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Relativistic calculations of the ground and inner-L-shell excited energy levels of berylliumlike ions
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Large-scale relativistic configuration-interaction method combined with many-body perturbation theory is
consistently applied to calculations of the energy levels of the ground and inner-L-shell excited states of
berylliumlike ions in the range 10 � Z � 92. The quantum electrodynamics, nuclear recoil, and frequency-
dependent Breit corrections are taken into account. The obtained results are supplemented with the systematical
estimation of the uncertainties.
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I. INTRODUCTION

The development of high-precision physics of few-electron
heavy ions in recent decades was motivated by testing quan-
tum electrodynamics (QED) at strong fields, precise deter-
mination of the fundamental constants and searches for their
time variation, provision of astrophysical investigations and
other applications, see, e.g., the recent reviews in Refs. [1–3]
and references therein. The most advanced calculations of
the binding energies of highly- charged ions are performed
within ab initio QED approach and include all the corrections
up to the second-order QED contributions. To date, these
state-of-the-art calculations have been done for the ground
and low-lying excited states of He-like [4–7], Li-like [8–10],
and B-like [11–13] ions. For Be-like ions, however, the QED
calculations of this kind have been accomplished for the
ground state only [14,15]. The energies of the excited states
of Be-like ions were studied previously within the various
relativistic methods [16–26].

The main goal of the present work is a high-precision
evaluation of the electron-electron correlation effects for the
ground and inner-L-shell excited states of Be-like ions within
the Breit approximation. Berylliumlike ions are the simplest
examples of atomic systems where both intrashell and in-
tershell interactions are important. High-precision theoret-
ical predictions require accurate evaluation of both kinds
of interaction. To perform the calculations we employ the
large-scale relativistic configuration-interaction (CI) method
combined with many-body perturbation theory (PT) in the
basis of Dirac-Sturm orbitals. Special attention is payed to
a systematic estimation of the uncertainties of the obtained
results. To obtain the total energy-level values, the CI ener-
gies are supplemented by the frequency-dependent Breit and
nuclear recoil corrections. The radiative QED effects are taken
into account by means of the model QED operator approach
[27,28]. The calculations are carried out along the beryllium
isoelectronic sequence with the nuclear charge number in
the range 10 � Z � 92. All these data yield predictive re-
sults, i.e., the results with systematical estimations of nu-

merical errors and uncertainties due to uncalculated effects.
The obtained theoretical predictions of the transition energies
provide a straightforward way for improving as soon as the
higher-order QED corrections will be available.

The paper is organized as follows. In the next section, we
give a brief outline of our approach and computation method.
Section III presents the numerical results and the comparison
to the previous theoretical calculations and available experi-
mental data. The relativistic units (h̄ = c = 1) and the Heavi-
side charge unit (α = e2/4π, e < 0) are used throughout the
paper.

II. METHODS OF CALCULATIONS

A. Electron correlations

Within the lowest-order relativistic approximation, the en-
ergy E of an N-electron atom is given by the eigenvalue of the
Dirac-Coulomb-Breit (DCB) equation

HDCB� = E�, (1)

where � is the many-electron wave function. The DCB
Hamiltonian in the “no-pair” approximation is conventionally
defined by

HDCB = �(+)[H0 + Vint]�
(+), (2)

H0 =
N∑
i

hD(i), Vint =
N∑

i< j

[VC(i, j) + VB(i, j)] , (3)

where the indices i and j numerate the electrons, hD is the
one-particle Dirac Hamiltonian,

hD = ααα · ppp + (β − 1)m + Vnucl(r), (4)

ααα and β are the Dirac matrices, ppp is the momentum operator,
m is the electron mass, Vnucl is the binding potential of the
nucleus, VC and VB are the Coulomb part and the frequency-
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independent Breit part of the electron-electron interaction,
respectively,

VC(i, j) = α

ri j
, (5)

VB(i, j) = − α

2ri j

[
αααi · ααα j + (αααi · rrri j )(ααα j · rrri j )

r2
i j

]
. (6)

Here α is the fine-structure constant, ri j = |rrri j | = |rrri − rrr j |, rrri

is the position vector of the ith electron. �(+) in Eq. (2) is the
product of the one-electron projectors on the positive-energy
states which correspond to some one-particle Dirac Hamil-
tonian h̃D, which does not necessarily coincide with Eq. (4).
In principle, the Hamiltonian h̃D may include even nonlocal
parts, e.g., the Dirac-Fock-Sturm operator. However, having
in mind that the results of the present work are supposed to be
merged with the anticipated rigorous QED calculations, in the
present work we define the operator h̃D as follows:

h̃D = ααα · ppp + (β − 1)m + Vnucl(r) + Vscr (r), (7)

where Vscr (r) is the local screening potential which models
the interelectronic interaction. Varying the screening potential
Vscr (r) in Eq. (7) modifies the definition of the positive-
energy-states projection operator �(+) and, therefore, slightly
influences the solutions of the DCB equation (1). This small
ambiguity in the DCB results is determined by the arbitrari-
ness of the realization of the “no-pair” approximation and can
be fully eliminated only within the rigorous bound-state QED
approach. The uncertainty related to the ambiguity is kept
under control in the present work.

In the present study, we treat the correlations within
the framework of the large-scale CI approach with the
configuration-state-function space which includes the quadru-
ple excitations from the reference state(s). To obtain the
high-precision DCB energies, we combine this approach with
the many-body PT and the CI+PT [29,30] methods. High-
precision calculations must take into account all types of the
correlations: the valence-valence, the core-valence, and the
core-core ones. Within the CI+PT method, the configuration-
interaction calculations are carried out for the valence elec-
trons while the residual core-valence and core-core inter-
action is treated by means of the many-body perturbation
theory taking into account the contributions up to the third
order. In contrast to the CI approach, for a given set of
the configuration-state functions the PT and CI+PT methods
provide only an approximate solution of Eq. (1), treating
the interelectronic-interaction effects incompletely. However,
PT and CI+PT calculations can be performed employing
the much more saturated basis sets and, therefore, provide
corrections, which can be used to improve the final CI results.
The PT series in the present work are constructed employing
the initial approximation, which is chosen to be consistent
with the definition of the Hamiltonian (7). That is, the zeroth-
order approximation in PT calculations corresponds to the
Hamiltonian

∑N
i h̃D(i). The numerical scheme is discussed in

more details in Sec. III.
Another important feature of the present evaluations is a

systematic estimation of the numerical uncertainties of the
obtained results. For each particular state and each nuclear
charge, we perform the calculations with a large number

of the different sets of the configuration-state functions. By
analyzing the successive increments of the results obtained
with the increasing basis sets, we conclude how well the PT,
CI+PT, and the final CI results converge.

B. QED effects

Accurate theoretical predictions of the energy levels de-
mand a supplementation of the relativistic energies obtained
from the DCB Hamiltonian by the QED corrections. Because
of significant technical difficulties, ab initio calculations of the
many-electron QED effects, in particular, for berylliumlike
ions, are mainly restricted to the ground state. For excited
states, especially for quasidegenerate states, or more complex
atoms (ions) one has to rely on a simplified treatment of the
QED effects.

First, we should take into account the frequency-dependent
Breit correction. This correction can be obtained by using the
full Coulomb-gauge QED interelectronic-interaction operator
(see, e.g., Ref. [27] and references therein) instead of the
Coulomb VC and standard Breit VB interactions in Eq. (2). Fol-
lowing Ref. [31], to avoid the spurious effects, we perform this
substitution only for the DCB Hamiltonian matrix elements
with the reference-state wave functions. The uncertainty due
to the omitted higher-order QED electron-correlation contri-
butions is conservatively estimated to be ±α2(αZ )3m r.u. or
±(αZ )3 a.u.. According to the available data for helium-,
lithium-, and berylliumlike ions this estimation appears to be
reliable.

The self-energy and vacuum-polarization corrections are
treated by means of the model QED (QEDMOD) operator
hQED [27,28] included into the DCB Hamiltonian (2). Taking
the difference between the CI energies evaluated with and
without hQED, we obtain the QED correction to the total en-
ergy. If the evaluation is carried out with the Dirac-Coulomb
basis set, this approach takes into account the QED effects
to zeroth order in 1/Z completely. The screened QED con-
tributions of the first and higher orders in 1/Z are treated in
this way only approximately. To estimate the accuracy of the
method we compared the screening effects evaluated employ-
ing the QEDMOD approach to the rigorous QED calculations
of the first order in the interelectronic interaction for He-like
ions [6], Li-like ions [9], and the available states of Be-like
ions [14,15,25,26]. Finally, we estimate the uncertainty of the
screened QED effects calculated to be at the level of 15% for
neon and growing linearly up to 30% for uranium. This also
includes the uncertainty due to omitted two-loop one-electron
QED effects.

C. Nuclear recoil effect

The nuclear recoil correction to the DCB energy accounts
for the finite mass of the nucleus. The fully relativistic
theory of the recoil effect can be formulated only within
QED [32–35]. In the lowest-order relativistic approximation
and in the first order in the electron-to-nucleus mass ratio
m/M the nuclear recoil effect on the binding energy can be
treated exploiting the following mass shift (MS) Hamiltonian
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TABLE I. The contributions of the second order of the perturbation theory to the Dirac-Coulomb-Breit ground-state binding energy of
Ne6+, in a.u.. The calculations are performed for the LDF potential including the single and double excitations. The values listed after the first
row are the increments obtained by adding successively the configurations while the maximal value of the orbital quantum number Lmax is
increased. The columns from left to right correspond to the enlargement of the size of the one-electron basis set and Nmax labels the number of
the one-electron virtual orbitals for a particular Lmax. The last line shows the total results of the calculations with the particular basis sets. The
final value is obtained by the extrapolation to the case Nmax → ∞.

Lmax Nmax = 10 Nmax = 15 Nmax = 20 Nmax = 25 Nmax = 30 Nmax → ∞
1 −0.232241 −0.232472 −0.232481 −0.232483 −0.232484
2 −0.011581 −0.011632 −0.011636 −0.011638 −0.011638
3 −0.003028 −0.003063 −0.003069 −0.003070 −0.003071
4 −0.001111 −0.001144 −0.001149 −0.001151 −0.001151
5 −0.000495 −0.000521 −0.000526 −0.000526 −0.000528
6 −0.000247 −0.000268 −0.000273 −0.000276 −0.000275
7 −0.000138 −0.000152 −0.000157 −0.000158 −0.000159
8 −0.000082 −0.000091 −0.000095 −0.000097 −0.000098
9 −0.000052 −0.000059 −0.000062 −0.000063 −0.000064
10 −0.000034 −0.000039 −0.000042 −0.000043 −0.000043
11–∞ −0.000117(24) −0.000133(21) −0.000144(22) −0.000151(22) −0.000156(23)

Total −0.249126(24) −0.249574(21) −0.249634(22) −0.249656(22) −0.249667(23) −0.249685(29)

[32,33,36]

HMS = 1

2M

∑
i, j

{
pi · p j − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j

}
. (8)

In the present paper, the energy shifts due to the nuclear recoil
effect are evaluated as the expectation value of the MS Hamil-
tonian (8) with the solutions of the DCB equation (1) [37]

�EMS = 〈�|HMS|�〉. (9)

The QED nuclear recoil corrections can be compara-
ble in magnitude to the results obtained within the lowest-
order relativistic approximation for high-Z ions, see, e.g.,
Refs. [38–41]. In the present work, we omit these corrections
since they are negligible compared to the uncertainty of the
other QED contributions. The QED nuclear recoil effect on
the binding energies of Be-like ions, in principle, can be es-
timated within the independent-electron approximation using
the results presented in Ref. [41].

III. RESULTS AND DISCUSSION

In the present work, the numerical procedure of solving
the DCB equation (1) is based on the CI method in the basis
of the four-component Dirac-Sturm (DS) orbitals [37,42]. The
employed one-electron basis set consists of the eigenfunctions
of the Dirac equation with the Hamiltonian (7) for the K and
L shells and the solutions of the corresponding Dirac-Sturm
equation for the other orbitals. Then, the projection operator
�(+) in Eq. (2) is constructed from the positive-energy eigen-
vectors obtained by the diagonalization of the one-electron
Dirac Hamiltonian h̃D in this basis. All the calculations are
performed with the local Dirac-Fock (LDF) [43] screening
potential included into the Dirac and Dirac-Sturm equations.
Introducing a screening potential in the zeroth-order approxi-
mation implies that the PT series are constructed for the resid-
ual interelectronic interaction. The LDF potential is designed
by the inversion of the radial Dirac equation with the radial
wave functions obtained in the Dirac-Fock approximation. To

describe the nuclear charge distribution, the standard Fermi
model with the nuclear radii taken from Ref. [44] is used.
We remind that the key condition for merging the CI results
with ab initio QED calculations is the use of the consistent
projection operator �(+), while the employed one-electron
basis set could be obtained for any other screening potential
or, e.g., nonlocal Dirac-Fock-Sturm operator.

The direct application of the CI method for Be-like ions
leads to time-consuming computational task which demands
significant resources to be used. Meanwhile, the major part
of the interelectronic interaction can be captured by means of
the lowest orders of the many-body PT which allows one to
perform the calculations with the larger basis sets at the same
cost. Therefore, to reach high accuracy, in the present work the
CI method was combined with the many-body PT (up to the
third order) and the CI+PT approaches [29]. The numerical
scheme to evaluate the DCB energies can be briefly described
as follows. At the first stage, we perform the calculations up
to the third order of the PT taking into account all kinds of
the single (S) and double (D) excitations. In the following,
we denote the zeroth-order approximation by PT0 whereas
the PT contributions of the first, second, and third orders
are labeled with PT1, PT2 SD, and PT3 SD, respectively. In
Table I, the PT2 SD contributions to the ground-state energy
of berylliumlike neon (Z = 10) are presented as an example.
We carry out a series of calculations with different bases and
analyze the successive increments as the basis is enlarged. In
our analysis, we study the dependence of the obtained results
on the parameter Lmax, which is the maximum value of the
orbital quantum number for the DS orbitals, and the parameter
Nmax, which is the number of the DS orbitals for each L. By
extending the basis set and taking the differences between the
results, we identify the contributions of the individual partial
waves and check the stability of the results for each orbital
number L with regard to the number of the basis functions.
The Lmax → ∞ extrapolation is done by polynomial least-
square fitting in 1/L. Finally, the extrapolation to the case
Nmax → ∞ is performed in the same way.
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TABLE II. Contributions to the DCB energy of the ground and singly excited n = 2 states in Ne6+, Xe50+, and U88+, in a.u.. The
calculations are performed for the LDF potential. See the text for details.

Ion Contribution 1s22s2 1S0 1s22s2p 3P0 1s22s2p 3P1 1s22s2p 1P1 1s22s2p 3P2

Ne6+ PT0 −91.402481 −90.768504 −90.768504 −90.760454 −90.760454
PT1 −18.825843 −19.065206 −19.063164 −18.547442 −19.066726
PT2 SD −0.249685(29) −0.085084(13) −0.085063(13) −0.143987(71) −0.085042(15)
PT3 SD 0.066395(74) 0.003883(9) 0.003877(8) 0.009919(59) 0.003883(8)
CI+PT3 SD −0.006567(46) 0.000008(4) 0.000008(3) 0.000064(49) 0.000008(3)
CI SD −0.000399(30) −0.000193(4) −0.000190(4) −0.000244(44) −0.000190(5)
CI+PT3 T −0.001555(8) −0.000042(3) −0.000042(3) −0.000349(16) −0.000042(3)
CI T 0.000063(9) −0.000019(3) −0.000019(2) −0.000024(7) −0.000018(2)
CI+PT3 Q −0.002688(22) −0.000002(1) −0.000002(1) −0.000010(5) 0.000002(1)
CI Q 0.000069(19) 0.000000 0.000000 0.000000 0.000000

Total −110.422691(102) −109.915159(17) −109.913099(16) −109.442527(115) −109.908582(18)

Xe50+ PT0 −3597.287490 −3592.603624 −3592.603624 −3578.750225 −3578.750225
PT1 −116.550483 −117.521971 −116.671166 −115.601314 −117.977435
PT2 SD −0.574620(38) −0.136988(42) −0.150397(38) −0.179117(55) −0.131641(39)
PT3 SD 0.098523(39) 0.001185(13) 0.001507(18) 0.002115(23) 0.001099(12)
CI+PT3 SD −0.008335(8) 0.000001(1) −0.000041(5) 0.000043(10) 0.000001(1)
CI SD −0.000041(5) −0.000009(2) −0.000012(4) −0.000009(3) −0.000009(4)
CI+PT3 T −0.000836(4) −0.000002(1) −0.000005(2) −0.000013(3) −0.000002(1)
CI T 0.000011(4) −0.000002(1) −0.000002(2) −0.000002(2) −0.000002(1)
CI+PT3 Q −0.001627(5) 0.000000 0.000000 0.000000 0.000000
CI Q 0.000010(3) 0.000000 0.000000 0.000000 0.000000

Total −3714.324888(56) −3710.261411(31) −3709.423740(42) −3694.528520(61) −3696.858214(41)

U88+ PT0 −11796.004585 −11785.830399 −11785.830399 −11631.048631 −11631.048631
PT1 −228.772670 −228.353746 −226.870923 −227.010654 −231.520289
PT2 SD −0.814213(47) −0.284411(44) −0.298765(37) −0.289955(50) −0.239898(48)
PT3 SD 0.211751(48) 0.002258(19) 0.002427(22) 0.002182(28) 0.001467(17)
CI+PT3 SD −0.053448(15) −0.000001(1) −0.000005(3) 0.000008(2) 0.000001(1)
CI SD −0.000043(9) −0.000016(3) −0.000016(4) −0.000011(3) −0.000010(3)
CI+PT3 T −0.001041(5) −0.000003(2) −0.000005(2) −0.000007(2) −0.000001(1)
CI T 0.000014(2) −0.000002 −0.000002(2) −0.000002(1) −0.000001(1)
CI+PT3 Q −0.001802(7) 0.000000 0.000000 0.000000 0.000000
CI Q 0.000008(2) 0.000000 0.000000 0.000000 0.000000

Total −12025.436029(70) −12014.466319(48) −12012.997688(43) −11858.347070(57) −11862.807362(51)

In Table II, to illustrate the employed numerical scheme,
we present the detailed results for the calculations of the DCB
energies for the ground and inner-L-shell excited states in
Ne6+, Xe50+, and U88+ ions. For each ion, the first four rows
give the results of the calculations by the PT. All the other
rows represent various corrections to the PT values. These

corrections are obtained by the successive application of the
more and more sophisticated approaches to treat the correla-
tion effects. The notations for the corresponding methods are
indicated in the second column of Table II. In the following,
we use the same notations for the methods and the corrections
obtained employing these methods.

TABLE III. The DCB energies without and with the frequency-dependent Breit correction included of the ground and singly excited n = 2
states in Ne6+ and U88+, in a.u.. The calculations are performed for the LDF and CH screening potentials.

Z Contribution Scr. pot. 1s22s2 1S0 1s22s2p 3P0 1s22s2p 3P1 1s22s2p 1P1 1s22s2p 3P2 ±(αZ )3

10 DCB LDF −110.422691(102) −109.915159(17) −109.913099(16) −109.442527(115) −109.908582(18) ±0.00039
CH −110.422734(173) −109.915150(56) −109.913083(37) −109.442502(166) −109.908561(56)

DCB + Breit(ω) LDF −110.422690(102) −109.915159(17) −109.913100(16) −109.442528(115) −109.908584(18)
CH −110.422733(173) −109.915150(56) −109.913083(37) −109.442503(166) −109.908563(56)

92 DCB LDF −12025.436029(70) −12014.466319(48) −12012.997688(43) −11858.347070(57) −11862.807362(51) ±0.30259
CH −12025.439460(168) −12014.468848(97) −12013.000236(92) −11858.350558(119) −11862.810878(85)

DCB + Breit(ω) LDF −12025.389517(70) −12014.433221(48) −12012.964639(43) −11858.550937(57) −11863.010939(51)
CH −12025.392794(168) −12014.435521(97) −12012.966955(92) −11858.554549(119) −11863.014749(85)
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TABLE IV. The DCB energies for the ground and singly excited n = 2 states of Be-like ions with Z = 10−92 supplemented with the
frequency-dependent Breit correction, in a.u.. The total energies are presented for the ground state, whereas for the other states the energies
relative to the ground state are given. The calculations are performed for the LDF potential. The energies are compared to the results of the
previous relativistic calculations.

Ion 1s22s2 1S0 1s22s2p 3P0 1s22s2p 3P1 1s22s2p 1P1 1s22s2p 3P2 Ref.

Ne6+ −110.42269(10) 0.50753(10) 0.50959(10) 0.98016(15) 0.51411(10)
0.5069 0.5090 0.9794 0.5135 [22]
0.5063 0.5084 0.9732 0.5129 [16]

Ar14+ −379.38562(6) 1.04647(7) 1.07912(7) 2.06504(9) 1.15558(7)
−379.3853 1.0465 1.0791 2.0653 1.1556 [26]

1.0462 1.0788 2.0615 1.1553 [16]
Fe22+ −812.59026(6) 1.60359(6) 1.74386(6) 3.44430(9) 2.16495(6)

−812.5898 1.6037 1.7440 3.4448 2.1653 [25]
1.6036 1.7439 3.4448 2.1649 [22]
1.6034 1.7436 3.4419 2.1647 [16]

Cu25+ − 1018.31580(6) 1.82046(6) 2.02396(6) 4.12200(9) 2.72516(6)
1.8203 2.0236 4.1199 2.7248 [16]

Zn26+ −1092.22806(9) 1.89411(11) 2.12087(12) 4.37677(14) 2.94268(11)
1.8941 2.1209 4.3772 2.9426 [22]
1.89389 2.12053 4.37467 2.94233 [16]

Kr32+ −1592.72137(6) 2.35438(7) 2.73476(7) 6.31245(9) 4.66589(7)
2.3544 2.7349 6.3125 4.6658 [22]
2.3566 2.7365 6.3134 4.6656 [18]
2.3542 2.7343 6.3105 4.6653 [16]

Mo38+ −2193.53880(7) 2.85758(8) 3.39847(8) 9.21628(10) 7.35801(8)
2.8577 3.3988 9.2163 7.3579 [22]
2.8574 3.3980 9.2144 7.3572 [16]

Xe50+ −3714.32145(7) 4.06066(7) 4.89818(7) 19.77947(8) 17.44970(7)
−3714.320 [14]

4.0601 4.8976 19.7766 17.4474 [16]
Nd56+ −4646.20449(5) 4.79683(6) 5.76626(6) 28.64454(7) 26.04788(6)

4.7971 5.7660 28.6411 26.0449 [16]
Yb66+ −6481.15683(5) 6.28448(6) 7.45012(6) 51.59172(8) 48.49943(6)

6.2747 7.4392 51.5812 48.4974 [16]
Hg76+ −8714.07758(6) 8.18212(7) 9.51208(7) 89.59987(9) 85.93975(7)

8.1838 9.5125 89.5902 85.9295 [16]
Bi79+ −9471.84553(6) 8.83780(7) 10.20951(7) 105.06042(9) 101.21364(7)

8.8398 10.2101 105.049 101.202 [16]
Th86+ −11418.88796(6) 10.47339(7) 11.92476(7) 150.80430(8) 146.48804(7)

10.4728 11.9244 150.801 146.483 [22]
10.4748 11.9241 150.786 146.469 [16]

U88+ −12025.38952(7) 10.95630(8) 12.42488(8) 166.83858(9) 162.37858(9)
−12025.387 [14]

10.9594 12.4286 166.840 162.379 [22]
10.9617 12.4280 166.823 162.362 [16]

Having performed the PT calculations, at the next stage
we apply the CI and CI+PT methods to take into account
the higher-order interelectronic-interaction effects. First, we
restrict the configuration space to the SD excitations only. In
the CI+PT method the configuration space is divided into a
smaller subspace for the CI calculations and its orthogonal
complement which is treated perturbatively. When the smaller
CI subspace is constructed, only the excitations from the
n = 2 orbitals of the reference state(s) into the virtual shells
with 2 � n � 6 are considered. Having completed the CI
calculations, the interaction with the orthogonal complement
is evaluated by the PT taking into account all the contri-
butions up to the third order. To extract the correction to

the contributions calculated at the previous stage, we take
the difference between the results obtained for the identical
basis within the CI+PT3 SD approach and by the PT up
to the third order. The corresponding corrections are labeled
“CI+PT3 SD” in Table II. The CI+PT3 SD term provides
the correction to the PT energy which is induced by the most
important configurations. After this, employing the identical
configuration spaces and considering the difference of the
values calculated within the CI and CI+PT3 approaches,
we extract the CI contribution for the configurations which
hold the highly excited virtual orbitals. This last correction is
indicated as “CI SD” in Table II. Then we gradually expand
the configuration space of the initial problem by considering
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TABLE V. The total binding energies for berylliumlike ions with Z = 10–92, in a.u.. The DCB energy, the frequency-dependent Breit
correction, QEDMOD and nuclear recoil corrections are shown separately. For the ground state the total energies are presented, whereas for
all other states the energies relative to the ground state are given. The comparison to the recent relativistic calculations [14,22,25,26], the data
from the NIST Atomic Spectra Database [47], and the available experimental values is presented.

Z Term DCB Breit(ω) QEDMOD Recoil Total Other theory NIST Experiment

10 1S0 −110.42269(10)(0) 0.00000 0.01096(21) 0.00305 −110.40868(45) −110.4087(5)
3P0 0.50753(10)(0) 0.00000 −0.00044(26) −0.00013 0.50696(62) 0.5069 a 0.50691(2)
3P1 0.50959(10)(0) 0.00000 −0.00043(26) −0.00013 0.50903(62) 0.5090 a 0.50898(2)
3P2 0.51411(10)(0) 0.00000 −0.00046(26) −0.00013 0.51356(62) 0.5135 a 0.51351(2)
1P1 0.98016(15)(0) 0.00000 −0.00041(27) −0.00014 0.97956(63) 0.9794 a 0.979392(6)

18 1S0 −379.38563(6)(1) 0.00001 0.0880(13) 0.00577 −379.2919(25) −379.2918(8)b

−379.2909(15)c

3P0 1.04649(7)(0) −0.00001 −0.0042(16) −0.00028 1.0420(35) 1.0422(4)b 1.0419(9)d

1.0419a

3P1 1.07914(7)(0) −0.00002 −0.0041(16) −0.00028 1.0747(35) 1.0749(6)b 1.07466(5)d

1.0747a

3P2 1.15563(7)(0) −0.00005 −0.0039(17) −0.00028 1.1514(35) 1.1516(10)b 1.1513(6)d

1.1513a

1P1 2.06508(9)(0) −0.00004 −0.0042(17) −0.00030 2.0605(35) 2.0611(4)b 2.06048(9)d

2.0604a

26 1S0 −812.59034(6)(4) 0.00008 0.3109(29) 0.00790 −812.2714(74) −812.2695(30)e −812.24(7)
−812.2688(17)c

3P0 1.60367(6)(0) −0.00008 −0.0162(36) −0.00041 1.587(10) 1.5875(45)e 1.5865(15)
1.5870a

3P1 1.74399(6)(0) −0.00014 −0.0159(36) −0.00041 1.728(10) 1.7280(45)e 1.7274(3)
1.7275a

3P2 2.16534(6)(0) −0.00038 −0.0148(37) −0.00041 2.150(10) 2.1505(45)e 2.1496(3)
2.1496a

1P1 3.44463(9)(0) −0.00033 −0.0156(38) −0.00042 3.428(10) 3.4290(45)e 3.4282(3)
3.4282a

29 1S0 −1018.31594(6)(1) 0.00014 0.4501(40) 0.00878 −1017.857(10) −1017.81(8)
3P0 1.82060(6)(0) −0.00014 −0.0240(50) −0.00046 1.796(14) 1.7947a 1.795(5)
3P1 2.02418(6)(0) −0.00022 −0.0237(50) −0.00046 2.000(14) 2.0001a 2.0001(5)
3P2 2.72584(6)(0) −0.00068 −0.0218(50) −0.00047 2.703(14) 2.7032a 2.7033(5)
1P1 4.12261(9)(0) −0.00060 −0.0228(51) −0.00048 4.099(14) 4.0979a 4.0979(5)

30 1S0 −1092.22823(6)(1) 0.00017 0.5047(44) 0.00926 −1091.714(11) −1091.7106(17)c −1091.67(9)
3P0 1.89427(6)(0) −0.00016 −0.0271(54) −0.00048 1.866(16) 1.8663a

3P1 2.12112(6)(0) −0.00026 −0.0268(54) −0.00049 2.094(16) 2.0934a

3P2 2.94350(6)(0) −0.00081 −0.0246(55) −0.00050 2.918(16) 2.9172a

1P1 4.37750(9)(0) −0.00073 −0.0257(56) −0.00051 4.351(16) 4.3515a

36 1S0 −1592.72180(6)(3) 0.00044 0.9310(73) 0.01024 −1591.780(20) −1591.7746(18)c −1591.7(2)
3P0 2.35479(7)(0) −0.00040 −0.0520(92) −0.00054 2.302(27) 2.3014a 2.303(4)
3P1 2.73530(7)(0) −0.00054 −0.0517(92) −0.00054 2.682(27) 2.6822a 2.6827(4)
3P2 4.66800(7)(0) −0.00211 −0.0467(92) −0.00056 4.619(27) 4.6174a 4.6175(4)
1P1 6.31444(9)(0) −0.00198 −0.0482(94) −0.00057 6.264(27) 6.2641a 6.2625(4)

42 1S0 −2193.53976(7)(7) 0.00096 1.558(12) 0.01201 −2191.969(31) −2191.9603(20)c −2191.9(2)
3P0 2.85844(8)(0) −0.00086 −0.090(14) −0.00063 2.767(43) 2.7662a

3P1 3.39948(8)(0) −0.00102 −0.090(14) −0.00064 3.308(43) 3.3076a

3P2 7.36268(8)(0) −0.00467 −0.080(14) −0.00067 7.277(43) 7.2757a

1P1 9.22082(10)(0) −0.00455 −0.082(15) −0.00068 9.134(43) 9.1337a

54 1S0 −3714.32489(6)(60) 0.00343 3.600(25) 0.01483 −3710.707(66) −3710.6864(31)c −3710.3(2)
3P0 4.06348(7)(4) −0.00282 −0.218(31) −0.00076 3.842(92) 3.8393a

3P1 4.90115(7)(4) −0.00296 −0.218(31) −0.00077 4.679(92) 4.6775a 4.6770(17)f

3P2 17.46667(7)(4) −0.01697 −0.192(31) −0.00085 17.256(92) 17.252a 17.2529(30)f

1P1 19.79637(8)(4) −0.01690 −0.195(31) −0.00086 19.584(92) 19.583a 19.5801(6)f

60 1S0 −4646.21031(5)(92) 0.00582 5.125(34) 0.01704 −4641.062(91) −4641.0341(44)c −4640.7(2)
3P0 4.80132(6)(4) −0.00449 −0.315(43) −0.00085 4.48(13) 4.4766a

3P1 5.77088(6)(4) −0.00462 −0.316(43) −0.00085 5.45(13) 5.4466a

3P2 26.07691(6)(4) −0.02902 −0.279(43) −0.00099 25.77(13) 25.7619a

1P1 28.67355(7)(4) −0.02901 −0.282(44) −0.00099 28.36(13) 28.3600a
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TABLE V. (Continued.)

Z Term DCB Breit(ω) QEDMOD Recoil Total Other theory NIST Experiment

70 1S0 −6481.16933(5)(420) 0.01250 8.64(10) 0.01886 −6472.50(17) −6472.4491(92)c −6472(2)
3P0 6.29282(6)(28) −0.00834 −0.54(13) −0.00086 5.74(23) 5.7331a

3P1 7.45858(6)(28) −0.00845 −0.55(13) −0.00086 6.90(23) 6.8994a

3P2 48.56289(6)(28) −0.06345 −0.48(13) −0.00111 48.01(23) 48.0049a

1P1 51.65526(8)(28) −0.06354 −0.49(13) −0.00110 51.10(23) 51.0988a

80 1S0 −8714.10155(6)(993) 0.02397 13.72(9) 0.02089 −8700.33(22) −8700.258(19)c −8700(4)
3P0 8.19475(7)(68) −0.01263 −0.88(12) −0.00080 7.30(30) 7.2854a

3P1 9.52480(7)(68) −0.01273 −0.88(12) −0.00080 8.63(30) 8.6161a

3P2 86.06413(7)(68) −0.12438 −0.79(12) −0.00124 85.15(30) 85.1225a

1P1 89.72446(9)(68) −0.12459 −0.80(12) −0.00122 88.80(30) 88.7853a

83 1S0 −9471.87413(6)(1331) 0.02860 15.63(10) 0.02154 −9456.20(28) −9456(5)
3P0 8.85142(7)(93) −0.01362 −1.01(13) −0.00075 7.83(39) 7.8129a

3P1 10.22321(7)(93) −0.01370 −1.01(13) −0.00076 9.20(39) 9.1852a

3P2 101.36324(7)(93) −0.14961 −0.91(13) −0.00128 100.30(39) 100.273a

1P1 105.21028(9)(93) −0.14986 −0.92(13) −0.00125 104.14(39) 104.123a

90 1S0 −11418.92993(6)(5194) 0.04198 20.90(14) 0.02197 −11397.97(32) −11397.876(63)c −11397(9)
3P0 10.48746(8)(370) −0.01407 −1.35(18) −0.00053 9.12(44) 9.0940a

3P1 11.93889(7)(370) −0.01413 −1.35(18) −0.00054 10.57(44) 10.5459a

3P2 146.71223(7)(370) −0.22419 −1.25(18) −0.00131 145.23(44) 145.195a

1P1 151.02878(8)(370) −0.22449 −1.26(18) −0.00125 149.54(44) 149.514a

92 1S0 −12025.43603(7)(1429) 0.04651 22.64(16) 0.02201 −12002.74(34) −12002.645(48)c −12003(10)
3P0 10.96971(8)(102) −0.01341 −1.46(20) −0.00043 9.51(47) 9.4653a

3P1 12.43834(8)(102) −0.01346 −1.46(20) −0.00045 10.97(47) 10.9343a

3P2 162.62867(9)(102) −0.25009 −1.36(20) −0.00131 161.02(47) 160.972a

1P1 167.08896(9)(102) −0.25038 −1.37(20) −0.00125 165.47(47) 165.433a

aCheng et al. [22].
bYerokhin et al. [26].
cMalyshev et al. [14].
dEdlén [48].
eYerokhin et al. [25].
fBernhardt et al. [49].

the triple (T) and quadruple (Q) excitations. Following the
same procedure, we obtain the CI+PT3 T, CI T, CI+PT3 Q,
and CI Q corrections, see Table II. Finally, summing up all the
contributions listed in Table II we obtain the total value of the
DCB energy for a given state.

In our CI+PT calculations, namely the CI+PT3 SD,
CI+PT3 T, and CI+PT3 Q, we limit the basis set with (Lmax =
5, Nmax = 25). Since the nonperturbative treatment of the 1s
orbitals and the highly excited virtual orbitals considerably
increases the configuration space we restrict the basis sets
parameters for CI T and CI Q calculations to (Lmax = 3,
Nmax = 25) and (Lmax = 2, Nmax = 25), respectively. From
Table II one can see that the triple and quadruple excitations
are important only for the ground state and are almost negli-
gible for the inner-L-shell excited states. The uncertainties of
all the contributions are mainly determined by the estimation
of the convergence of the results with respect to the maximum
value of the orbital quantum number Lmax for the DS orbitals.

To illustrate the dependence of the obtained DCB energies
on the realization of the “no-pair” approximation [see the
discussion after Eq. (2)] we performed the calculations for
Be-like neon and uranium starting from the different initial
approximations. In addition to the LDF potential introduced
in Eq. (7), we evaluated the DCB energies for the core-
Hartree potential induced by the 1s2 closed shell as well. The

results for the DCB energies without and with the frequency-
dependent Breit correction are presented in Table III. One
can see that for high-Z ions the scatter of the results ob-
tained for the different projection operators �(+) in Eq. (2)
is higher that the numerical uncertainty. For low-Z ions this
is not the case and the results obtained for the different
initial approximations lie within the estimated error bar. From
Table III, it is seen that the frequency-dependent Breit correc-
tion can not eliminate this discrepancy between the results.
This issue can be solved only by considering the excitations
into the negative-energy continuum within the rigorous QED
approach. In the following, this ambiguity of the DCB results
is kept under control and covered by our estimation of the
higher-order QED electron-correlation contributions which is
shown in the last column of Table III.

In Table IV we present the results for the DCB energies
of the ground and inner-L-shell excited states of Be-like ions
with the frequency-dependent Breit correction included (the
DCB energies without this correction can be found in third
column of Table V). For the ground state the total energies
are listed whereas for the excited states the energies relative
to the ground state are given. The presented uncertainties are
of purely numerical origin. Sometimes the behavior of the
uncertainties is not smooth enough when nuclear charge Z
changes. As it was noted above, the error bar is determined
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mainly by the convergence of the PT, which is a little bit better
for some Z and states and a little bit worse for the others. We
intentionally do not use any correction procedure and suppose
that the uncertainty is reliable anyway. There exist many
nonrelativistic and relativistic calculations of the correlation
effects for berylliumlike ions in the literature [16–24,45].
We compare our results to the most accurate ones: the CI
calculations by Yerokhin et al. for Be-like argon [26] and iron
[25], the CI calculations by Cheng et al. [22], the many-body
PT calculations by Safronova et al. [16,18], and our previous
ab initio QED evaluation of the ground-state energy [14].
We find our results to be in reasonable agreement with the
previous ones, and have better numerical accuracy. Since the
authors use different “no-pair” approximations, one cannot
expect to obtain the agreement better than the corresponding
ambiguity.

Finally, in Table V we collect the DCB, frequency-
dependent Breit, QEDMOD, and nuclear recoil contributions
to the total energies of the ground and inner-L-shell excited
states of Be-like ions. As in Table IV, for the ground state
the total energies are given while for the excited states the
energies relative to the ground state are shown. The DCB
energies are presented with the numerical uncertainty (in the
first brackets) as well as with the uncertainty due to the
finite nuclear size effect (in the second brackets). The last
one is conservatively estimated by adding quadratically two
contributions. The first contribution is obtained by varying the
root-mean-square nuclear radius within the error bars given
in Ref. [44], and the second one is obtained by changing the
model of the nuclear-charge distribution from the Fermi one
to the homogeneously charged-sphere model. In the case of
uranium, we also take into account the nuclear deformation
effect in accordance with the results of Ref. [46]. The column
labeled “Breit(ω)” represents the frequency-dependent Breit
contribution. The next two columns contain the QEDMOD
and nuclear recoil contributions, respectively. The final un-
certainty is mainly determined by the omitted higher-order
QED electron-correlation contributions, see the discussion in
Sec. II B. Its estimation is included in the uncertainty of the
“Total” values in addition to the previously discussed ones.
The obtained results are in reasonable agreement with the
previous calculations, the data from the NIST Atomic Spectra
Database [47], and the available experimental values [48,49].
We consider our calculations as the best ones available, and
our conservative estimation of the uncertainty can only be
reduced by rigorous evaluation of the higher-order QED con-
tributions.

IV. CONCLUSION

To summarize, we perform the systematic relativistic cal-
culations of the ground and inner-L-shell excited energy levels
of berylliumlike ions from neon to uranium. The main feature
of the work is the high-precision evaluation of the Dirac-
Coulomb-Breit contribution based on the large-scale rela-
tivistic configuration-interaction method combined with the
perturbation theory and are supplemented with the systematic
estimation of the uncertainties. To estimate the uncertainties
of the CI energies, we thoroughly analyze the successive in-
crements of the results obtained with the sets of configuration-
state functions increased in all possible directions. The DCB
energies are combined with the separately computed correc-
tions: frequency-dependent Breit, QED (using the model QED
operator), and nuclear recoil (using the relativistic mass shift
operator). All our theoretical predictions are given with the
uncertainties that include the estimation of the effects omitted
in the present theoretical treatment. For the energy of the
ground state, our results agree well with the benchmark the-
oretical data available in the literature [14]. For the transition
energies, our theoretical approach provides the most precise
values for berylliumlike ions in the range Z = 10−92. For
Be-like argon and iron our estimation of the omitted QED
contributions is performed in a more conservative way than
in Refs. [25,26]. The total accuracy for all Z is determined
by the uncalculated contributions of the higher-order QED
effects and can be improved as soon as these corrections are
calculated.
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