 −1.2233
A1 67.1954 67.1954
B1 13.7798 −13.7798
A2 912.4437 912.4437
B2 186.3584 −186.3584
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Since the transition energies 
E4s1/2→4p1/2 , 
E4s1/2→4p3/2 ,

E3d3/2→4p1/2 , and 
E3d3/2→4p3/2 and the oscillator strengths
f4s1/2→4p1/2 and f4s1/2→4p3/2 are known (as mentioned before),
using Eq. (21) the oscillator strengths for the 3d3/2 → 4p1/2

and 3d3/2 → 4p3/2 transitions can be determined by measure-
ment of the two longest magic wavelengths of the 4s1/2 →
3d3/2 transition at two different angles.

It should be noted that the uncertainties of f3d3/2→4p1/2

and f3d3/2→4p3/2 , determined by measurement of the magic
wavelength, depend on the accuracies of f4s1/2→4p1/2 ,
f4s1/2→4p3/2 , ω, and G′(ω, cos2 θp). We found that the accu-
racies of f3d3/2→4p1/2 and f3d3/2→4p3/2 are identical with the
accuracies of f4s1/2→4p1/2 and f4s1/2→4p3/2 . The uncertainties
of f3d3/2→4p1/2 and f3d3/2→4p3/2 are smaller than 1% when the
value of G′(ω, cos2 θp) has 5% uncertainty. If the magic wave-
lengths have 0.001 nm errors, the uncertainties of f3d3/2→4p1/2

and f3d3/2→4p3/2 will be 0.01% and 0.08%. Therefore, we sug-
gest that the measurement of the longest magic wavelengths
for the 4s1/2 → 3d3/2 transition at any two angles can be used
to determine f3d3/2→4p1/2 and f3d3/2→4p3/2 , and the uncertainties
of f3d3/2→4p1/2 and f3d3/2→4p3/2 are smaller than 2%.

IV. CONCLUSIONS

The dynamic polarizabilities of the 4s1/2 and 3d j states
of the Ca+ ions are calculated. The magic wavelengths for
the 4s1/2 → 3d3/2,5/2 transitions are identified for êz ⊥ ε̂ and
êz ‖ ε̂ in the case of linearly polarized light (cos θk = 0 or
A = 0). The dependence of the magic wavelengths upon
cos2 θp is analyzed. It is found that the magic wavelength near
395.79 nm is insensitive to the angle between the quantization
axis êz and the polarization vector ε̂. In contrast, the longest
magic wavelength which is longer than the 3d5/2 → 4p3/2

transition wavelength (854.21 nm) is very sensitive to cos2θp.

We suggest that accurate measurements on the longest
magic wavelengths for the 4s1/2 → 3d5/2 transition can be
used to determine the oscillator strength of the 3d5/2 → 4p3/2

transition and the uncertainty will be smaller than 1%. If the
three longest magic wavelengths are measured with errors
smaller than 0.0001 nm, oscillator strengths of the 4s1/2 →
4p1/2 and 4s1/2 → 4p3/2 transitions will be determined with a
very high accuracy.

Combining the oscillator strength f4s→4p3/2 = 0.682 [42]
and f4s1/2→4p3/2 : f4s→4p1/2 = 2.027(5) [15], the difference in
the static polarizabilities for the 4s1/2 and 3d5/2 states can
also be determined simultaneously by using the three longest
magic wavelengths for the 4s1/2 → 3d5/2 transition, which are
measured at three different angles. The difference in the static
polarizabilities for 4s1/2 and 3d5/2 is very important for the
estimation of blackbody radiation shift of the Ca+ ion clock.

The measurement of the longest magic wavelengths for
the 4s1/2 → 3d3/2 transition at any two angles can be used
to determine f3d3/2→4p1/2 and f3d3/2→4p3/2 , and the uncertainties
of f3d3/2→4p1/2 and f3d3/2→4p3/2 will be smaller than 2%.

The present suggestion of using the measurements of the
longest angle-dependent magic wavelengths to determine os-
cillator strengths and other atomic parameters for Ca+ can
also be applied to Be+, Mg+, Sr+, Ba+ ions and some neutral
alkali-metal atoms.
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