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Polar diatomic molecules that have, or are expected to have, a 2�1/2-ground state are studied systematically
with respect to simultaneous violation of parity P and time-reversal T with numerical methods and analytical
models. Enhancements of P, T -violating effects due to an electric dipole moment of the electron (eEDM) and
P, T -odd scalar-pseudoscalar nucleon-electron current interactions are analyzed by comparing trends within
columns and rows of the periodic table of the elements. For this purpose electronic structure parameters are
calculated numerically within a quasirelativistic zeroth order regular approximation (ZORA) approach in the
framework of complex generalized Hartree-Fock (cGHF) or Kohn-Sham (cGKS). Scaling relations known from
analytic relativistic atomic structure theory are compared to these numerical results. Based on this analysis,
problems of commonly used relativistic enhancement factors are discussed. Furthermore, the ratio between
both P, T -odd electronic structure parameters mentioned above is analyzed for various groups of the periodic
table. From this analysis an analytic measure for the disentanglement of the two P, T -odd electronic structure
parameters with multiple experiments in dependence of electronic structure enhancement factors is derived.
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I. INTRODUCTION

Simultaneous violation of space (P) and time (T ) parity in
the charged lepton sector is considered to be a strong indicator
for physics beyond the standard model of particle physics [1].
Exploiting enhancement effects in bound systems, such as
atoms or molecules, low-energy experiments actually provide
the best limits on P, T violation in this sector and thus are
among the most useful tools to exclude new physical theories
and to test the standard model [2,3].

Understanding these atomic and molecular enhancement
effects in detail is essential for the development of experi-
ments sensitive to P, T violation.

A permanent atomic or molecular electric dipole mo-
ment (EDM) that causes a linear Stark shift in the limit
of zero external fields would violate P, T [3]. Mainly four
sources of a permanent EDM are commonly considered for
molecules: permanent electric dipole moments of the nuclei,
P, T -odd nucleon-nucleon current interactions, a permanent
electric dipole moment of the electron (eEDM), and P, T -
odd nucleon-electron current interactions (see, e.g., [4]). Of
these sources the latter two have the most important contribu-
tion in paramagnetic systems [4]. Furthermore, in open-shell
molecules nucleon-electron interactions are expected to be
dominated by scalar-pseudoscalar interactions that are nuclear
spin independent.

Since the formulation of an eEDM interaction Hamiltonian
for atoms by Salpeter in the year 1958 [5], there have been
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many studies on eEDM enhancement in atoms and molecules.
Sandars worked out analytical relations of atomic eEDM
interactions in the 1960s [6–9], which were confirmed also by
others [10,11]. Sandars calculated that the enhancement of the
eEDM in atoms scales with α2Z3, where α is the fine-structure
constant and Z is the nuclear charge number. Enhancements
of scalar-pseudoscalar nucleon-electron current interactions in
atoms scale as αZ3 [12]. Since then, a number of numerical
studies was conducted, but most of the previous investigations
focused on the description of P, T -odd effects in individual or
few molecular candidates.

Some attempts were made to obtain a deeper understanding
of enhancement of P, T -odd effects in molecules beyond es-
tablished Z-dependent scaling laws: In Ref. [13], for instance,
the influence of the nuclear charge number of the electronega-
tive partner on eEDM enhancements in mercury monohalides
was studied. Furthermore, effects of the polarization of the
molecule by the electronegative partner on the eEDM en-
hancement are discussed. In Ref. [13] it was concluded that
the nuclear charge of the lighter halogen atom influences the
eEDM enhancement less than its electronegativity.

Recently Sunaga et al. studied large eEDM enhancement
effects in hydrides within orbital interaction theory and re-
marked an influence of the energy difference between the
interacting valence orbitals of the electronegative atom and
the unoccupied p1/2 orbital of the heavy atom [14]. Both of
the mentioned studies confirmed that large contributions of s-
and p-type atomic orbitals in the singly occupied molecular
orbital increase P, T -odd effects, as predicted in Ref. [12]. A
similar result was obtained by Ravaine et al. in 2005 [15], who
showed that the covalent character of HI+ causes a stronger
s-p mixing and therefore a larger enhancement of the eEDM
than in ionically bound HBr+.
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The majority of previous studies on P, T -violating effects
in molecules were performed within a four-component (rela-
tivistic) framework. Our recently developed two-component
(quasirelativistic) approach for the calculation of P, T -odd
effects [16] allows for routine calculations of a large number
of molecules on an ab initio level. In this paper we study di-
atomic radicals systematically across the periodic table, which
are known to have a 2�1/2-ground state, or for which at least
a 2�1/2-ground state is naively expected from simple chem-
ical bonding concepts. In combination with analytic scaling
relations, we calculate the Z-dependent and Z-independent
electronic structure effects in different groups of the periodic
table. Furthermore, we gauge the “chemical” influences on
the P, T -odd enhancement particularly using an analysis of
isolobal diatomic molecules, i.e., changes in the enhancement
throughout the columns of the periodic table.

Herewith, we provide a consistent overview of P, T -odd
effects in a large number of diatomic molecules, which may
serve as a suitable starting point for further research with
higher-level electronic structure methods, where needed. By
analyzing general trends of the ratio between molecular en-
hancement factors of the eEDM and nucleon-electron current
interactions, we draw conclusions on their possible disen-
tanglement in experiments with polar diatomic radicals that
feature a 2�1/2-ground state.

II. THEORY

In this section we shortly introduce the employed Hamil-
tonians used for calculations of P, T -odd effects in diatomic
molecules in order to clarify their limitations. Additionally,
we give an overview of relativistic enhancement effects in
the herein studied properties, which are important for the
following discussions. Finally, we present neglected many-
electron and magnetic effects that may significantly influence
the performed studies of P, T -odd effects in molecules with-
out heavy elements.

A. P,T -odd spin-rotational Hamiltonian

We present herein electronic structure calculations for
polar diatomic molecules that are expected to have a 2�1/2-
ground state. For these systems an effective spin-rotational
Hamiltonian can be derived that in particular describes a
transition of Hund’s coupling case (c) to case (b) [17–19].
This corresponds to cases where the rotational constant is
much smaller than the spin-doubling constant but much larger
than the �-doubling constant (for details see Ref. [20]). The
P, T -odd part of this effective spin-rotational Hamiltonian
reads (see, e.g., Refs. [20,21])

Hsr = (ksWs + deWd)� = Wd(ksWs/Wd + de)�, (1)

where � = �Je · �λ is the projection of the reduced total elec-
tronic angular momentum�Je on the molecular axis, defined by
the unit vector �λ pointing from the heavy to the light nucleus.
ks is the P, T -odd scalar-pseudoscalar nucleon-electron cur-
rent interaction constant and de is the eEDM. The P, T -odd

electronic structure parameters are defined by

Ws = 〈� | Ĥs | �〉
ks�

, (2a)

Wd = 〈� | Ĥd | �〉
de�

, (2b)

where � is the electronic wave function and the molecular
P, T -odd Hamiltonians are [3,5]

Ĥs = ıks
GF√

2

Nelec∑
i=1

Nnuc∑
A=1

ρA(�ri )ZAγ0γ5, (3)

Ĥd = −de

Nelec∑
i=1

(γ0 − 12×2)�� · �E (�ri ). (4)

In this equation Ĥd refers to Ĥd,I, obtained according to
stratagem I by commuting the unperturbed Dirac-Coulomb
Hamiltonian with a modified momentum operator as reported
in Ref. [22]. In the following the index I is only used, when we
compare to other forms of the Hamiltonian. If no additional
index (I, II, or other) is used we refer always to Ĥd,I. Here
the sums run over all Nelec electrons and all Nnuc nuclei, ρA is
the normalized nuclear density distribution of nucleus A with
charge number ZA, �ri is the position vector of electron i, �E
is the internal electrical field, GF = 2.22249 × 10−14 Eha3

0 is
Fermi’s weak coupling constant, ı = √−1 is the imaginary
unit, and the Dirac matrices in standard notation are defined
as (k = 1, 2, 3)

γ0 =
(

12×2 02×2

02×2 −12×2

)
, γk =

(
02×2 σk

−σk 02×2

)
,

(5)

γ5 =
(

02×2 12×2

12×2 02×2

)
, �k =

(
σk 02×2

02×2 σk

)
,

with the vector of the Pauli spin matrices �σ. For better read-
ability we have dropped all electron indices on Dirac and Pauli
matrices as these are in the present discussion only referred to
as the electron with index i.

In this work the electronic structure parameters were cal-
culated, using the corresponding quasirelativistic Hamiltoni-
ans within the zeroth order regular approximation (ZORA)
[16,23,24]

ĤZORA
s = ı

Nelec∑
i=1

Nnuc∑
A=1

ZA[ρA(�ri)ω̃s(�ri ),�σ · �̂pi]−, (6)

ĤZORA
d =

Nelec∑
i=1

(�σ · �̂pi )ω̃d(�ri )�σ · �E (�ri )(�σ · �̂pi ), (7)

where �̂p is the linear momentum operator, [A, B]− = AB − BA
is the commutator, and the modified ZORA factors are defined
as

ω̃s(�ri) = GFksc√
2[2mec2 − Ṽ (�ri)]

, (8)

ω̃d(�ri) = 2dec2

[2mec2 − Ṽ (�ri)]2
, (9)
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with the model potential Ṽ introduced by van Wüllen [25],
which is used to alleviate the gauge dependence of ZORA.
Here c is the speed of light in vacuum and me is the mass of
the electron. The internal electrical field can be approximated
as the field of the nuclei [16,22]:

�E (�ri) ≈
Nnuc∑
A=1

kesZAe
�ri −�rA

|�ri −�rA|3 , (10)

with e being the elementary charge and the constant kes being
(4πε0)−1 in SI units with the electric constant ε0.

For heavy elements, however, finite size effects of the
nucleus can play a crucial role for the description of the
internal electric field. The internal electrical field generated
by a Gaussian shaped nucleus is described by

�E (�ri ) ≈
Nnuc∑
A=1

kesZAe

|�ri −�rA|2
[

erf (
√

ζA|�ri −�rA|)
|�ri −�rA|

−2

(
ζA

π

)1/2

exp(−ζA|�ri −�rA|2)

]
(�ri −�rA), (11)

where ζA = 3
2r2

nuc,A
and the root mean square radius rnuc,A of

nucleus A was used as suggested by Visscher and Dyall [26].
An alternative expression for the eEDM interaction Hamil-

tonian, including two-electron interactions implicitly, denoted
as stratagem II in Ref. [22], can be derived [27]:

Ĥd,II = 2ıcde

h̄e

Nelec∑
i=1

γ0γ5�̂p2
i . (12)

In this form of the eEDM-Hamiltonian effects due to the finite
size of the nuclei are considered implicitly, if the wave func-
tion of electrons moving in the potential of a finite nucleus
is employed. The corresponding ZORA-Hamiltonian is given
by [16]

ĤZORA
d,II =

Nelec∑
i=1

[
ı�̂p2

i ωd,II(�ri)(�σ · �̂pi ) − ı(�σ · �̂pi )ωd,II(�ri )�̂p
2
i

]
,

(13)

where the modified ZORA factor is defined as

ωd,II(�ri ) = 2dec2

2eh̄mec2 − eh̄Ṽ (�ri)
. (14)

Furthermore, the total angular momentum projection was
calculated explicitly by

� =
(

〈�ZORA |
∑

i

�̂�i | �ZORA〉

+ 1

2
〈�ZORA |

∑
i

�σ i | �ZORA〉
)

· �λ, (15)

where �̂�i is the reduced orbital angular momentum operator
for electron i and �ZORA is the ZORA multielectron wave
function.

B. Scaling relations of P,T -odd properties

Within the relativistic Fermi-Segrè model for electronic
wave functions [28] the matrix elements of the P, T -odd
operators can be obtained analytically for atomic systems
[12,29]. The results for the P, T -odd nucleon-electron cur-
rent interactions can be expressed in terms of a relativistic
enhancement factor

R(Z, A) = 4

2(2γ + 1)
(2Zrnuc/a0)2γ−2, (16)

where (z) is the gamma function, Z and A are the nuclear
charge and mass numbers, respectively, rnuc ≈ 1.2 fm A1/3 is
the nuclear radius, a0 is the Bohr radius, and

γ =
√(

j + 1

2

)2

− (αZ )2, (17)

with the fine structure constant α ≈ 1
137 and the total elec-

tronic angular momentum quantum number j.
In terms of the relativistic enhancement the parameters

of the P, T -odd spin-rotational Hamiltonian can now be
estimated to behave as (see Ref. [12] for Ws and Refs. [11,30]
for Wd)

Ws ≈ − GF

2π
√

2a3
0

R(Z, A)γ︸ ︷︷ ︸
Rs (Z,A)

Z3ακ, (18)

Wd ≈ − 4Eh

3e a0

3

γ (4γ 2 − 1)︸ ︷︷ ︸
Rd,CS(Z )

Z3α2
κ, (19)

where κ is a constant that depends on the effective electronic
structure of the system under study. In relation (19) the label
CS indicates that the factor was derived by Sandars [7] from a
method by Casimir.

We note in passing that the relativistic enhancement factor
of the eEDM induced permanent atomic EDM Rd,CS(Z ) is the
same as the one for hyperfine interactions published first by
Racah in 1931 [31]: Rd,CS(Z ) = Rhf,R(Z ). The denominator in

relation (19) has two roots: one at Z =
√

j2+ j
α

and one at Z =
1
2 + j
α

. Thus the relativistic enhancement factor causes problems

not only for Z > 137 but diverges at Z =
√

3
2α

≈ 118.65 for
2�1/2 states (see Fig. 1). This was also found by Dinh et al.
in a study of hyperfine interactions in super heavy atoms [32].
These findings imply that relation (19) is of limited use to
estimate Wd for elements with Z > 100.

An alternative relativistic enhancement factor for hyper-
fine interactions was found empirically by Fermi and Segrè
[28,33], who interpolated numerically calculated data by
Racah and Breit [31,34]:

Rhf,FS(Z ) = 1

γ 4
, (20)

where the label FS was introduced referring to Fermi and
Segrè. Rhf,FS(Z ) has no singularities for Z < 137, and there-
fore no severe problems in the description of elements up to
Z � 118 are expected. Furthermore, Eq. (20) can also be ap-
plied to estimate the eEDM enhancement, because the atomic
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FIG. 1. Comparison of relativistic enhancement factors for
eEDM induced permanent EDMs of atoms. Factor by Sandars de-
rived analytically with Casimirs method (CS) and empirical factor
for hyperfine interaction found by Fermi and Segrè (FS). Plots are
shown for the case of j = 1

2 as in 2�1/2 states.

integrals relevant for the hyperfine structure and eEDM en-
hancement do not differ significantly within the Fermi-Segrè
model and result in similar enhancement factors differing only
by a factor of αZ (see also above and [7]):

Rhf(Z ) ∼
∫

dr r−2g0(r) f0(r), (21a)

Rd(Z ) ∼
∫

dr r−2 f1(r) f0(r), (21b)

where g� and f� are the upper and lower component of the
Dirac bispinor for a specific orbital angular quantum number
�, respectively. As g0(r)αZ ≈ f1(r) + corrections, for hydro-
genlike atoms, the integrals in Eqs. (21a) and (21b) are in a
first approximation identical up to a factor of αZ . Thus the
empirical factor (20) can be employed for our purposes (see
also Fig. 1).

An improved relativistic enhancement factor for the P, T -
odd nucleon-electron current interaction parameter Ws was
calculated with an analytical atomic model in [35]

Ws ≈ − GF

2π
√

2a3
0

Z3αR(Z, A) f (Z )
γ + 1

2
κ, (22)

with the Z-dependent function

f (Z ) = 1 − 0.56α2Z2

(1 − 0.283α2Z2)2
, (23)

which results from a polynomial expansion of the atomic
wave functions (see the Appendix of Ref. [35] for details).1

In Refs. [23,35] the eEDM enhancement parameter Wd was
estimated from Ws by use of a relativistic enhancement factor
for the ratio Wd/Ws derived from Eqs. (22) and (19):

R̃CS(Z, A) = 6

γ (4γ 2 − 1)(γ + 1) f (Z )R(Z, A)
. (24)

In combination with summarized conversion factors and con-
stant prefactors of Ws and Wd:

cconv = 8
√

2πα

3 GF e
Eha2

0

, (25)

an estimate for Wd is received from Ws via

Wd ≈ cconvR̃CS(Z, A)Ws. (26)

When relation (20) is used instead of (19), one obtains an
alternative relativistic enhancement factor, which is expected
to be more accurate for atoms with a high Z:

R̃FS(Z, A) = 2

γ 4(γ + 1)R(Z, A) f (Z )
. (27)

For comparison, instead of the improved relativistic factor for
Ws [Eq. 22] relation (18) can be used to receive relativistic
enhancement factors:

˜̃RCS(Z, A) = 3

γ 2(4γ 2 − 1)R(Z, A)
, (28a)

˜̃RFS(Z, A) = 1

γ 5R(Z, A)
. (28b)

In the following discussion we will show that Eqs. (20)
and (27) indeed agree much better with numerical calcula-
tions for Z > 100 than Eqs. (19) and (24), while there is no
appreciable difference for molecules with lighter atoms.

C. Neglected many-electron effects in light molecules

In the approximation of the nuclear internal field [Eq. (10)]
all P, T -odd operators shown in Sec. II A are one-electron
operators. Their expectation values scale with the nuclear
charge number as Z3. Thus these contributions are dominant
in high-Z molecules. However, in light molecules many-
electron effects with lower Z dependence stemming from
the Hartree-Fock picture or the Breit interaction can have an
important contribution to the enhancement factors, which we
want to outline here for completeness, as our results reported
for light molecules may be affected by this.

In the following we focus first on additional contributions
in the Dirac-Hartree-Fock (DHF) picture that arise from the
ZORA transformation. The DHF equation without magnetic
fields and with perturbations (4) and (3) reads

(
V̂0(�r)12×2 − K̂φφ − εi12×2 c�σ · �̂p − K̂φχ + ıks

GF√
2
ρnuc(�r)12×2

c�σ · �̂p − K̂χφ − ıks
GF√

2
ρnuc(�r)12×2 [V̂0(�r) − 2mec2]12×2 − K̂χχ − εi12×2 + 2de�σ · �E (�r)

)(
φi

χi

)
=

(
0
0

)
, (29)

1The explicit numerical factors in f (Z ) were printed partially wrong in Ref. [35], which was mentioned in Ref. [23].
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where φi and χi are the upper and lower components of
the Dirac bispinor of orbital i, respectively, and εi is its
orbital energy. The nuclear charge density is summarized
as ρnuc(�r) = ∑Nnuc

A=1 ZAρA(�r) and V̂0(�r) = V̂ext(�r) + V̂nuc(�r) +
Ĵφφ (�r) + Ĵχχ (�r) is the potential energy operator appearing on
the diagonal, where V̂ext and V̂nuc are the external and nuclear
potential energy operators, respectively. Ĵφφ and Ĵχχ are the
direct parts and K̂φφ , K̂φχ , K̂χφ , K̂χχ are the exchange parts
that emerge from the two-electron Coulomb operator in DHF
theory.

Whereas the direct Dirac-Coulomb contributions Ĵφφ and
Ĵχχ are local and appear on the diagonal, the exchange contri-
butions are nonlocal and nondiagonal

K̂ =
(

K̂φφ K̂φχ

K̂χφ K̂χχ

)
. (30)

Thus when deriving an approximate relation between φ and
χ , as when transforming into the ZORA picture, the exchange
terms can result in additional contributions to the P, T -odd
enhancement.

We start our discussion with the scalar-pseudoscalar
nucleon-electron current interaction Hamiltonian. The ef-
fective one-electron ZORA-Hamiltonian with this nucleon-
electron current perturbation appears as

ĥZORA-HF
0 + ĥZORA-HF

s

=
(
�σ · �̂p − 1

c
K̂φχ + ıks

GF

c
√

2
ρnuc12×2

)
ω

×
(
�σ · �̂p − 1

c
K̂χφ − ıks

GF

c
√

2
ρnuc12×2

)
, (31)

where ĥZORA-HF
0 = (�σ · �̂p − 1

c K̂φχ )ω(�σ · �̂p − 1
c K̂χφ ) is the un-

perturbed ZORA-Hamiltonian in the HF approximation and
ω = c2

2mec2−Ṽ
is the ZORA factor with the model potential Ṽ .

This results in additional correction terms to (6) stemming
from the many-electron mean-field picture (only terms to first
order in GF are shown):

�ĥZORA-HF
s = 1

c
ρnucω̃sK̂χφ − 1

c
K̂φχ ω̃sρnuc. (32)

ω̃s and the exchange operators K̂φχ , K̂χφ are O(α), that is
of order α, and therefore these correction terms are O(α3),
whereas the Hamiltonian defined in Eq. (3) is of first order
in α.

We now focus on the eEDM interaction Hamiltonian. The
ZORA transformation of the DHF operator using our method
from [16] yields

ĥZORA-HF
d =

(
�σ · �̂p − 1

c
K̂φχ

)
(ω̃d�σ · �E )

(
�σ · �̂p − 1

c
K̂χφ

)
.

(33)

Thus many-electron mean-field correction terms to (7) are
received as

�ĥZORA-HF
d = − 1

c
K̂φχ ω̃d�σ · �E�σ · �̂p − 1

c
�σ · �̂pω̃d�σ · �EK̂χφ

+ 1

c2
K̂φχ ω̃d�σ · �EK̂χφ. (34)

The terms are sorted by their order in α. The first two terms are
O(α4) and the last term is O(α6) and thus is suppressed. The
first two terms are suppressed by a factor α2 in comparison
to the operator of Eq. (7). This is why the correction terms of
Eqs. (32) and (34) have been neglected in the present study
even when HF is used. For light elements, however, such
terms can become more important, as has been shown, e.g.,
in Ref. [36].

In a density functional theory (DFT) picture none of the
above terms �ĥZORA-HF

d , �ĥZORA-HF
s arises if conventional

nonrelativistic density functionals are used. Thus we would
expect a larger deviation of HF-ZORA from DHF calcu-
lations than of Kohn-Sham (KS)-ZORA from Dirac-Kohn-
Sham (DKS) calculations. However, if hybrid functionals are
used as in our present paper, Fock exchange is considered
explicitly and inclusion of the correction terms mentioned
above may become necessary for light elements.

If the above discussed exchange terms become important,
terms of comparatively low order in α, which have been
neglected so far, may become important as well. These include
the two-electron part of the internal electrical field

−
Nelec∑
i< j

kese
(
γ0

i − 12×2i

)
��i · �ri −�r j

|�ri −�r j |3 12×2 j . (35)

However, if the alternative effective one-electron form of the
operator [Eq. (12)] is used, the two-electron contributions
from the electric field can be included implicitly within a
mean-field approach [27]. Our previous calculations [16] have
shown that these effects are negligible. In our present study the
effects for light molecules are below 5% and for super heavy
elements below 1%, as can be seen in Sec. IV A, and are thus
not important for the present discussion.

Another term of comparatively low order in α is the Breit
contribution to the interaction with an eEDM, which was
discussed in Ref. [22].

Additional corrections appear from the ZORA transforma-
tion, when the Breit interaction is considered, which appears
as well on the off-diagonal elements of the Hamiltonian (see,
e.g., [36]). These Breit interaction corrections appear for Ĥs

as well.
For a more accurate calculation of the eEDM enhancement

other magnetic terms O(α2), which were neglected in the
deviation in our previous paper [16], can play an important
role as well and should be considered (see, e.g., [22]).

Beside the magnetic contributions, which stem from the
interaction of the eEDM with the internal magnetic field [5],
second order terms arising from hyperfine corrections to the
wave function have to be considered. As the operators Ĥd,I

and Ĥd,II arise from a transformation of the Dirac-Coulomb
Hamiltonian, magnetic terms emerging from this transfor-
mation would have to be considered as well (for a detailed
discussion see, e.g., [22]).

Furthermore, additional magnetic contributions arise from
the ZORA transformation due to the vector potential appear-
ing on the off-diagonal elements of the Hamiltonian matrix.

Regarding many-body effects of the operator itself, things
would become more complicated in a DFT picture, where
only one-electron operators are well defined. Whereas the
direct contribution could be calculated analogously to HF, a

032509-5



GAUL, MARQUARDT, ISAEV, AND BERGER PHYSICAL REVIEW A 99, 032509 (2019)

correction term to the exchange-correlation potential would
appear and special exchange-correlation energy functionals
would have to be designed. In case of hybrid DFT, addition-
ally Fock exchange contributions would have to be computed.
Herein, however, an inclusion of such correction terms is not
attempted.

In our present calculations all these many-electron oper-
ators are neglected. In principle, this could cause a devi-
ation from comparable four-component calculations, which
becomes in relative terms more pronounced in light molecules
than in high-Z molecules and is expected to originate mainly
from the terms (32) and (34). But these are still expected to be
small.

This concludes our general discussion of many-electron
effects in light molecules and we will present in the following
the computational details of our numerical studies.

III. COMPUTATIONAL DETAILS

Quasirelativistic two-component calculations are per-
formed within ZORA at the level of complex generalized
Hartree-Fock (cGHF) or Kohn-Sham (cGKS) with a modi-
fied version [16,37–40] of the quantum chemistry program
package Turbomole [41]. In order to calculate the P, T -odd
properties, the program was extended with the corresponding
ZORA Hamiltonians (see [16] for details on the implementa-
tion).

For Kohn-Sham (KS)-density functional theory (DFT) cal-
culations the hybrid Becke three parameter exchange func-
tional and Lee, Yang, and Parr correlation functional (B3LYP)
[42–45] was employed. In comparison to relativistic coupled
cluster calculations this functional performed well for the
description of P, T -odd effects in diatomic radicals in our
previous work, which motivates the present choice [16].

For all calculations a basis set of 37 s, 34 p, 14 d , and
9 f uncontracted Gaussian functions with the exponential
coefficients αi composed as an even-tempered series by αi =
abN−i; i = 1, . . . , N , with b = 2 for s and p function and with
b = (5/2)1/25 × 102/5 ≈ 2.6 for d and f functions was used
for the electropositive atom (for details see the Supplemental
Material [46]).2 This basis set has proven successful in cal-
culations of nuclear-spin dependent P-violating interactions
and P, T -odd effects induced by an eEDM in heavy polar di-
atomic molecules [16,23,39,47]. The N, F, and O atoms were
represented with a decontracted atomic natural orbital (ANO)
basis set of triple-ζ quality [48] and for H the s, p subset
of a decontracted correlation-consistent basis of quadruple-ζ
quality [49] was used.

The ZORA-model potential Ṽ (�r) was employed with addi-
tional damping [50] as proposed by van Wüllen [25].

The model potential of O g, the element with highest Z
of all known elements [51], was renormalized to the nuclear
charge number of E120 and E121. These renormalized model

2For the calculation of row 8 compounds the basis set was aug-
mented with more diffuse functions and a set of g functions. How-
ever, these showed no remarkable influence on P, T -odd properties
and thus the results for the same basis set as for the other elements
are presented.

potentials were employed in all calculations of molecules
containing E120 and E121, respectively.

For calculations of two-component wave functions and
properties a finite nucleus was used, described by a normal-
ized spherical Gaussian nuclear density distribution ρA(�r) =
ζ

3/2
A

π3/2 e−ζA|�r−�rA|2 . The mass numbers A were chosen as nearest
integer to the standard relative atomic mass, i.e., 11B, 24Mg,
27Al, 40Ca, 45Sc, 48Ti, 65Zn, 70Ga, 88Sr, 90Y, 91Zr, 112Cd,
115In, 137Ba, 139La, 140Ce, 173Yb, 175Lu, 178Hf, 201Hg, 204Tl,
226Ra, 227Ac, 232Th, 259No, 260Lr, 261Rf, 284Cn; for E120
(unbinilium, Ubn, eka-actinium) and E121 (unbiunium, Ubu,
eka-radium) the mass number was calculated by 2.5Z , result-
ing in 300 and 303, respectively.

The nuclear equilibrium distances were obtained at the
levels of GHF-ZORA and GKS-ZORA/B3LYP, respectively.
As convergence criteria an energy change of less than 10−5 Eh

was used. For DFT calculations of analytic energy gradients
with respect to the displacement of the nuclei the nuclei were
approximated as point charges. The equilibrium distances
obtained are given in the Results section.

IV. RESULTS AND DISCUSSION

A. Numerical calculation of P,T -violating properties

In this section the study of quite a number of diatomic
molecules with 2�1/2-ground state or for which at least a
2�1/2-ground state can be expected, is presented. The set
of molecules includes group 2 monofluorides (Mg–E120)F,
group 3 mono-oxides (Sc–E121)O, group 4 mononitrides (Ti–
Rf)N, group 12 monohydrides (Zn–Cn)H, group 13 mono-
oxides (B–Tl)O, and the mononitrides (Ce–Th)N, monofluo-
rides (Yb–No)F, and mono-oxides (Lu–Lr)O of some f -block
groups, respectively.

The numerically calculated values of symmetry violating
properties are presented for the listed molecules together with
deviations between the methods cGHF and cGKS/B3LYP in
Table I. The calculated equilibrium bond length re and numer-
ical values of the reduced total electronic angular momentum
projection quantum number � are shown as well.

The equilibrium bond lengths and values of � determined
with GHF and GKS are typically in reasonable agreement.
Large deviations in the bond length of about 0.1 a0 are
observed for LaO, YbF, and group 13 oxides excluding BO,
indicating a more complicated electronic structure. Nearly all
values of � are approximately equal to ± 1

2 . Furthermore,
in nearly all cases the reduced orbital angular momentum
projection was � ≈ 0 and thus there appears no significant
contamination by � states. Exceptions are CnH and RfN as
well as TiN, which show large electron correlation effects
(as gauged by the difference GHF-GKS) and seem to have a
complicated electronic structure that requires more advanced
electronic structure methods for a reliable description.

In the case of CnH the angular momentum projection
quantum number was � = 0.5, but some admixture of higher
angular momentum states was found (� ≈ 0.14). However,
in the case of RfN and TiN � ≈ 0 is valid and there was no
significant admixture of � contributions.

Especially in the case of RfN the methods employed herein
are not able to give reliable results, indicated by enormous
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TABLE I. Diatomic constants and P, T -violating properties of diatomic molecules calculated ab initio within a quasirelativistic two-
component ZORA approach at the cGHF and cGKS/B3LYP level. Dev. refers to the relative deviation |WcGHF−WcGKS

WcGHF
| between cGHF and cGKS

results.

re/a0 �a Ws
1

h Hz Wd
e cm

1024 h Hz

Molecule Z cGHF cGKS cGHF cGKS cGHF cGKS Dev. cGHF cGKS Dev.

group 2 fluorides
MgF 12 3:28 3:33 0.500 0.500 −5.93 × 101 −6.48 × 101 9% −4.66 × 10−2 −5.22 × 10−2 12%
CaF 20 3.74 3.68 0.500 0.500 −2.19 × 102 −2.09 × 102 5% −1.47 × 10−1 −1.40 × 10−1 4%
SrF 38 3.98 3.94 −0.500 0.500 −2.01 × 103 −1.94 × 103 4% −1.05 −1.01 3%
BaF 56 4.16 4.11 0.500 0.500 −8.67 × 103 −7.58 × 103 13% −3.32 −2.90 12%
RaF 88 4.30 4.26 −0.500 −0.500 −1.52 × 105 −1.36 × 105 10% −2.80 × 101 −2.51 × 101 10%
E120F 120 4.37 4.36 0.500 0.499 −3.98 × 106 −3.45 × 106 13% −3.49 × 102 −3.02 × 102 14%

group 3 oxides

ScO 21 3.15 3.14 0.500 0.500 −3.65 × 102 −2.83 × 102 22% −2.42 × 10−1 −1.87 × 10−1 23%
YO 39 3.37 3.39 0.500 0.500 −3.04 × 103 −2.54 × 103 17% −1.58 −1.32 17%
LaO 57 3.60 3.46 0.500 0.500 −1.30 × 104 −1.01 × 104 22% −4.82 −3.76 22%
AcO 89 3.64 3.67 0.500 −0.500 −2.42 × 105 −1.94 × 105 20% −4.34 × 101 −3.49 × 101 20%
E121O 121 3.82 3.87 −0.500 0.500 −7.41 × 106 −4.94 × 106 33% −6.36 × 102 −4.24 × 102 33%

group 4 nitrides

TiN 22 2.94 2.94 0.358 0.358 −6.80 × 102 −3.18 × 102 53% −4.37 × 10−1 −2.06 × 10−1 53%
ZrN 40 3.11 3.19 0.492 0.492 −3.96 × 103 −2.68 × 103 32% −2.00 −1.37 32%
HfN 72 3.30 3.26 0.500 0.500 −1.09 × 105 −5.79 × 104 47% −2.93 × 101 −1.58 × 101 46%
RfNb 104 3.55 3.48 ( −0.500) ( −0.500) (2.04 × 106) (1.60 × 105) 92% (2.51 × 102) (1.70 × 101) 93%

f -block nitrides

CeN 58 3.29 3.26 0.500 0.500 −1.65 × 104 −1.18 × 104 28% −5.94 −4.32 27%
ThN 90 3.41 3.44 0.500 0.500 −3.50 × 105 −2.64 × 105 25% −6.10 × 101 −4.62 × 101 24%

f -block uorides

YbF 70 3.90 3.76 0.500 0.489 −4.12 × 104 −3.46 × 104 16% −1.16 × 101 −9.69 16%
NoF 102 3.96 3.92 0.500 −0.500 −7.37 × 105 −7.38 × 105 0% −9.65 × 101 −9.65 × 101 0%

f -block oxides

LuO 71 3.41 3.39 0.500 0.500 −6.57 × 104 −5.59 × 104 15% −1.81 × 101 −1.55 × 101 15%
LrO 103 3.51 3.53 −0.500 −0.500 −1.22 × 106 −9.38 × 105 23% −1.56 × 102 −1.21 × 102 23%

group 12 hydrides

ZnH 30 3.05 3.04 −0.500 −0.500 −2.03 × 103 −1.94 × 103 4% −1.14 −1.09 4%
CdH 48 3.36 3.38 0.500 0.500 −1.51 × 104 −1.32 × 104 12% −6.35 −5.59 12%
HgH 80 3.30 3.33 0.500 0.500 −3.77 × 105 −2.63 × 105 30% −7.98 × 101 −5.60 × 101 30%
CnH 112 3.04 3.13 0.500 −0.500 −8.51 × 106 −5.26 × 106 38% −8.69 × 102 −5.38 × 102 38%

group 13 oxides

BO 5 2.23 2.27 −0.500 −0.500 8.88 9.31 5% 9.42 × 10−3 1.05 × 10−2 12%
AlO 13 3.17 3.07 0.500 0.500 −5.59 × 101 −1.17 × 102 109% −2.12 × 10−2 −7.91 × 10−2 272%
GaO 31 3.37 3.24 0.500 0.500 −1.45 × 103 −2.15 × 103 48% −7.72 × 10−1 −1.17 51%
InO 49 3.79 3.67 −0.500 −0.500 −9.25 × 103 −1.09 × 104 18% −3.75 −4.45 19%
TlO 81 4.09 3.86 0.500 0.500 −2.35 × 105 −1.63 × 105 30% −4.92 × 101 −3.42 × 101 31%

aThe absolute sign of � is arbitrary. However, relative to the sign of the effective electric field Wd� it is always such that sgn(Wd) = −1.
Exceptions from this (RfN and BO) are discussed in the text.
bNo reliable results could be obtained for RfN.

differences (by an order of magnitude in the case of the
P, T -odd parameters) between DFT and HF calculations, not
only for properties but also for the ordering and pairing of
molecular spin orbitals. The values given for RfN are only
included for completeness, but are not to be considered as
estimates of the expected effect sizes. Therefore, results for
RfN are omitted in the plots presented below.

In Table II deviations between results obtained with the
Hamiltonian in Eq. (7) and those computed with the Hamil-

tonian of Eq. (13) are shown for all molecules that are content
of our paper (except RfN). This table shows that deviations
between stratagem I and II are only in molecules containing
super heavy elements noteworthy but remain always below
10% and thus are not important for the present discussion.

Furthermore, calculations with an internal electric field
stemming from explicitly Gaussian shaped nuclei are com-
pared to results of calculations with an internal electric field
that stems from a pointlike nucleus in Table II.
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TABLE II. Differences of P, T -odd eEDM enhancement in diatomic molecules in a 2�1/2-ground state between different forms of the
interaction operator calculated ab initio within a quasirelativistic two-component ZORA approach at the cGHF and cGKS/B3LYP level.
Relative difference �I/II = |Wd,I−Wd,II

Wd,II
| between strategem I [Eq. (7)] and II [Eq. (13)] and �IG/II = |Wd,I,Gauß−Wd,II

Wd,II
| between strategem I with

internal electric field of a Gaussian shaped nucleus [Eq. (11)] and II [Eq. (13)].

W cGHF
d

e cm
1024 h Hz

W cGKS
d

e cm
1024 h Hz

Molecule Z Wd,I Wd,I,Gauß Wd,II �I/II �IG/II Wd,I Wd,I,Gauß Wd,II �I/II �IG/II

group 2 fluorides
MgF 12 −4.66×10−2 −4.69×10−2 −4.56×10−2 2% 3% −5.22×10−2 −5.26×10−2 −5.12×10−2 2% 3%
CaF 20 −1.47×10−1 −1.48×10−1 −1.44×10−1 2% 2% −1.40×10−1 −1.41×10−1 −1.38×10−1 2% 2%
SrF 38 −1.05 −1.06 −1.04 1% 2% −1.01 −1.02 −1.00 1% 2%
BaF 56 −3.32 −3.33 −3.28 1% 1% −2.90 −2.91 −2.87 1% 1%
RaF 88 −2.80×101 −2.76×101 −2.73×101 3% 1% −2.51×101 −2.47×101 −2.44×101 3% 1%
E120F 120 −3.49×102 −3.23×102 −3.20×102 8% 1% −3.02×102 −2.79×102 −2.76×102 8% 1%

group 3 oxides

ScO 21 −2.42×10−1 −2.44×10−1 −2.38×10−1 2% 2% −1.87×10−1 −1.89×10−1 −1.84×10−1 2% 2%
YO 39 −1.58 −1.59 −1.56 1% 2% −1.32 −1.32 −1.30 1% 2%
LaO 57 −4.82 −4.83 −4.76 1% 1% −3.76 −3.76 −3.71 1% 1%
AcO 89 −4.34×101 −4.27×101 −4.22×101 3% 1% −3.49×101 −3.43×101 −3.39×101 3% 1%
E121O 121 −6.36×102 −5.86×102 −5.80×102 9% 1% −4.24×102 −3.90×102 −3.87×102 9% 1%

group 4 nitrides

TiN 22 −4.37×10−1 −4.40×10−1 −4.30×10−1 1% 2% −2.06×10−1 −2.08×10−1 −2.03×10−1 2% 2%
ZrN 40 −2.00 −2.01 −1.98 1% 2% −1.37 −1.37 −1.35 1% 2%
HfN 72 −2.93×101 −2.92×101 −2.89×101 2% 1% −1.58×101 −1.58×101 −1.56×101 2% 1%

f -block nitrirides

CeN 58 −5.94 −5.95 −5.87 1% 1% −4.32 −4.33 −4.27 1% 1%
ThN 90 −6.10×101 −5.98×101 −5.92×101 3% 1% −4.62×101 −4.53×101 −4.49×101 3% 1%

f -block uorides

YbF 70 −1.16×101 −1.15×101 −1.14×101 2% 1% −9.69 −9.65 −9.55 1% 1%
NoF 102 −9.65×101 −9.32×101 −9.23×101 4% 1% −9.65×101 −9.32×101 −9.22×101 4% 1%

f -block oxides

LuO 71 −1.81×101 −1.81×101 −1.79×101 2% 1% −1.55×101 −1.54×101 −1.52×101 2% 1%
LrO 103 −1.56×102 −1.50×102 −1.49×102 5% 1% −1.21×102 −1.16×102 −1.15×102 5% 1%

group 12 hydrides

ZnH 30 −1.14 −1.15 −1.13 1% 1% −1.09 −1.10 −1.09 1% 1%
CdH 48 −6.35 −6.38 −6.30 1% 1% −5.59 −5.61 −5.55 1% 1%
HgH 80 −7.98×101 −7.90×101 −7.83×101 2% 1% −5.60×101 −5.54×101 −5.49×101 2% 1%
CnH 112 −8.69×102 −8.20×102 −8.13×102 6% 1% −5.38×102 −5.08×102 −5.04×102 6% 1%

group 13 oxides

BO 5 9.42×10−3 9.50×10−3 9.19×10−3 2% 3% 1.05×10−2 1.06×10−2 1.02×10−2 3% 4%
AlO 13 −2.12×10−2 −2.14×10−2 −2.11×10−2 1% 2% −7.91×10−2 −7.97×10−2 −7.77×10−2 2% 3%
GaO 31 −7.72×10−1 −7.77×10−1 −7.68×10−1 1% 1% −1.17 −1.18 −1.16 1% 1%
InO 49 −3.75 −3.76 −3.72 1% 1% −4.45 −4.46 −4.41 1% 1%
TlO 81 −4.92×101 −4.87×101 −4.82×101 2% 1% −3.42×101 −3.38×101 −3.35×101 2% 1%

A comparison with enhancement factors calculated with
the internal electric field of a Gaussian nucleus shows that
deviations between stratagem I and stratagem II in heavy
nuclei stem solely from the finite size of the nucleus, which
is implicitly included in the Hamiltonian of stratagem II. As
expected, two-electron effects are larger than 1% for light
elements only.

Returning again to the results obtained with the Hamil-
tonian of Eq. (7), we can observe large deviations between
GHF and GKS values of Wd and Ws for some of the group 13
oxides (especially AlO and GaO). These indicate that there are

electron correlation effects which cannot accurately be de-
scribed by the present approaches. In these compounds also
large spin-polarization effects could be observed. Especially
for AlO more sophisticated electronic structure methods
should be applied, if higher accuracy is desired. Nonetheless,
for the present discussion of overall trends the description
within the cGHF/cGKS scheme appears to suffice.

Generally the agreement between the HF and DFT descrip-
tions is within 20% to 30%. Yet, in cases where d orbitals
play an important role, such as group 4 nitrides or group 12
hydrides, additional electron correlation considered via the
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DFT method has a pronounced impact on the value of the
P, T -odd properties. In case of mercury monofluoride these
effects where already discussed in Ref. [16].

The two parameters Wd and Ws behave analogously with
respect to inclusion of additional electron correlation effects
when going along the periodic table.

The largest enhancement of P, T -odd effects can be found
in compounds of the seventh and eighth row of the periodic
table, i.e., RaF, AcO, ThN, NoF, LrO, (RfN), CnH, E120F, and
E121O. But also some compounds of the sixth row show en-
hancement of a similar of magnitude, namely HfN, HgH, TlO,
YbF, and LuO. It shall be noted that even the exotic molecule
CnH may be a candidate for future experiments, since ongoing
research aims to achieve very long lived isotopes for the super
heavy element Cn [52–54].

The investigation of P, T -violation in group 13 oxides
shows problems for the methods employed herein, as men-
tioned above. As comparatively large enhancement effects
were calculated for TlO, a study of this molecule with
more sophisticated electronic structure methods could be
interesting in order to obtain an accurate description of its
electronic structure. Little is known about TlO from the ex-
perimental side, however, so that significant further research
would be necessary to take advantage of such enhancement
effects.

B. Estimation of P,T -violating properties
from atomic scaling relations

In order to gain deeper insight into the scaling behavior
of the above discussed properties the numerical results can
be compared to analytical and empirical atomic models. Us-
ing the relations presented in the theory section [Eqs. (24)
and (27)] within the quasirelativistic GHF/GKS-ZORA ap-
proach the parameter Wd is estimated from Ws and compared
to the results of the numerical calculations.

Results for estimations of Wd from Ws for both the analyt-
ically derived expression by Sandars and the empirical factor
found by Fermi and Segrè are shown in Table III, where again
the labels FS and CS are used for properties calculated with
the corresponding factors R̃CS and R̃FS.

Relative deviations of the estimated P, T -odd property
Wd from the numerical calculations are typically below 10%
for molecules with Z < 100. For light molecules of the first
(BO) or second row (MgF, AlO) the deviations are much
larger. In this region the atomic models do not work well. For
these cases with light elements both the analytically derived
CS equation and the empirical FS relation yield much too
low (BO, AlO) or too high (MgF) values of Wd. It has to
be pointed out that the case of BO is somewhat special,
since boron is even lighter than oxygen and the “heavy”
atom of this molecule is actually oxygen. By this also the
sign of the P, T -odd properties Wd and Ws is reversed and
a different behavior than for all other group 13 compounds is
expected.

In the region of super heavy elements (Z > 100) the
abruptly rising analytically derived relativistic enhancement
factor of the eEDM (reaching infinity at Z ∼ 118.65) causes
a large overestimation of Wd resulting in deviations of �35%
for NoF (Z = 102) and LrO (Z = 103) and 146% for CnH

(Z = 112) between the estimate and the numerical value. Here
the empirical factor performs much better and a much lower
increase in the deviation from the numerical calculations can
be observed. However, even in the case of the empirically
obtained relativistic enhancement factor the P, T -odd en-
hancement in super heavy element compounds is strongly
overestimated (deviations �10%) with these simple atomic
models. This may be explained with the influence of the pole
at Z > 137 of the used relativistic enhancement factors.

For the two studied compounds with Z > 118 the analyti-
cally derived factor is not applicable anymore, which results in
deviations far beyond 500%, whereas the estimates obtained
with the empirical factor deviate still less than 100% from
numerical calculations. Nonetheless, the influence of the pole
at Z = 137 of the relativistic enhancement factors for eEDM
induced permanent molecular EDMs and scalar-pseudoscalar
nucleon-electron current interactions causes deviations >10%.

C. Ratio of P,T -violating properties

Various P, T -odd parameters contribute to a permanent
EDM in a molecule. In order to set limits on more than one
parameter, experiments with different sensitivity to the P, T -
odd parameters have to be compared (for a detailed discussion
see Refs. [55] or [56]).

In the following we numerically determine the trends of
the ratio of P, T -odd enhancement parameters in the periodic
table and analyze how the sensitivity of an experiment to the
herein discussed P, T -odd effects de and ks is influenced by
the choice of the molecule.

As pointed out in Sec. II B, Dzuba et al. proposed an
analytical model [Eq. (24)] for determination of the ratio
Wd/Ws in atoms and diatomic molecules [35]. In their paper,
however, its applicability was not generally tested for diatomic
molecules, but only for the example of YbF. In the following
we compare the analytical model of Ref. [35], with the
improved version (27) and compare them to our numerical
calculations.

The ratio Wd/Ws of the various open-shell diatomic
molecules is studied, for which both the analytically derived
and the empirically derived relativistic enhancement factors
presented in Sec. II are compared. In Fig. 2 the ratio Wd/Ws

calculated with the four different relativistic enhancement fac-
tors R̃ [Eqs. (24)–(28b)] is compared to all numerical results
for the value of Wd/Ws. The empirically derived relativistic
enhancement factor for Wd included in Eqs. (27) and (28b)
is in much better agreement with the numerical results for
Z > 90 as was also seen in the last section in the comparison
of estimates of Wd with numerical values. Furthermore, values
calculated with the improved relativistic enhancement factor
for Ws [Eq. (22)] are in better agreement with numerical values
also for Z � 90.

However, all the ratios derived from the analytical models
show a wrong behavior in the region of Z < 30 and Z > 90
in comparison to the numerical results. This causes large
deviations for the estimates discussed in the last section.

A logarithmic plot of the numerical results (see Fig. 3)
shows an exponential behavior of the ratio of P, T -odd prop-
erties Wd/Ws, which can be interpolated by a linear fit model
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TABLE III. eEDM enhancement parmeter Wd of diatomic molecules estimated from numerically calculated P, T -odd interaction
parameter Ws via an analytical and an empirical relation from atomic considerations and comparison to numerical results. �CS/FS = |Wd−Wd,CS/FS

Wd
|

refers to the relative deviation of estimates with respect to numerical calculations.

cGHF cGKS

Molecule Z Wd,CS
e cm

1024×h Hz
�CS Wd,FS

e cm
1024×h Hz

�FS Wd,CS
e cm

1024×h Hz
�CS Wd,FS

e cm
1024×h Hz

�FS

group 2 fluorides
MgF 12 −4.2×10−2 11% −4.2×10−2 11% −4.5×10−2 13% −4.5×10−2 13%
CaF 20 −1.4×10−1 3% −1.4×10−1 2% −1.4×10−1 3% −1.4×10−1 3%
SrF 38 −1.0 1% −1.0 0% −10.0×10−1 2% −1.0 0%
BaF 56 −3.2 3% −3.3 0% −2.8 3% −2.9 0%
RaF 88 −3.0×101 8% −3.0×101 8% −2.7×101 8% −2.7×101 8%
E120F 120 −3.1×103 981% −6.1×102 75% −2.7×103 983% −5.3×102 76%

group 3 oxides

ScO 21 −2.4×10−1 2% −2.4×10−1 2% −1.8×10−1 2% −1.8×10−1 2%
YO 39 −1.5 3% −1.6 1% −1.3 3% −1.3 1%
LaO 57 −4.7 2% −4.8 1% −3.7 2% −3.8 1%
AcO 89 −4.8×101 9% −4.7×101 9% −3.8×101 9% −3.8×101 9%
E121O 121 −3.1×103 582% −1.2×103 84% −2.0×103 582% −7.8×102 84%

group 4 nitrides

TiN 22 −4.4×10−1 0% −4.4×10−1 0% −2.0×10−1 1% −2.0×10−1 1%
ZrN 40 −2.0 2% −2.0 0% −1.3 2% −1.4 1%
HfN 72 −2.9×101 1% −3.0×101 3% −1.6×101 1% −1.6×101 1%
RfNa 104 (3.7×102) 47% (3.1×102) 23% (2.9×101) 70% (2.4×101) 43%

f -block nitrides

CeN 58 −5.9 1% −6.0 2% −4.2 2% −4.3 0%
ThN 90 −6.8×101 11% −6.7×101 10% −5.1×101 11% −5.1×101 10%

f -block uorides

YbF 70 −1.2×101 0% −1.2×101 3% −9.7 0% −10.0 3%
NoF 102 −1.3×102 35% −1.1×102 19% −1.3×102 36% −1.1×102 19%

f -block oxides

LuO 71 −1.8×101 0% −1.9×101 2% −1.5×101 1% −1.6×101 2%
LrO 103 −2.2×102 39% −1.9×102 20% −1.7×102 39% −1.4×102 20%

group 12 hydrides

ZnH 30 −1.2 3% −1.2 4% −1.1 3% −1.1 4%
CdH 48 −6.5 3% −6.7 5% −5.7 2% −5.8 4%
HgH 80 −8.7×101 9% −8.8×101 11% −6.0×101 8% −6.2×101 10%
CnH 112 −2.1×103 146% −1.2×103 41% −1.3×103 146% −7.6×102 40%

group 13 oxides

BO 5 6.5×10−3 31% 6.5×10−3 31% 6.8×10−3 36% 6.8×10−3 36%
AlO 13 −3.9×10−2 83% −3.9×10−2 83% −8.1×10−2 3% −8.1×10−2 3%
GaO 31 −8.3×10−1 8% −8.4×10−1 9% −1.2 5% −1.2 6%
InO 49 −3.9 5% −4.0 7% −4.6 4% −4.7 6%
TlO 81 −5.3×101 8% −5.4×101 9% −3.7×101 8% −3.8×101 10%

a No reliable results could be obtained for RfN.

with

log10

{∣∣∣∣Wd

Ws

∣∣∣∣ × 10−21 e cm

}
= qZ + p. (36)

In this plot Fig. 3 also results in calculations reported by
Fleig for the two molecules HfF+ and ThO, where a 3�

state is of relevance for experiments, are included [57]. It can
be inferred that the ratio Wd/Ws is rather insensitive to the
chemical environment of the heavy nucleus, but is essentially
determined by the exponential Z dependence determined in
Fig. 3.

In order to disentangle the P, T -odd parameters ks and de,
at least two experiments with molecules 1 and 2 are needed.
The measurement model then is a 2 × 2-matrix problem de-
scribed by the system of equations

h

(
ν1

ν2

)
= �

(
Wd,1 Ws,1

Wd,2 Ws,2

)
︸ ︷︷ ︸

C

(
de

ks

)
, (37)

where C is the matrix of sensitivity coefficients. We follow
now Ref. [58] in order to describe the uncertainties and
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FIG. 2. Comparison of combined relativistic enhancement fac-
tors and conversion factors for the ratio between P, T -odd eEDM
and nucleon-electron current interactions Wd/Ws. The relativistic
factors R̃ derived from the analytically derived factor (CS) and the
empirical factor (FS) are shown, as well as their analogs derived from
an old relativistic enhancement factor for Ws

˜̃R. Plots are shown for
the case of j = 1

2 as in 2�1/2 states. Mass numbers A were assumed
as the natural mass number corresponding to the next integer value
of Z . Numerical values shown are from cGKS calculations.

coverage regions determined by two experiments. The co-
variance matrix UP,T of ks and de can be obtained from the
covariances of the measured frequencies Uν via the matrix
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FIG. 3. Fit of the Z dependence of the ratio between P, T -odd
eEDM and scalar-pseudoscalar nucleon-electron current interactions
Wd/Ws. The values of Wd/Ws for HfF+ and ThO were calculated
by Fleig in a four-component configuration interaction framework
in Ref. [57] and are shown for comparison but are not included in
the fit. All other numerical values correspond to results from cGKS
calculations.

product C−1Uν (C−1)T . Assuming the measurements are un-
correlated, Uν is a diagonal matrix with the squared standard
uncertainties of the measurements u2(ν1) and u2(ν2) on the
diagonal. Thus the covariance matrix UP,T has the form

UP,T = h2

⎛
⎜⎜⎝

u2(ν1 )(
Wd,1
Ws,1

− Wd,2
Ws,2

)2
W 2

s,1

+ u2(ν2 )(
Wd,1
Ws,1

− Wd,2
Ws,2

)2
W 2

s,2

− u2(ν1 )
Wd,2
Ws,2

(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,1

− u2(ν2 )
Wd,1
Ws,1

(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,2

− u2(ν1 )
Wd,2
Ws,2

(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,1

− u2(ν2 )
Wd,1
Ws,1

(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,2

u2(ν1 )(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,1

+ u2(ν2 )(
Ws,1
Wd,1

− Ws,2
Wd,2

)2
W 2

d,2

⎞
⎟⎟⎠, (38)

where we have expressed the sensitivity factors in terms of the P, T -odd ratios. In order to set tight bounds on both of the
P, T -odd parameters the coverage region in the parameter space of ks and de has to become small. We consider now the
commonly applied case of an ellipsoidal coverage region. The P, T -odd parameters are characterized by a bivariate Gaussian
probability distribution function with (de

ks
) and UP,T . The ellipse centered at (de

ks
) = �0 is described by(

xd

xs

)T

U−1
P,T

(
xd

xs

)
︸ ︷︷ ︸

fe(xd,xs )

= k2
p, (39)

where kp = 2.45 for an elliptical region of 95% probability and xd and xs are the coordinates in the parameter space in direction

of de and ks, respectively. Calculation of the inverse and the products yields an ellipse centered at (de
ks

) = �0 described by

fe(xd, xs ) =
(

W 2
d,1

u2(ν1)
+ W 2

d,2

u2(ν2)

)
x2

d + 2

(
W 2

d,1

u2(ν1)

Ws,1

Wd,1
+ W 2

d,2

u2(ν2)

Ws,2

Wd,2

)
xdxs +

[
W 2

d,1

u2(ν1)

(
Ws,1

Wd,1

)2

+ W 2
d,2

u2(ν2)

(
Ws,2

Wd,2

)2
]

x2
s . (40)

The area of the ellipse can be readily evaluated via

Aellipse = 2h2k2
pπ√

∂2 fe(xd,xs )
∂x2

s

∂2 fe(xd,xs )
∂x2

d
− (

∂2 fe(xd,xs )
∂xd∂xs

)2
. (41)

Thus the ellipse has an area of

Aellipse = h2k2
pπ |u(ν1)u(ν2)|

|Wd,1Wd,2|
∣∣Ws,1

Wd,1
− Ws,2

Wd,2

∣∣ . (42)

In order to disentangle de and ks in two experiments (1
and 2) and set tight limits, assuming equal uncertainties for
experiments 1 and 2 the expression

|Wd,1Wd,2| 0.91(2)|1.0207(5)Z1 − 1.0207(5)Z2 | × 10−21 e cm.

(43)

has to become large. The enhancement of the eEDM in both
experiments, which is determined by Wd,1Wd,2 is strongly
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dependent on the chemical environment, as will be discussed
in the following sections. However, assuming at this point
a scaling behavior of Wd,1 as in Eqs. (19) and (20) for
atomic systems, the area of the coverage region is inversely
proportional to

(Z1Z2)3

γ 4
1 γ 4

2

0.91(2)|1.0207(5)Z1 − 1.0207(5)Z2 | × 10−21 1

e cm
.

(44)

Thus, in order to set tight limits on both P, T -odd parameters,
experiments with molecules that have a high nuclear charge
and at the same time differ considerably in the nuclear charge
Z of the electropositive atom are required. For example,
when assuming equal uncertainties u(νi ), a comparison of
experiments with YbF and RaF or ThO would provide tighter
bounds than a comparison of a BaF experiment with a ThO
experiment but also than a comparison of experiments with
RaF and ThO. However, the possibilities are limited for
paramagnetic molecules because enhancement effects of the
individual properties still increase steeply with increasing
Z , which is the dominating effect. Alternatively experiments
with diamagnetic atoms and molecules can further tighten
bounds on de and ks, as they show different dependencies on
the nuclear charge (see, e.g., Refs. [55,59]).

This scheme can also be expanded for experiments that
aim to set accurate limits on more than the herein discussed
parameters. However, for this purpose first the respective
enhancement factors have to be calculated for a systematic set
of molecules. Furthermore, it should be noted that the present
picture is not complete because of other sources of permanent
EDMs that were not accounted for, namely P, T -odd tensor
and pseudoscalar-scalar electron-nucleon current interactions,
as well as P, T -odd nuclear dipole moments, which lead to
the nuclear Schiff moment and nuclear magnetic quadrupole
interactions (see for an overview, e.g., [3]).

D. Periodic trends of P,T -violating properties

The analytical scaling relations presented in Eqs. (22),
(19), and (20) can also be used to determine the numerical
Z scaling within a group of compounds with electropositive
atoms of the same column of the periodic table. For this
purpose the property is divided by its relativistic enhancement
factor and plotted on a logarithmic scale on both axes, as
has been done for the nuclear spin-dependent P-violating
interaction parameter in Refs. [39,47,60]:

log10

{
|Ws|

R(Z, A) f (Z ) γ+1
2

× 1

hHz

}
= bs + log10{Zas}, (45)

log10

{
|Wd|γ (4γ 2 − 1) × 10−24 e cm

hHz

}
= bd,CS + log10{Zad,CS}, (46)

log10

{
|Wd|γ 4 × 10−24 e cm

hHz

}
= bd,FS + log10{Zad,FS}. (47)

From Eqs. (18) and (19) the exponents of Z can be expected to
be approximately three. For both parameters the Z scaling is
studied herein not only within columns, but also for isolobal
diatomics within rows of the periodic table.

The resulting Z-scaling parameters a and Z-independent
factors 10b will be discussed in the following for both, GHF
and GKS results.
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FIG. 4. Scaling of log10 { |Ws|
R(Z,A) f (Z ) γ+1

2
× 1

hHz } with log10 {Z} for

group 2 fluorides (Mg-E120)F, group 3 oxides (Sc-E121)O, group 4
nitrides (Ti-Hf)N, group 12 hydrides (Zn-Cn)H, and group 13 oxides
(B-Tl)O at the level of GKS-ZORA/B3LYP (top) and GHF-ZORA
(bottom). Corresponding functional expressions of the fits are plotted
in each panel as a solid line, long-dashed line, short-dashed line,
dotted line, and dash-dotted line, respectively. Plot of the f -block
groups (Ce-Th)N, (Yb-No)F, and (Lu-Lr)O without fit. Boron was
not included in the fit of group 13 oxides (see text).
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FIG. 5. Scaling of log10 {|Wd|γ (4γ 2 − 1) × 10−24 e cm
hHz } with

log10 {Z} for group 2 fluorides (Mg-Ra)F, group 3 oxides (Sc-Ac)O,
group 4 nitrides (Ti-Hf)N, group 12 hydrides (Zn-Cn)H, and group
13 oxides (B-Tl)O at the level of GKS-ZORA/B3LYP (top) and
GHF-ZORA (bottom). Corresponding functional expressions of the
fits are plotted in each panel as a solid line, long-dashed line, short-
dashed line, dotted line, and dash-dotted line, respectively. Plot of
the f -block groups (Ce-Th)N, (Yb-No)F, and (Lu-Lr)O without fit.
Boron was not included in the fit of group 13 oxides (see text).

1. Z scaling within groups of the periodic table

In the following the scaling within the groups of the
periodic table is studied. The graphical representation of the
Z scaling of Ws and Wd can be found in Figs. 4–6. In case
of group 13 oxides, boron was not included in the linear
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FIG. 6. Scaling of log10 {|Wd|γ 4 × 10−24 e cm
hHz } with log10 {Z} for

group 2 fluorides (Mg-E120)F, group 3 oxides (Sc-E121)O, group 4
nitrides (Ti-Hf)N, group 12 hydrides (Zn-Cn)H, and group 13 oxides
(B-Tl)O at the level of GKS-ZORA/B3LYP (top) and GHF-ZORA
(bottom). Corresponding functional expressions of the fits are plotted
in each panel as a solid line, long-dashed line, short-dashed line,
dotted line, and dash-dotted line, respectively. Plot of the f -block
groups (Ce-Th)N, (Yb-No)F, and (Lu-Lr)O without fit. Boron was
not included in the fit of group 13 oxides (see text).

fit, because it has a very different character (see discussion
above).

Comparing the two different relativistic enhancement fac-
tors for eEDM interactions, which were employed in this
study, we see for most of the groups of molecules no
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TABLE IV. Z-scaling a and Z-independent factors b of |Ws|
R(Z,A) f (Z ) γ+1

2
and |Wd|γ 4 (empirical relativistic enhancement factor) for group 2

fluorides (Mg-Ra)F, group 3 oxides (Sc-Ac)O, group 4 nitrides (Ti-Hf)N, group 12 hydrides (Zn-Cn)H, and group 13 oxides (Al-Tl)O at the
level of GHF-ZORA and GKS-ZORA/B3LYP. Standard uncertainties of the fit are given in parentheses with respect to the last or two last
significant digits.

as bs ad,FS bd,FS

Group GHF GKS GHF GKS GHF GKS GHF GKS

(Mg-E120)F 2.89(10) 2.80(12) −4.45(17) −4.33(19) 2.68(6) 2.58(8) −4.28(10) −4.14(14)
(Sc-E121)O 3.11(17) 3.04(13) −4.7(3) −4.7(2) 2.82(7) 2.75(11) −4.37(12) −4.37(19)
(Ti-Hf)N 3.1(4) 3.18(13) −4.4(7) −4.9(2) 3.0(4) 3.16(12) −4.5(7) −5.0(2)
(Cd-Cn)H 3.70(9) 3.35(5) −5.33(17) −4.83(10) 3.49(9) 3.15(9) −5.15(18) −4.65(16)
(Al-Tl)O 3.45(11) 2.88(6) −5.14(17) −4.15(10) 3.74(12) 2.85(6) −5.82(19) −4.26(9)

appreciable differences between the analytically derived and
the empirical factor. Yet, in case of group 12 hydrides it
is important to use the empirical scaling factor. Cn has a
nuclear charge of Z = 112, which is close to the singularity
of the analytically derived factor. This results in a strong
overestimation of the relativistic enhancement and thus a
strong underestimation of the plotted value, which explains
the large deviations from a power relationship for group 12
hydrides in Fig. 5. Furthermore, with the analytically derived
enhancement factor no meaningful plot that includes the row
8 compounds E120F and E121O is possible. Therefore, in the
following we will use the results obtained with the empirical
enhancement factor for our discussions.

The Z-scaling parameters a and the Z-independent prefac-
tors 10b are summarized in Table IV. It should be noted that
the inclusion of the values of the row 8 compounds into the
fit causes no notable changes in the Z scaling in case of the
eEDM and P, T -odd nucleon-electron current enhancement.

For all parameters the agreement between GHF and GKS
calculations is excellent for group 2 fluorides, group 3 oxides,
and group 4 nitrides, whereas DFT predicts a considerably
different behavior for group 12 hydrides and group 13 oxides.
As could be seen in [16] the DFT approach performs much
better in the case of group 12 compounds than GHF due to
pronounced electron correlation effects and therefore can be
taken as more reliable. In the previous sections large electron
correlation effects in group 13 compounds, which lead to large
differences between GHF an GKS, were already discussed.

The scaling of P, T -odd interactions seems to follow the
same laws as that of nuclear spin-dependent P-violating inter-
actions studied in [39,60]. The Z scaling increases up to group
12 hydrides, when going along the periods of the periodic
table. This maximum effect of P, T -violation enhancement
in group 12 compounds seen here is similar to the maximum
of relativistic and quantum electrodynamic effects in group
11 compounds [61,62]. At the same time the Z-independent
factor 10b is smallest for these compounds. This damping
is, however, only dominant in the region of small Z , which
coincides with the findings in [39,60] for P-odd interactions.

In [60] the large Z-scaling of group 4 and group 12 com-
pounds compared to group 2 or 3 compounds was attributed
mainly to the filling of the d shells, which causes an increment
of the effective nuclear charge because the shielding of the
nuclear charge by d orbitals is less efficient than by s or p

orbitals. Furthermore, therein it was argued that the lower
electronegativity of nitrogen compared to oxygen (group 4
shows larger scaling than group 3, although isoelectronic)
causes the large effects in group 4 nitrides. A comparison of
the molecules with f -block elements next to group 3, that
is CeN and ThN, shows a similar behavior as for group 3
or group 2 compounds. Thus the filling of the f shell has a
considerable effect on the size of P, T -violating effects as
well, which causes group 4 nitrides to be behave differently
than group 3 oxides, whereas CeN and ThN are more similar
to group 3 oxides.

Relating the Z scaling of the fits to the expected Z scaling
[see Eqs. (18) and (19)], yields a quantitative Z-dependent
factor for the effects of the molecular electronic structure
on P, T violation. Referring to the GKS result we get an
additional scaling factor of ∼Z−0.2 for Ws and ∼Z−0.4 for
Wd for group 2 fluorides, thus there is some damping of
P, T -violating effects due to the electronic structure. This can
be observed for group 3 oxides regarding eEDM enhancement
as well (Z−0.2 for Wd), but for Ws, in contrast, there is no
additional Z-dependent damping.

A similar damping can be observed for group 13 ox-
ides on the GKS level, whereas GHF predicts a consider-
able Z-dependent enhancement instead. The group 4 and 12
compounds show an additional Z-dependent enhancement of
P, T -odd effects: ∼Z0.1 for Ws and Wd in group 4, ∼Z0.4

for Ws, and ∼Z0.2 for Wd in group 12. Thus we see a strong
enhancement due to Z-dependent electronic structure effects
in group 12 hydrides, which does not originate from relativis-
tic enhancement factors obtained from atomic considerations
based on Eqs. (18) and (19).

The Z-independent electronic structure factors 10b show
a behavior inverse to that of Za and are largest for group 2
fluorides and group 13 oxides in the DFT case, whereas the
factors for group 12 hydrides and group 4 nitrides are almost
an order of magnitude smaller. Yet, in GHF calculations the Z-
independent effects are on the same order for group 13 oxides
as for group 12 hydrides.

Now we can return to the discussion of disentanglement of
de and ks in the two-dimensional parameter space (Sec. IV C).
With the chemical group specific effective Z dependence of
the eEDM enhancement factors for paramagnetic molecules,
Eq. (42) for the area in the parameter space of de and ks

covered by experiments with two different molecules 1 and 2
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can be rewritten as

Aellipse = k2
pπ

0.91(2) × 1027 Hz2

e cm

× |u(ν1)u(ν2)|
10bd,1+bd,2

Z
ad,1
1 Z

ad,2
2

γ 4
1 γ 4

2
|1.0207(5)Z1 − 1.0207(5)Z2 |

.

(48)

10−2

10−1

100

101

102

10 100

|W
s
|

R
(Z

,A
)f

(Z
)

γ
+

1
2

(h
H

z)

Z

(Mg-E120)F

(Sc-E121)O

(Ce-Th)N

(Yb-No)F

(Lu-Lr)O

(Ti-Hf)N

(Cd-Cn)H

(B-Tl)O

10−6.11 Z4.13

10−8.36 Z5.34

10−18.15 Z10.64

10−27.48 Z15.38

10−47.26 Z24.88

10−2

10−1

100

101

102

10 100

|W
s
|

R
(Z

,A
)f

(Z
)

γ
+

1
2

(h
H

z)

Z

(Mg-E120)F

(Sc-E121)O

(Ce-Th)N

(Yb-No)F

(Lu-Lr)O

(Ti-Hf)N

(Cd-Cn)H

(B-Tl)O

10−15.82 Z11.59

10−19.25 Z12.25

10−28.01 Z16.31

10−57.51 Z31.68

10−62.07 Z32.52

FIG. 7. Scaling of log10 { |Ws|
R(Z,A) f (Z ) γ+1

2
× 1

hHz } with log10 {Z} for

row 4 (Ca-Ti; solid line), row 5 (Sr-Zr; dash-dotted line), row 6
(Ba-Ce; long-dashed line, Yb-Hf; dotted line), and row 7 (Ra-Th;
short-dashed line) at the level of GKS-ZORA/B3LYP (top) and
GHF-ZORA (bottom).

Here the factor 1027 and the units result from Eq. (47),
wherein Wd is in units of 1024 hHz

e cm .
What remains to be analyzed in future works is the detailed

influence of molecular orbitals on P, T -violating effects that
causes the observed enhancement effects.

2. Z scaling of isolobal molecules

Now we focus on the Z scaling for isolobal diatomic
molecules within the rows of the periodic table. When
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FIG. 8. Scaling of log10 {|Wd|γ 4 × 10−24 e cm
hHz } with log10 {Z} for

row 4 (Ca-Ti; solid line), row 5 (Sr-Zr; dash-dotted line), row 6
(Ba-Ce; long-dashed line, Yb-Hf; dotted line), and row 7 (Ra-Th;
short-dashed line) at the level of GKS-ZORA/B3LYP (top) and
GHF-ZORA (bottom).
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TABLE V. Z-scaling a and Z-independent factors b of |Ws|
R(Z,A) f (Z ) γ+1

2
and |Wd|γ 4 for isolobal diatomic molecules in row 4 (Ca-Ti), row 5

(Sr-Zr), row 6 (Ba-Ce; Yb-Hf), and row 7 (Ra-Th) at the level of GHF/GKS-ZORA. Standard uncertainties of the fit are given in parentheses
with respect to the last or two last significant digits.

as bs ad,FS bd,FS

Row GHF GKS GHF GKS GHF GKS GHF GKS

4 (Ca-Ti) 11.6(8) 4.1(11) −15.8(11) −6.1(14) 11.3(7) 3.9(11) −15.6(9) −6.0(15)
5 (Sr-Zr) 12.2(16) 5(2) −19(3) −8(4) 12.2(19) 5(3) −19(3) −9(4)
6 (Ba-Ce) 16(3) 11(2) −28(5) −18(4) 16(3) 10.5(19) −27(5) −18(3)
6 (Yb-Hf) 31.7(11) 15(9) −58(2) −27(17) 31.6(7) 16(9) −57.5(14) −29(17)
7 (Ra-Th) 33(2) 24.9(10) −62(4) −47(2) 32(2) 24.2(12) −61(5) −46(2)

discussing eEDM enhancement we concentrate on the results
obtained with the empirical relativistic enhancement factor
in the following. For comparison, results obtained from the
analytically derived relativistic enhancement factor are pro-
vided in the Supplemental Material [46]. The corresponding
plots can be found in Fig. 7 for Ws and Fig. 8 for Wd and
the resulting scaling and damping parameters are listed in
Table V.

Trends, similar to those reported in [47] for the P-odd
nuclear spin-dependent interaction can also be observed for
the P, T -odd properties. However, we can see a large discrep-
ancy (�20% for parameter a and b) between results obtained
from GHF and GKS calculations. Deviations for a and b of
more than 50% between the GHF and GKS results in the
fourth and fifth row probably stem from electron correlation
effects, which lead to a considerable reduction (of 30% to
50%) of the enhancement effects in group 4 compounds. Fits
of the DFT results have large errors that lead to qualitative
differences. Especially for row 6 compounds with a filled f
shell (violet line in Figs. 7 and 8) a large fit error (>40%)
can be observed, since HfN does not fold into the power-
law model. The results of GHF fit much better into this
model and show that the scaling behavior of post- f -block
compounds of row 6 is approximately similar to that of row
7 compounds without a filled f shell. Comparing compounds
with a filled d shell (group 12 and 13), we see that the
slope becomes negative. This again indicates a maximum of
enhancement of P, T -odd effects in group 12 as discussed
before.

The investigations show that the chemical environment of
the heavy atom can have a much more important effect on
the Z-dependent enhancement than the physical nature of the
atom. This can result in effects scaling as ∼10bZ30 for row
7 compounds. Thus a more complex chemical environment
may allow for better tuning of the size of P, T -odd en-
hancement effects. Hence we may speculate that polyatomic
molecules might be capable to give larger enhancement ef-
fects due to the electronic structure surrounding the heavy
atom.

V. CONCLUSION

In this paper we calculated P, T -odd properties due
to eEDM and nucleon-electron current interactions in po-
lar open-shell diatomic molecules. We determined periodic
trends of P, T violation by comparison to atomic scaling
relations and showed that the trends are very similar to those
of nuclear spin-dependent P-violating interactions. Further-
more, this comparison revealed problems of frequently used
scaling relation for eEDM enhancement in the regime of
heavy elements with Z > 100. We showed that an alternative
relativistic enhancement factor found empirically by Fermi
and Segrè resolves the problems for Z < 137 partially. Group
12 hydrides and group 4 nitrides were identified to show a
very steep Z scaling and therefore interesting Z-dependent
electronic structure effects, enhancing P, T violation in these
compounds, were identified. Furthermore, a study of the ratio
between P, T -odd properties Wd/Ws, showed that electronic
structure effects and the chemical environment have a very
small influence on the ratio. The ratio is mainly determined
by an exponential dependence on the nuclear charge Z . Thus
for experiments aiming to differentiate between de and ks, the
use of molecules with a relatively large difference in nuclear
charge Z would be favorable. The analysis of the scaling of
isolobal systems and the study of the ratio Wd/Ws showed
the limitations of polar diatomic molecules and point towards
possible advantages in the use of more complex systems, such
as polyatomic molecules. The latter will be focus of future
research in our laboratory.
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