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Accurate transition probabilities of La II ion are calculated using configuration-interaction many-body
perturbation theory with 10 adjustable parameters, seven of which are evaluated from energies of the La III

single-valence electron ion. Comparison is given for transitions probabilities and lifetimes with experiments and
theories. Close agreement with experiment is observed for most transitions. The theoretical approach can be
extended to other divalent atoms and ions with strong valence-core interactions and to more complex atoms. The
theory will be useful for opacity evaluation and astrophysical applications.
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I. INTRODUCTION

Calculations of heavy element abundances from observed
spectra, including containing La II ions, have become more
and more important in recent years [1]. Astrophysical applica-
tions are in need of accurate transition probabilities, which can
be obtained from branching ratios and lifetimes. Multiple La
II measurements of lifetimes and transition probabilities were
carried out in the past [2–9]. Few theoretical methods were
applied to La II transitions: multiconfiguration Dirac-Fock
(MCDF) calculations [10] of 6s2 1S0–6s6p 1P1, 3P1 transitions;
the Hartree-Fock with relativistic corrections (HFR) method
[11] modified by inclusion of core-valence corrections with
semiclassical core-polarization potentials. This method used
parametric fitting to obtain close agreement for energy levels,
in most cases tens of inverse cm. In addition calculations
based on Cowan’s code [12] were also presented [8] and
some criterion was applied to select the transitions that can
be described by this approach.

Neutral or close to neutral lanthanides and actinides are
challenging for atomic theory primarily due to difficulties
related to including very strong valence-valence interactions,
especially in cases when the number of valence electrons
exceeds 3, with strong valence-core correlations and rela-
tivistic corrections further complicating the matter. The ap-
proach of configuration-interaction many-body perturbation
theory (CI-MBPT) has been very successful in light atoms,
including Si I [13], Be I, Mg I, Ca I, Ne I, and some others.
However, in actinides and lanthanides, because valence-core
interaction is strong and the CI-MBPT approach includes it
only in the second order, which is insufficient, the accuracy is
quite low. Previously, we attempted to improve accuracy by
introducing adjustable parameters. Such parameters simulate
the modification of second-order correction due to screening.
While energies were definitely improved and level identifica-
tion was possible, the transition probabilities did not agree
accurately with experiment, although this can be partially
attributed to limited accuracy of experimental measurements.
Moreover, the adjustable parameters were optimized without
considering physical constraints. In Th I, it was found [14]

that different sets of quite different parameters can lead to
similar wave functions and atomic properties. However, it
was not clear how to find the best minimum because the
number of adjustable parameters was as large as 9 and finding
absolute minimum in such a large dimension was technically
very difficult or altogether impossible. The question remains
whether the result would be quite accurate if we were able to
find the absolute minimum. On the other hand, at least seven
out of nine parameters can be found from energies of the cor-
responding one-valence ion; then only two or three parameters
remain for optimization, and such an optimization problem is
much easier to solve. Apart from the question of optimization,
the optimal set of parameters depends on the basis, whether it
is large enough to account for valence-valence interactions.
In the systems with more than three valence electrons, this is
difficult technically, because the optimization of parameters
would take a very long time. Thus two-valence electron atoms
can be a good testing ground for studying the optimization of
parameters when the valence-valence interaction is saturated.

In this work we considered the La II ion. It has two
valence electrons, so the question of saturation of valence-
valence configuration space is not an issue, and the focus
can be placed on valence-core interactions, which are signifi-
cant and cannot be accounted for sufficiently accurately with
ab initio second-order MBPT. On the other hand, by intro-
ducing adjustable parameters in CI-MBPT, good accuracy
is possible to achieve, as will be illustrated in this paper.
In contrast to our previous work, we found or constrained
seven parameters by adjusting them to obtain good agreement
for energies of a single-valence ion (La III), and then only
three parameters were completely fit to obtain agreement for
two-valence energies. Afterward, one or two of the initially
estimated seven parameters were minimally adjusted for the
best energy fit, but this fit was much more constrained by
physical meaning of parameters than in [14].

II. CI-MBPT APPROACH

To calculate La II energies a CI+MBPT method developed
for open-shell atoms with multiple valence electrons is used
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(see, for example, [15]). The theory can be summarized as
follows. The effective CI+MBPT Hamiltonian for La II is split
into two parts:

H eff =
M∑

i=1

h1i +
M∑

i �= j

h2i j, (1)

where M = 2 for two valence electrons. The one-electron
contribution,

h1 = cα · p + (β − 1)mc2 − Ze2/r + V N−3 + �1, (2)

in addition to the V N−3 Dirac-Hartree-Fock (DHF) potential
contains the valence electron self-energy correction �1 [16].
In the current CI+MBPT program, the self-energy correction
is calculated with the second-order MBPT. The term �1 is
regulated with seven scaling factors each for a specific one-
electron relativistic angular momentum number: s1/2, p1/2,
p3/2, d3/2, d5/2, f5/2, f7/2. These factors not only take into
account some omitted high-order MBPT corrections, but also
relativistic effects such as single-particle Breit terms. The
two-electron Hamiltonian is

h2 = e2/|r1 − r2| + �2, (3)

where �2 is the term accounting for Coulomb interaction
screening arising from the presence of the core [17]. In the
CI-MBPT program used, the screening is also calculated in
the second order. For fitting the three additional scaling factors
are introduced for zero-, first-, and second-order multipole
terms of the Coulomb interaction. Further details on the
CI+MBPT approach can be found in Ref. [18]. In terms of
specific numerical steps, first, the DHF VN−3 potential for
the closed-shell La IV ion is calculated. Second, the basis in
the frozen VN−3 potential is calculated with the help of a
B-spline subroutine for the ion in a cavity of radius R = 30
a.u. The basis is then used to evaluate the CI+MBPT terms
in Eq. (1). Finally, the eigenvalue problem is solved for the
effective Hamiltonian matrix. The program can generate a
set of configurations by single, double, etc., excitations of
the input configurations limited by a given maximum angular
momentum lmax and Nmax. In case of La II, we chose single and
double excitations limited by n = 15 for s and p states, n = 14
for d states, 13 for f states, and n = 12 for g states. The
effective Hamiltonian matrix generation is repeated multiple
times for different scaling factors (10 total) and the optimiza-
tion procedure described below is used until some optimum
is reached. The electric-dipole matrix elements are evaluated
only. Random-phase approximation (RPA) corrections are
added to take into account core-polarization corrections for
the matrix elements.

III. OPTIMIZATION OF �1 AND �2 PARAMETERS

Seven �1 parameters were estimated from La III energies
(Table I). Each parameter affects only valence electrons of
specific symmetry: s1/2, p1/2, p3/2, etc., so the minimization
is straightforward. While it is possible to find parameters
that would minimize the deviation for the lowest states of
given symmetry, the next excited states of the same symmetry
will have substantial deviation. This is the limitation of the
scaling theory. In two-valence La II, the expansion shows
the dominant contribution from the lowest states, so it is

TABLE I. The estimates of �1 parameters from energies of La
III (NIST [21]). Energies (one-electron removal energies) are given
in cm−1. Because the lowest states of given symmetry dominate the
expansion of the two-valence La II ion, the parameters were adjusted
to fit well these levels. The comparison for the second next levels for
each symmetry is also given to illustrate the fact that it is impossible
to have complete agreement for all levels. This can be the reason
why in two-valence ions some adjustment of �1 is needed to improve
agreement for energies.

Par. Par. value Levels Expt. energy Th. energy Eexpt. − Eth.

1 0.782 6s1/2 141 084 141 072 −12
1 0.782 7s1/2 72 328 71 924 −404
2 0.835 6p1/2 112 660 112 651 −7
2 0.835 7p1/2 61 443 61 114 −329
3 0.835 6p3/2 109 564 109 539 −25
3 0.835 7p3/2 60 214 59 912 −301
4 0.85 5d3/2 154 675 154 658 −17
4 0.85 6d3/2 72 294 71 599 −695
5 0.86 5d5/2 153 072 153 066 −6
5 0.86 6d5/2 71 861 71 188 −673
6 0.83 4 f 5/2 147 480 147 562 82
6 0.83 5 f 5/2 62 221 61 392 −829
7 0.83 4 f 7/2 145 980 145 880 −100
7 0.83 5 f 7/2 62 141 61 322 −819

reasonable to assume that the seven parameters optimal for La
III lowest energies are quite physical and are a good starting
approximation. Indeed we find that slight adjustments are
needed to improve the two-valence energies. It can be noted
that f electrons have the largest deviations for the next in n
level 5 f .

With �1 parameters obtained from La III energies, three
most important �2 parameters were found from fitting La II

energies, different for different J and parity. For optimization
of �2 parameters first and some re-optimization of some
�1 and �2 parameters, we used the particle swarm method
[19,20]. This method has an advantage that it can accelerate
the optimization by engaging multiple computer cores.

IV. LA II CI-MBPT ENERGIES AND g-FACTORS

The CI-MBPT energies with optimized 10 parameters us-
ing the procedure described above are shown in Tables II–IV
for J = 1–3 even states and in Tables V–VII for J = 1–3 odd
states. It can be noted that the same �1 parameters: 0.7600,
0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150 give a good
agreement for energies with experiment and also that they are
quite close to the estimated �1 parameters shown in Table I.
However, the �2 parameters differ: 0.9133, 0.8900, 0.890 for
J = 1, 0.8600, 0.7163, 0.750 for J = 2, and 0.8610, 0.7400,
0.700 for J = 3, although the change is not very large. The
deviations of CI-MBPT energies from the experimental values
for J = 1, J = 2, and J = 3 even states are 118, 261, and 143,
which are in the expected range. On the other hand, the odd
states have the first parameter different from that of the even
state 0.8159, instead of 0.7600, while the other �1 are the
same: 0.81, 0.81, 0.845, 0.855, 0.81, 0.815. More substantial
changes can be observed for �2 parameters of odd states:
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TABLE II. The CI-MBPT energies and g-factors for J = 1 even states of La II with comparison with NIST values [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.9133, 0.8900, 0.8900. Note that �1 parameters were slightly changed
from the ones giving the best La III single-valence energy for the lowest states. The standard deviation for energy is 118 cm−1.

Level Conf. g-factor E Conf. E g-factor
No. NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 5d6s 0.498 1895 6s5d 1895 0 0.5 0.002
2 5d2 1.497 5718 5d2 5562 −156 1.5 0.003
3 4 f 6p 0.497 38 534 4 f 6p 38 578 44 0.5 0.003
4 5d7s 0.5 49 733 5d7s 49 509 −224 0.5006 0.0006
5 5d6d 0.621 52 169 5d6d 52 036 −133 0.6244 0.0034
6 5d6d 1.335 53 302 5d6d 53 149 −153 1.3575 0.0225
7 5d6d 1.455 54 365 5d6d 54 217 −148 1.4205 −0.0345
8 5d6d 1.552 55 230 5d6d 54 889 −341 1.5978 0.0458
9 6s7s 1.955 60 660 6s7s 60 435 −225 1.939 −0.016
10 6p2 1.528 61 128 6p2 60 787 −341 1.5595 0.0315
11 4 f 2 1.471 63 703 4 f 2 63 563 −140 1.4968 0.0258
12 6s6d 0.506 64 361 6s6d 64 293 −68 0.5038 −0.0022

1.0525, 0.8707, 2.00 for J = 1, 0.9923, 0.7593, 1.445 for
J = 2, and 0.9564, 0.7357, 0.8000 for J = 3. The CI-MBPT
energy deviations from the experiment are 360, 38, and 326
cm−1 for J = 1, 2, 3. It is especially small for J = 2 and gives
some assurance that the theory works particularly well for
these states.

Apart from energies, g-factors are also calculated and
compared with experiment. In most cases the agreement is
better than 1%, but there are a few anomalies with substantial
disagreement. This can be traced to strong mixing between
adjacent states with small energy intervals. It can be expected
that transition properties might exhibit similar anomalies due
to strong mixing.

V. TRANSITION LA II CI-MBPT LINE STRENGTHS WITH
NIST VALUES

In Tables VIII–X La II CI-MBPT line strengths for J = 2
even to J = 1–3 odd transitions are compared with NIST
values. This comparison shows that agreement with NIST
values is quite accurate, with a few exception which can be
due to strong sensitivity of involved transitions to mixing
coefficients, since the NIST value accuracy is higher. The
2-2 transitions are expected to be most accurate since the
agreement for energies of J = 2 odd states is much better
than for energies of J = 2 and J = 3 odd states, but this is
not actually observed. Thus the agreement for energies is not
an obvious indication for high accuracy of transitions. More

TABLE III. The CI-MBPT energies and g-factors for J = 2 even states of La II with comparison with NIST values [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.8600, 0.7163, 0.7500. Note that �1 parameters are the same as in case
of J = 1 even states, which are slightly different from the ones giving the best La III single-valence energy for the lowest states. The standard
deviation for energy is 261 cm−1. It is interesting to observe that the energy is well reproduced for highly excited states up to 59 900 cm−1.

Level Conf. g-factor E Conf. E g-factor
No. NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 5d2 0.721 0 5d2 0 0 0.707 −1.4%
2 5d2 0.977 1394 5d6s 1531 137 0.997 2.0%
3 5d6s 1.133 2591 5d6s 2736 145 1.1355 0.2%
4 5d2 1.481 6227 5d2 6220 −7 1.4881 0.7%
5 5d6s 1.005 10 095 5d6s 10 915 820 1.0056 0.1%
6 4 f 6p 0.719 35 787 4 f 6p 36 112 325 0.7114 −0.8%
7 4 f 6p 1.071 38 221 4 f 6p 38 626 405 1.0864 1.5%
8 4 f 6p 1.036 40 457 4 f 6p 40 955 498 1.0356 0.0%
9 5d7s 1.117 49 884 5d7s 49 851 −33 1.1217 0.5%
10 5d7s 1.036 51 523 5d7s 51 488 −35 1.0446 0.9%
11 5d6d 1.154 52 734 5d6d 52 758 24 1.161 0.7%
12 5d6d 0.751 53 885 5d6d 53 801 −84 0.7512 0.0%
13 5d6d 1.183 55 184 5d6d 55 049 −135 1.2241 4.1%
14 5d6d 1.203 56 036 5d6d 55 895 −141 1.1961 −0.7%
15 4 f 2 0.675 57 399 4 f 2 57 583 184 0.674 −0.1%
16 6p2 1.035 59 900 6p2 59 951 51 1.0448 1.0%
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TABLE IV. The CI-MBPT energies and g-factors for J = 3 even states of La II with comparison with NIST values [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.8610, 0.7400, 0.7000. Note that �1 parameters are the same as in case
of J = 1 even states, which are slightly different from the ones giving the best La III single-valence energy for the lowest states. The standard
deviation for energy is 143 cm−1. It is interesting to observe that the energy is well reproduced for highly excited states up to 57 919 cm−1.

Level Conf. g-factor E Conf. E g-factor
No. NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 5d2 1.083 1016 5d2 1016 0 1.0834 0.0%
2 5d6s 1.334 3250 5d6s 3451 201 1.3333 −0.1%
3 4 f 6p 0.876 35 453 4 f 6p 35 813 360 0.8773 0.1%
4 4 f 6p 1.061 36 955 4 f 6p 37 271 316 1.0439 −1.7%
5 4 f 6p 0.944 37 210 4 f 6p 37 554 345 0.9601 1.6%
6 4 f 6p 1.274 39 403 4 f 6p 39 814 411 1.2854 1.1%
7 5d7s 1.315 51 229 5d7s 51 245 16 1.3293 1.4%
8 5d6d 0.987 52 138 5d6d 52 246 108 0.9996 1.3%
9 5d6d 0.861 52 858 5d6d 53 003 145 0.8644 0.3%
10 5d6d 1.218 53 690 5d6d 53 783 93 1.2245 0.6%
11 5d6d 1.088 54 840 5d6d 54 824 −16 1.0823 −0.6%
12 4 f 2 1.085 57 919 4 f 2 58 121 203 1.0833 −0.2%

comparison for transition probabilities and lifetimes is given
in following sections.

VI. ELECTRIC-DIPOLE TRANSITION PROBABILITY
COMPARISON BETWEEN THEORIES

AND EXPERIMENTS

In order to carefully evaluate the current theory, we cal-
culate multiple electric-dipole (E1) transition probabilities
and compare them (Table XI) with other theories [8,11] and
accurate experimental measurements [7,9]. The E1 transition
probabilities A are calculated from line strengths S:

A = 2.142 × 1010ω3S

2J + 1
, (4)

where ω is the experimental transition energy in atomic units,
and J is the total angular momentum of the upper state. In
most cases, our CI-MBPT results are in close agreement with
the two experiments. When the values are relatively small, as
expected, due to cancellation effects, the theoretical values
have some disagreement with experiments, but for values
greater than 2 × 107 s−1, the agreement is consistently on

the order of 10% and in some cases the theory agrees with
experiment within error bars. The agreement of the current
theory is somewhat better than of previous ones. For example,
in the 5d6p 3D2–5d6s 3D1 transition, our value 2.71 is much
closer to the experimental values of 3.10 and 2.72 than the two
theories, 5.59 and 6.75 (in units of 107 s−1). Nevertheless, the
approach of HFR+FIT+CP, which in some sense is similar to
CI-MBPT with adjustable parameters, is also successful. Thus
the fit alone is not sufficient, even when the fitted energies
are very close to experiment, as is the case of HFR+FIT+CP
theory.

Also we notice that in one case when the two experiments
disagree, the 6s6p 3P2–5d2 3P1 transition, our value is closer to
the experiment [9]. Surprisingly, the transition probabilities of
some suppressed transitions still agree with the experiments.

VII. CI-MBPT LIFETIME CALCULATIONS

We have calculated lifetimes for several excited states
(Table XII). Lifetimes are direct measurements, and they are
used to derive transition probabilities from branching ratios.
Thus lifetime errors can propagate to errors in transition

TABLE V. The CI-MBPT energies and g-factors for J = 1 odd states of La II with comparison with NIST energies [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.8159, 0.81, 0.81, 0.845, 0.855, 0.81, 0.815; 1.0525, 0.8707, 2.000. Note that the first �1 parameter differs from that in the case of
J = 1 even states. The standard deviation for energy is 360 cm−1.

Level Conf. g-factor E Conf. E g-factor
# NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 4 f 5d 0.542 21 442 4 f 5d 21 442 0 0.548 0.006
2 4 f 5d 1.431 22 705 4 f 5d 22 570 −135 1.443 0.012
3 5d6p 0.782 25 973 5d6p 26 005 32 0.715 −0.067
4 5d6p 0.876 27 424 5d6p 27 532 108 1.057 0.181
5 6s6p 1.267 28 155 5d6p 28 751 597 1.203 −0.064
6 4 f 5d 1.074 30 353 4 f 5d 31 231 878 1.039 −0.035
7 5d6p 1.492 32 161 5d6p 32 338 177 1.493 0.001
8 6s6p 0.999 45 692 6s6p 45 574 −118 1.002 0.003
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TABLE VI. The CI-MBPT energies and g-factors for J = 2 odd states of La II with comparison with NIST energies [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.8052, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.9923, 0.7593, 1.4451. Note that the first �1 parameter differs from that
in the case of the J = 1 odd state. The standard deviation for energy is 38 cm−1. The energies are very well reproduced as well as g-factors.

Level Conf. g-factor E Conf. E g-factor
No. NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 4 f 6s 0.664 14 148 4 f 6s 14 148 0 0.668 0.004
2 4 f 5d 0.754 17 212 4 f 5d 17 128 −83 0.744 −0.010
3 4 f 5d 0.923 18 895 4 f 5d 18 814 −82 0.934 0.011
4 4 f 5d 1.167 22 106 4 f 5d 22 064 −42 1.178 0.011
5 4 f 5d 1.459 23 247 4 f 5d 23 182 −65 1.456 −0.003
6 5d6p 0.887 24 463 5d6p 24 434 −29 0.886 −0.001
7 5d6p 0.825 26 414 5d6p 26 376 −38 0.820 −0.005
8 5d6p 1.168 27 388 5d6p 27 292 −96 1.169 0.001
9 6s6p 1.471 29 498 6s6p 29 368 −130 1.482 0.011
10 6s6p 1.494 33 204 6s6p 33 098 −106 1.496 0.002

probabilities. Several experimental lifetime measurements are
available as well as calculations. One additional issue for
getting transition probabilities from lifetimes is that not all
possible transitions are accounted for in the experiment, so
this can be a source of additional error. Theory is better
in this respect since it can generate a complete set of tran-
sitions, especially those outside the observable range. In
general a consistent agreement of CI-MBPT with all listed
experimental lifetimes can be observed, although for the
two lowest states, the CI-MBPT theory gave larger deviation
than the “HFR+FI+CP” theory of [11]. Excellent agreement
can be observed for states with short lifetimes, as expected,
since the corresponding decay channels are dominated by
strong transitions which can be calculated more accurately.
The current theory agrees most systematically with the LIF
experiments of [7].

VIII. FINE TUNING 10 PARAMETERS VS Ab initio AND
ONE-PARAMETER-VALUE OPTIMIZATION

The above results were presented for the case when 10
parameters were optimized after a good initial guess for the
seven first parameters from La III ion energies. The seven

parameters were optimized separately for each value of J of
La III. Roughly 80% reduction is observed, which indicates
that contributions beyond second order are quite small, so
the theory presented above is almost ab initio, in contrast to
Cowan’s code approach, where the ab initio results substan-
tially deviate from the correct values. The reduction of the
second-order correction can be attributed to screening by core
and can be roughly accounted for by setting all parameters
used in CI-MBPT calculations to 0.8. More accurate opti-
mization gave the following parameters and deviations: J = 1
even, 0.82, 334 cm−1; J = 2 even, 0.815, 333 cm−1; J = 3,
even, 0.83, 352 cm−1; J = 4, even, 0.81, 526 cm−1; J = 1
odd, 0.86, 430 cm−1; J = 2 odd, 0.82, 466 cm−1; J = 3 odd,
0.83, 524 cm−1. It is quite remarkable that such agreement
is obtained with essentially adjusting a single variable. How-
ever, when we considered the transition line strengths, the
results presented above in tables have much better accuracy
than the results from calculations using all 10 parameters
set to single values, shown above, for example, J = 2 even
to J = 1 odd transition, in Table XIII. The ab initio values
were quite off and not much correlated with experimental
results.

TABLE VII. The CI-MBPT energies and g-factors for J = 3 odd states of La II with comparison with NIST energies [21]. Theoretical and
experimental (NIST) energies are given in cm−1 and are aligned for the first level. The optimized CI-MBPT �1 and �2 parameters are the
following: 0.8046, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.9564, 0.7357, 0.8000. Note that only one �1 parameter differs from that
of the J = 2 odd state. The standard deviation for energy is 326 cm−1.

Level Conf. g-factor E Conf. E g-factor
# NIST NIST NIST CI-MBPT CI-MBPT Ediff CI-MBPT g-factordiff

1 4 f 6s 1.056 14 375 4 f 6s 14 375 0 1.065 0.009
2 4 f 6s 1.017 15 774 4 f 6s 15 883 109 1.019 0.002
3 4 f 5d 1.086 18 236 4 f 5d 17 977 −259 1.083 −0.003
4 4 f 5d 0.757 20 403 4 f 5d 20 119 −284 0.754 −0.003
5 4 f 5d 1.288 22 537 4 f 5d 22 641 104 1.309 0.021
6 4 f 5d 1.034 24 523 4 f 5d 25 317 795 1.021 −0.013
7 5d6p 1.088 26 838 5d6p 26 712 −126 1.089 0.001
8 5d6p 1.308 28 315 5d6p 28 202 −114 1.318 0.010
9 5d6p 1.005 32 201 5d6p 32 397 196 1.008 0.003
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TABLE VIII. The comparison of theoretical and NIST [21] line strengths for J = 2 even and J = 1 odd transitions. For J = 2 even states
the parameters were chosen: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.8600, 0.7163, 0.7500, which give energy level error
261 cm−1 and for J = 1 odd states the parameters were as follows: 0.8159, 0.81, 0.81, 0.845, 0.855, 0.81, 0.815; 1.0525, 0.8707, 2.000, which
give energy level error 360 cm−1. NIST accuracy labels are B+ � 7%, B � 10%, C+ � 18%, and C � 25%.

No. even E even No. odd E odd S NIST Acc. NIST S CI-MBPT dS/S

1 0 1 21 441 0.87 B+ 1.014 −17%
1 0 3 25 973 4.5 B+ 5.365 −19%
1 0 4 27 423 3.10 B 1.872 40%
2 1394 1 21 441 0.82 B+ 0.684 17%
2 1394 2 22 705 0.239 B 0.236 1%
2 1394 3 25 973 1.49 B 1.462 2%
2 1394 4 27 423 1.83 B 1.589 13%
3 2592 1 21 441 0.78 B 0.785 −1%
3 2592 2 22 705 1.15 B+ 1.271 −11%
3 2592 3 25 973 1.01 B 1.189 −18%
3 2592 4 27 423 0.57 C 0.426 25%
4 6227 4 27 423 0.96 B 1.435 −49%
5 10 095 4 27 423 3.9 C+ 3.108 20%

TABLE IX. The comparison of theoretical and NIST [21] line strengths for J = 2 even and J = 2 odd transitions. For J = 2 even states
the parameters were chosen: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.8600, 0.7163, 0.7500, which give energy level error
261 cm−1 and for J = 2 odd states the parameters were as follows: 0.8052, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.9923, 0.7593,
1.4451, which give energy level error 38 cm−1. NIST accuracy labels are B+ � 7%, B � 10%, C+ � 18%, and C � 25%.

No. even E even No. odd E odd S NIST Acc. NIST S CI-MBPT dS/S

1 0 3 18 895 0.39 C+ 0.381 2%
1 0 5 23 247 0.37 B 0.294 21%
1 0 6 24 463 11.5 B+ 9.880 14%
2 1394 5 23 247 1.25 B+ 1.418 −13%
2 1394 6 24 463 12.5 B+ 14.240 −14%
2 1394 7 26 414 11.3 B+ 11.102 2%
3 2592 4 22 106 2.39 B+ 3.244 −36%
3 2592 5 23 247 0.26 C+ 0.450 −73%
3 2592 7 26 414 7 B+ 7.133 −2%
3 2592 8 27 388 11 B 11.892 −8%

TABLE X. The comparison of theoretical and NIST [21] line strengths for J = 2 even and J = 3 odd transitions. For J = 2 even states
the parameters were chosen: 0.7600, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.8600, 0.7163, 0.7500, which give energy level error
261 cm−1 and for J = 3 odd states the parameters were as follows: 0.8046, 0.8100, 0.8100, 0.8450, 0.8550, 0.8100, 0.8150; 0.9564, 0.7357,
0.8000, which give energy level error 326 cm−1. NIST accuracy labels are B+ � 7%, B � 10%, C+ � 18%, and C � 25%.

No. even E even No. odd E odd S NIST Acc. NIST S CI-MBPT dS/S

1 0 3 18 236 0.105 C+ 0.087 17%
1 0 4 20 403 2.97 B+ 3.439 −16%
1 0 5 22 537 0.063 C+ 0.067 −7%
1 0 6 24 523 0.232 C+ 0.310 −33%
2 1394 4 20 403 0.2 C+ 0.182 9%
2 1394 5 22 537 0.65 B+ 0.611 6%
2 1394 6 24 523 1.6 B+ 2.110 −32%
2 1394 7 26 838 6.2 B+ 7.106 −15%
2 1394 8 28 315 1.9 C+ 1.549 18%
3 2592 3 18 236 0.81 B 1.119 −38%
3 2592 6 24 523 1.6 B+ 3.019 −89%
3 2592 7 26 838 18.2 B+ 17.579 3%
3 2592 8 28 315 6.7 C+ 5.459 19%
4 6227 8 28 315 3.8 C 4.230 −11%
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TABLE XI. The comparison for some transition probabilities. “HFR+FIT+CP” theoretical transition probabilities that are based on fitting
and core-polarization potential are taken from [11]; “Expt. 1” are experimental values from [7]; “Expt. 2” are taken from [9]. Units are 107 s−1.

Level Theory
Upper Energy Lower Energy CI-MBPT HFR+FIT+CP Theory [8] Expt. 1 Expt. 2

5d6p 3D1 25 973 5d2 3F2 0 6.35 3.58 5.30 ± 0.30
5d6p 1D2 24 463 5d2 3F2 0 5.86 7.73 6.80 ± 0.40
5d6p 1D2 24 463 5d2 1D2 1394 7.08 8.10 6.20 ± 0.30
5d6p 1D2 24 463 5d6s 3D1 1895 3.10 2.85 3.03 ± 0.17
5d6p 3D2 27 388 5d2 3F2 0 0.70 0.670 ± 0.007
5d6p 3D2 27 388 5d2 3F3 1016 9.60 11.3 10.7 9.90 ± 0.60 9.94 ± 0.09
5d6p 3D2 27 388 5d6s 3D1 1895 2.71 5.59 6.75 3.10 ± 0.40 2.72 ± 0.03
5d6p 3D2 27 388 5d6s 3D2 2592 7.35 4.51 7.18 6.80 ± 0.50 6.58 ± 0.06
5d6p 3D3 28 315 5d2 1D2 1394 0.89 1.28 ± 0.01
5d6p 3D3 28 315 5d6s 3D2 2592 2.71 5.48 5.51 3.30 ± 0.40 3.06 ± 0.03
5d6p 3D3 28 315 5d2 3P2 6227 1.31 1.04 ± 0.01
5d6p 3F2 26 414 5d2 3F2 0 0.27 0.88 ± 0.01
5d6p 3F2 26 414 5d2 3F3 1016 0.55 0.388 ± 0.004
5d6p 3F2 26 414 5d2 1D2 1394 7.05 6.41 7.20 ± 0.40 6.58 ± 0.06
5d6p 3F2 26 414 5d6s 3D1 1895 7.12 5.66 7.00 ± 0.40 6.08 ± 0.06
5d6p 3F2 26 414 5d6s 3D2 2592 3.91 6.52 3.81 ± 0.20 4.08 ± 0.04
5d6p 3F3 26 838 5d2 3F2 0 0.17 0.079 ± 0.001
5d6p 3F3 26 838 5d2 1D2 1394 3.33 1.87 2.97 ± 0.16 2.44 ± 0.02
5d6p 3F3 26 838 5d6s 3D2 2592 7.31 7.23 6.56 7.50 ± 0.40 7.26 ± 0.07
5d6p 3F3 26 838 5d2 3P2 6227 0.054 0.0389 ± 0.0004
6s6p 3P2 33 204 5d2 1D2 1394 0.64 0.308 ± 0.003
6s6p 3P2 33 204 5d6s 3D1 1895 0.413 0.418 ± 0.004
6s6p 3P2 33 204 5d6s 3D2 2592 5.22 5.16 ± 0.05
6s6p 3P2 33 204 5d6s 3D3 3250 27.2 28.4 ± 0.3
6s6p 3P2 33 204 5d2 3P1 5718 1.04 1.08 3.13 ± 0.19 0.596 ± 0.06
6s6p 3P2 33 204 5d2 3P2 6227 3.60 3.52 ± 0.04

IX. CONCLUSION

This paper presents accurate CI-MBPT calculations of
La II transition line strengths, probabilities, and lifetimes,
consistent with available reliable experimental measurements.
Ten adjustable parameters were introduced to improve energy
levels. Seven parameters were estimated from energies of

the La III ion, and then fit led to sets of parameters which
had six of the same parameters and four different parameters
for different J and parity of La II. Most parameters have
meaningful values and as a result, the transitions were ob-
served in systematic agreement with experiment. While the
optimized parameters described above give the best agreement
with experiment for line strengths, it is remarkable that it is

TABLE XII. The comparison for lifetimes, given in ns. Expt. CI-MBPT lifetimes are calculated with fit parameters given in the captions
of the energy tables. Experimental lifetimes are as follows: LIF1 [7]; LIF2 [3], [4], [5]; others [6]. Theory [8], HFR+FIT+CP [11].

Energy CI-MBPT LIF1 [7] LIF2 Others Theory

17 211.93 370 503 ± 26 511 ± 13a 255b, 486f

18 895.41 327 489 ± 24 573 ± 21c 303b, 477f

22 106.02 37.2 52.5 ± 2.6 51.1 ± 1.6c 33.4b, 55.6f

23 246.93 48.6 56.1 ± 2.8 72.8f

24 462.66 6.14 6.2 ± 0.3 6.7 ± 0.4d 3.23b, 5.34f

27 388.11 4.24 4.2 ± 0.2 4.4 ± 0.2d 3.66f

26 414.01 5.24 5.3 ± 0.3 5.8 ± 0.3d 5.6 ± 0.5e 3.5b, 5.03f

29 498.05 18.8 13.6 ± 0.7 14.2f

33 204.41 2.63 2.8 ± 0.2 2.6 ± 0.2d 2.44f

aRef. [3].
bRef. [8].
cRef. [4].
dRef. [5].
eRef. [6].
fHFR+FIT+CP [11].
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TABLE XIII. Comparison of line strengths (S) calculated with CI-MBPT: fully optimized (A), all parameters constrained to be of the same
value, which was optimized independently for J = 2 even and J = 1 odd (B), ab initio (C).

No. even E even No. odd E odd S NIST Acc. NIST SA SB SC

1 0 1 21 441 0.87 B+ 1.014 0.95 0.12
1 0 3 25 973 4.5 B+ 5.365 4.51 1.24
1 0 4 27 423 3.10 B 1.872 1.80 5.84
2 1394 1 21 441 0.82 B+ 0.684 1.13 0.14
2 1394 2 22 705 0.239 B 0.236 0.23 0.08
2 1394 3 25 973 1.49 B 1.462 1.11 1.14
2 1394 4 27 423 1.83 B 1.589 2.50 1.88
3 2592 1 21 441 0.78 B 0.785 0.36 0.11
3 2592 2 22 705 1.15 B+ 1.271 1.08 0.52
3 2592 3 25 973 1.01 B 1.189 0.44 0.26
3 2592 4 27 423 0.57 C 0.426 0.26 1.73
4 6227 4 27 423 0.96 B 1.435 1.40 0.01
5 10 095 4 27 423 3.9 C+ 3.108 2.95 0.01

possible to get quite accurate results by setting 10 parameters
to the same value and optimizing this value for each J and
parity. The values for different J and parity are also quite
close, around 0.8. It can be concluded that ab initio CI-2nd
order MBPT results are almost correct, with 20% correc-
tion of the second-order contribution coming from the core
screening or higher order corrections. However, due to strong
mixing, even such small corrections are important to include
to obtain reliable transition line strengths. It can be noted that
another theoretical approach based on the Cowan code with
fitting and additional polarization potentials (HFR+FIT+CP)
leads also to some agreement with experiment, since it takes
into account similar effects as CI-MBPT: relativistic effects
and core polarization in valence-core interaction. The current

CI-MBPT theory is not limited to La II and can be extended
to other ions and atoms with strong valence-core interac-
tion and relativistic effects. However, the accuracy for atoms
with more valence electrons might be reduced since mixing
coefficients becomes more sensitive to accuracy of calcula-
tions and it can become difficult to saturate contributions in
valence-valence CI.
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