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Fast configuration-interaction calculations for nobelium and ytterbium
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We calculate excitation energies for low states of nobelium, including states with an open 5 f subshell. An
efficient version of the many-electron configuration-interaction method for treating the atom as a 16-external-
electron system is developed and used. The method is tested on calculations for ytterbium, which has an external
electron structure similar to that of nobelium. The results for nobelium are important for prediction of its
spectrum and for interpretation of recent measurements. Ytterbium is mostly used to study the features of the
method.
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I. INTRODUCTION

The configuration-interaction (CI) method [1,2] is one of a
few tools used to calculate the electron structure of open-shell
many-electron atoms. However, due to a huge increase of
the computational cost with the number of external electrons,
practical application is usually limited to systems with only
a few (no more than four) external electrons above closed
shells. There are no other ab initio methods to deal with more
complicated polyvalent systems. On the other hand, the use
of different semiempirical approaches is questionable when
experimental data are poor or absent. Superheavy elements
(Z > 100) [3,4] and highly charged ions [5] are just two
good examples of such systems. Lack of good theoretical
approaches is a big obstacle in the use of complicated atomic
systems in fundamental research. An important step to address
the problem was done in recent work [6]. It was demonstrated
that neglecting off-diagonal matrix elements in the CI matrix
between highly excited states can be used to reduce the CI
problem to a matrix eigenvalue problem with a relatively
small matrix with modified (compared to the standard CI
approach) matrix elements. Since the corrections to matrix
elements were similar to the second-order perturbation theory
corrections to the energy, the method was called CI with
perturbation theory (CIPT). Similar approaches were later
used in a number of works [7–9], while a somewhat different
variant of CI plus PT method was developed in [10,11].
This made it possible to perform calculations for complicated
atomic systems such as Yb (including states with excitations
from the 4 f subshell) [6,12], W [6], Ta, Db [13], Og [14], etc.

In this work we further develop the method to make it
substantially more efficient. We demonstrate that neglecting
the difference between energies of the states of the same ex-
cited configuration allows one to separate the summation over
projections of the total angular momentum of single-electron
states from the summation over other quantum numbers. Since
the summation over projections is the same for all similar

configurations, it can be performed only once and then reused
for other similar configurations. This reduces the computa-
tional time for Yb more than 20 times while the effect on
the accuracy of the calculations is negligible. We use the Yb
atom as an example and then apply the method to nobelium.
This allows us to predict the No spectrum including states
with excitations from the 5 f subshell. It is also important
that we provide a proof of validity of previous calculations
used for interpretation of the experimental measurements. The
energy, hyperfine structure, and isotope shift for the 1Po

1 state
of several No isotopes were measured [15] and used together
with atomic calculations to extract the nuclear parameters of
these isotopes [16]. The nobelium atom was treated in the
calculations as a system with two valence electrons above
closed shells. It is known that similar treatment of the 1Po

1 state
of Yb gives very poor results due to the mixing with a close
state containing excitation from the 4 f subshell. This mixing
cannot be properly accounted for in the calculations of two
valence electrons above closed shells. We demonstrate that the
situation in No is different and the corresponding mixing is
small. Therefore, interpretation of the measurements based on
the two-valence-electron calculations is correct. New energy
levels for low states of No including those with an open 5 f
subshell have been calculated.

II. FAST CONFIGURATION-INTERACTION METHOD

Fast configuration-interaction method (FCI) is a modifica-
tion of the CIPT method introduced in Ref. [6]. We start from
its brief description using the ytterbium atom as an example.
We consider Yb as a system with 16 electrons above closed
shells. The CI Hamiltonian has the form

HCI =
16∑

i

hi +
16∑

i< j

e2

ri j
, (1)
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where hi is the single-electron part of the Hamiltonian,

hi = cα · pi + (β − 1)mc2 + V HF(ri). (2)

Here V HF(r) is the self-consistent Hartree-Fock (HF) potential
(including the nuclear part) obtained in the V N−1 approxima-
tion, with one 6s electron removed from the HF calculations.
The many-electron wave function for 16 external electrons has
the form of an expansion over single-determinant basis states:

�(r1, . . . , r16) =
∑

i

ci�i(r1, . . . , r16). (3)

The basis states �i(r1, . . . , rNe ) are obtained by distributing
16 electrons over a fixed set of single-electron orbitals. The
coefficients of expansion ci and corresponding energies E are
found by solving the CI matrix eigenvalue problem

(HCI − EI )X = 0, (4)

where I is the unit matrix, the vector X = {c1, . . . , cNs}, and
Ns is the number of many-electron basis states. It is assumed
that a few first terms in the expansion (3) represent a good
approximation for the state of interest and the rest of the
sum is just a small correction. Then one can neglect the off-
diagonal matrix elements between the states from the second
part of the expansion and reduce the CI problem to one with
a small matrix and modified matrix elements (see Ref. [6] for
details)

〈i|HCI| j〉 → 〈i|HCI| j〉 +
∑

k

〈i|HCI|k〉〈k|HCI| j〉
E − Ek

. (5)

Here |i〉 ≡ �i(r1, . . . , r16), Ek = 〈k|HCI|k〉, and E is the en-
ergy of the state of interest [the same as E in (4)]. Since
this energy is not known in advance, one needs to perform
iterations over it. Iterations are important. They mean the
summation of the most important higher-order diagrams.

Starting from this point, we consider further modifications
to Eq. (5) which lead to the FCI method. The summation in (5)
goes over all states of excited configurations. If we neglect the
energy difference between states of the same configuration,
the summation in (5) can be divided into two parts

∑

k

〈i|HCI|k〉〈k|HCI| j〉
E − Ek

≈
∑

c

1

E − Ec

∑

kc

〈i|HCI|kc〉〈kc|HCI| j〉. (6)

The first summation is over excited configurations and Ec is
the average energy of each configuration. These energies can
be expressed analytically in terms of the radial integrals of
the Hamiltonian (1) [1,17,18] or calculated numerically. The
second summation is over many-electron configuration state
functions of a given configuration. These functions differ by
the values of projections of the total angular momenta of in-
dividual electronic states, but have all other quantum numbers
fixed. Therefore, the second summation can be rewritten as

∑

kc

〈i|HCI|kc〉〈kc|HCI| j〉

=
∑

αα′
rαα′

i j hαhα′ +
∑

αβ

sαβ
i j hαqβ +

∑

ββ ′
tββ ′
i j qβqβ ′ . (7)

FIG. 1. Four diagrams corresponding to three terms in (7). The
last term in (7) corresponds to diagrams (c) and (d).

Here hα and qβ are the one- and two-electron radial integrals
of the CI Hamiltonian (1) and α and β are shorthand for
the corresponding sets of electronic quantum numbers, for
example, α = n1l1 j1 and n2l2 j2. The three terms on the right-
hand side of (7) correspond to the four diagrams in Fig. 1
(there are two diagrams for the last term). The coefficients
rαα′

i j , sαβ
i j , and tββ ′

i j do not depend on the principal quantum
numbers of the one-electron states. They can be calculated
only once for a whole set of configurations, which differ by the
principle quantum numbers. For example, these coefficients
are the same for all configurations of the type 4 f 14nsn′s (6 <

n < n′ � nmax). Since the number of similar configurations
can get to over 100, the effect of reuse of the coefficients is
substantial.

We do not have explicit expressions for the coefficients r, s,
and t in (7) because all summations over projections are done
numerically. The procedure is as follows. We calculate terms
in (6) separately for each Coulomb integral or single-electron
matrix element. The result is the set of numbers which are
the coefficients r, s, and t in (7). Substituting appropriate
Coulomb integrals and singe-electron matrix elements gives
the value of the correction (6) for a relevant configuration.

To make a single-electron basis we use the B-spline tech-
nique [19] with 40 splines of order 9 in each partial wave in
a box of radius 40aB. The basis used in the calculations is
limited to 14 states above the core in each partial wave up
to a maximum value of the angular momentum lmax = 4. In
our experience, having 14 states above the core is sufficient to
saturate the basis. The contribution of the states with angular
momentum l > 4 is smaller than the effect of neglecting the
off-diagonal CI matrix elements. On the other hand, these
contributions can be easily included at the cost of a slightly
longer computation time. Note also that there is no formal
limitation on the number of external electrons in both the FCI
theory and CIPT [6] methods except for the reasonable size of
the CI matrix (which is much smaller than in the traditional
CI anyway).

Breit and quantum electrodynamic (QED) corrections are
included in the calculations via relevant corrections to the
Hartree-Fock potential. Breit interaction introduces a cor-
rection to the exchange part of the potential, while QED
effects are included via semiempirical correction to the direct
Hartree-Fock potential (see, e.g., [13] for details).
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TABLE I. Comparison of energies (in cm−1) and computational times (in minutes) for low states of ytterbium calculated with the use of
the CIPT and FCI methods. Note that all states of the same parity and total angular momentum are calculated in one run of the program.
Therefore, computational time is shown only for the lowest state. Here � is the difference between experimental and theoretical energies and
�th is the difference between CIPT and FCI energies. All theoretical energies are presented with respect to the FCI ground state. Gain is the
ratio of the CIPT computational time to the FCI computational time.

CIPT FCI

Expt. Energy � time Energy � �th time
State [20] (cm−1) (cm−1) (min) (cm−1) (cm−1) (cm−1) (min) Gain

Even
4 f 146s2 1S0 0 73 73 2 0 0 73 <1 ∼6

4 f 145d6s 3D1 24489 27692 −3203 68 27622 −3133 70 3 23

4 f 145d6s 3D2 24751 27753 −3002 78 27632 −2881 121 3.3 23

4 f 145d6s 3D3 25271 27873 −2602 55 27812 −2541 61 2.5 22

4 f 145d6s 1D2 27678 28244 −566 28125 −447 119

Odd
4 f 146s6p 3Po

0 17288 17870 −582 215 17820 −532 50 9 24

4 f 146s6p 3Po
1 17992 18374 −382 267 18264 −272 110 10 27

4 f 146s6p 3Po
2 19710 20076 −366 299 20049 −339 27 13 23

4 f 135d6s2 (7/2, 3/2)o
2 23188 24904 −1716 24806 −1618 98

4 f 135d6s2 (7/2, 3/2)o
3 27445 27261 184 221 27064 381 197 11 20

4 f 146s6p 1Po
1 25068 24433 635 24316 752 117

4 f 135d6s2 (7/2, 5/2)o
1 28857 29512 −655 29380 −523 132

The results of calculation for energy levels of Yb are shown
in Table I. All results are obtained by the same computer
code, which has options to run in either CIPT or FCI mode.
Therefore, the difference between the CIPT and FCI results
(�th) is only due to the neglect of the energy difference
between states within the same excited configuration. Some
difference between the present and previously published CIPT
results [6,12] is due to the differences in the size of the set of
configurations. The present code uses a different algorithm to
generate excited configurations from the reference configura-
tions. In our CIPT calculations [6], the number of reference
calculations used to generate other configurations was often
smaller than the number of configurations included in the
effective CI matrix. In the present FCI calculations these two
numbers are the same. The reference configurations are used
to generate all other configurations by exciting one or two
electrons in all available basis states. Using all configurations
in the effective CI matrix as reference configurations means
that we have more states in the perturbative correction (6).

The data in Table I show that switching from the CIPT
to FCI approaches results in a substantial gain in efficiency
(more than 20 times for Yb) while having only a negligible
effect on the energies. Note also that the use of the FCI instead
of CIPT method does not affect the calculation of the matrix
elements. The form of the calculated wave function is the
same in both methods. Calculation of the matrix elements was
considered in [12,13].

III. NOBELIUM

Nobelium is the heaviest element (Z = 102) for which
experimental spectroscopic data are available. The frequency
of the strong electric dipole transition from the ground state

to a state of opposite parity and the first ionization potential
have been recently measured [15,21]. The measurements [15]
include the hyperfine structure and isotope shifts for three
nobelium isotopes 252No, 253No, and 254No. The data were
used to extract nuclear parameters, such as nuclear radii
and magnetic dipole and electric quadrupole moments. This
procedure relies on the atomic calculations. In particular, an
advanced combination of the CI with coupled-cluster method
was used [15,16]. The nobelium atom has an electron structure
similar to that of ytterbium. Its ground state is [Ra]5 f 147s2 1S0.
The state for which the frequencies of the transitions were
measured was [Ra]5 f 147s7p 1P1. The calculations treated no-
belium as a system with two valence electrons above closed
shells. However, it is not known in advance whether such cal-
culations produce good results for No. Similar calculations for
the 4 f 146s6p 1P1 state of Yb give very poor results for the hy-
perfine structure [12] and electric dipole transition amplitude
from the ground state [22] due to the strong mixing with the
close state of the same parity and J but with an excitation from
the 4 f subshell, 4 f 135d6s2(7/2, 5/2)o

1 (last row of Table I).
This mixing cannot be included in the two-valence-electron
calculations. However, treating Yb as a 16-electron system
with the CIPT method leads to dramatic improvement of the
results [12]. The results of the FCI calculations presented
in Table II show that the potentially trouble-making state of
the 5 f 137s26d configuration in No (last row of Table II) is
significantly higher on the energy scale of No than a similar
state in Yb. The energy interval in No is five times larger and
mixing is small. The mixing in the 1P1 state of interest is 98%
to 2% in No (2% admixture of the state with excitation from
the 5 f subshell) and 75% to 25% in Yb. This means that the
mixing in No can be neglected and the 7s7p 1P1 state can be
treated as a two-valence-electron state.
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TABLE II. Calculated excitation energies (in cm−1) and g factors
for the lowest states of nobelium, in comparison with earlier calcula-
tions and experiment.

FCI (this work) Other [16]

State Energy g factor Cut CI CI+all

5 f 147s2 1S0 0 0 0
5 f 147s7p 3Po

0 20091 0.0000 16360 19567
3Po

1 21201 1.4581 18138 21042
3Po

2 26177 1.5000 22536 26133
1Po

1 29783a 1.0423 30237a 30203a

5 f 147s6d 3D1 31057 0.5000 31003 28436
3D2 31132 1.1589 31223 28942
3D3 31579 1.3333 31608 30183
1D2 32858 1.0078 37980 33504

5 f 137s26d 3Po
2 42756 1.4414 45720

3Ho
5 44294 1.0235 49731

5F o
3 45452 1.2229 52172

3Ho
6 45742 1.1667 52415

5Ko
4 46123 1.1192 53701

1Do
2 46718 1.0258 54016

5Ko
4 47713 1.1143 56597

3F o
3 47855 1.0807 56958

1Po
1 47952 1.1334 55695

aThe experimental value is 29 962 cm−1 [23].

Note the good agreement of the FCI energies with the only
known experimental value and with sophisticated calculations
by the CI plus all-order method for the two-valence-electron
states above the closed-shell core of No. There are two major
sources of uncertainty in the FCI calculations. One is the
neglect of core-valence correlations with core states below
5 f . The other is the perturbative treatment of the excited
configurations. Both these effects are treated more accurately
in the CI plus all-order calculations. Therefore, if the mixing
with states containing excitations from the 5 f subshell can be
neglected, the CI plus all-order calculations are preferable and
probably more accurate. From these calculations we know that
when the No atom is treated as a two-valence-electron system,
about 95% of the core-valence correlations come from the 5 f
electrons (this is also true for the 4 f electrons of Yb). These
correlations are included in the FCI calculations. This explains
the high accuracy of the results.
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Gustafsson, H. Hartman, K. Wang, M. Godefroid, C. Froese
Fischer, I. Grant, T. Brage, and G. Del Zanna, Atoms 5, 16
(2017).

[8] A. J. Geddes, D. A. Czapski, E. V. Kahl, and J. C. Berengut,
Phys. Rev. A 98, 042508 (2018).

[9] E. V. Kahl and J. C. Berengut, Comput. Phys. Commun. (2019),
doi: 10.1016/j.cpc.2018.12.014.

[10] Y. G. Rakhlina, M. G. Kozlov, and S. G. Porsev, Opt. Spectrosc.
90, 817 (2001).

[11] R. T. Imanbaeva and M. G. Kozlov, Ann. Phys. (Berlin)
1800253 (2018).

[12] V. A. Dzuba, V. V. Flambaum, and S. Schiller, Phys. Rev. A 98,
022501 (2018).

[13] B. G. C. Lackenby, V. A. Dzuba, and V. V. Flambaum,
Phys. Rev. A 98, 042512 (2018).

[14] B. G. C. Lackenby, V. A. Dzuba, and V. V. Flambaum,
Phys. Rev. A 98, 022518 (2018).

[15] S. Raeder, D. Ackermann, H. Backe, R. Beerwerth, J. C.
Berengut, M. Block, A. Borschevsky, B. Cheal, P. Chhetri, C. E.
Düllmann et al., Phys. Rev. Lett. 120, 232503 (2018).

[16] S. G. Porsev, M. S. Safronova, U. I. Safronova, V. A. Dzuba,
and V. V. Flambaum, Phys. Rev. A 98, 052512 (2018).

[17] I. Lindgren and A. Rosén, in Case Studies in Atomic Physics,
edited by E. McDaniel and M. McDowell (Elsevier, Amster-
dam, 1975), pp. 93–196.

[18] I. I. Tupitsyn, N. A. Zubova, V. M. Shabaev, G. Plunien, and
T. Stöhlker, Phys. Rev. A 98, 022517 (2018).

[19] W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126
(1986).

[20] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team,
NIST Atomic Spectra Database, available at http://physics.nist.
gov/PhysRefData/ASD/index.html (NIST, Gaithersburg, 2016).

[21] P. Chhetri, D. Ackermann, H. Backe, M. Block, B. Cheal, C.
Droese, C. E. Düllmann, J. Even, R. Ferrer, F. Giacoppo et al.,
Phys. Rev. Lett. 120, 263003 (2018).

[22] V. A. Dzuba and A. Derevianko, J. Phys. B 43, 074011
(2010).

[23] M. Laatiaoui, W. Lauth, H. Backe, M. Block, D. Ackermann,
B. Cheal, P. Chhetri, C. E. Düllmann, P. van Duppen, J. Even
et al., Nature (London) 538, 495 (2016).

032501-4

https://doi.org/10.1080/00018737000101191
https://doi.org/10.1080/00018737000101191
https://doi.org/10.1080/00018737000101191
https://doi.org/10.1080/00018737000101191
https://doi.org/10.1088/0022-3700/20/18/015
https://doi.org/10.1088/0022-3700/20/18/015
https://doi.org/10.1088/0022-3700/20/18/015
https://doi.org/10.1088/0022-3700/20/18/015
https://doi.org/10.1002/anie.200461072
https://doi.org/10.1002/anie.200461072
https://doi.org/10.1002/anie.200461072
https://doi.org/10.1002/anie.200461072
https://doi.org/10.1016/j.nuclphysa.2015.06.017
https://doi.org/10.1016/j.nuclphysa.2015.06.017
https://doi.org/10.1016/j.nuclphysa.2015.06.017
https://doi.org/10.1016/j.nuclphysa.2015.06.017
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1103/RevModPhys.90.045005
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.1103/PhysRevA.95.012503
https://doi.org/10.3390/atoms5020016
https://doi.org/10.3390/atoms5020016
https://doi.org/10.3390/atoms5020016
https://doi.org/10.3390/atoms5020016
https://doi.org/10.1103/PhysRevA.98.042508
https://doi.org/10.1103/PhysRevA.98.042508
https://doi.org/10.1103/PhysRevA.98.042508
https://doi.org/10.1103/PhysRevA.98.042508
https://doi.org/10.1016/j.cpc.2018.12.014
https://doi.org/10.1016/j.cpc.2018.12.014
https://doi.org/10.1016/j.cpc.2018.12.014
https://doi.org/10.1134/1.1380773
https://doi.org/10.1134/1.1380773
https://doi.org/10.1134/1.1380773
https://doi.org/10.1134/1.1380773
https://doi.org/10.1002/andp.201800253
https://doi.org/10.1002/andp.201800253
https://doi.org/10.1002/andp.201800253
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.042512
https://doi.org/10.1103/PhysRevA.98.042512
https://doi.org/10.1103/PhysRevA.98.042512
https://doi.org/10.1103/PhysRevA.98.042512
https://doi.org/10.1103/PhysRevA.98.022518
https://doi.org/10.1103/PhysRevA.98.022518
https://doi.org/10.1103/PhysRevA.98.022518
https://doi.org/10.1103/PhysRevA.98.022518
https://doi.org/10.1103/PhysRevLett.120.232503
https://doi.org/10.1103/PhysRevLett.120.232503
https://doi.org/10.1103/PhysRevLett.120.232503
https://doi.org/10.1103/PhysRevLett.120.232503
https://doi.org/10.1103/PhysRevA.98.052512
https://doi.org/10.1103/PhysRevA.98.052512
https://doi.org/10.1103/PhysRevA.98.052512
https://doi.org/10.1103/PhysRevA.98.052512
https://doi.org/10.1103/PhysRevA.98.022517
https://doi.org/10.1103/PhysRevA.98.022517
https://doi.org/10.1103/PhysRevA.98.022517
https://doi.org/10.1103/PhysRevA.98.022517
https://doi.org/10.1103/PhysRevLett.57.1126
https://doi.org/10.1103/PhysRevLett.57.1126
https://doi.org/10.1103/PhysRevLett.57.1126
https://doi.org/10.1103/PhysRevLett.57.1126
http://physics.nist.gov/PhysRefData/ASD/index.html
https://doi.org/10.1103/PhysRevLett.120.263003
https://doi.org/10.1103/PhysRevLett.120.263003
https://doi.org/10.1103/PhysRevLett.120.263003
https://doi.org/10.1103/PhysRevLett.120.263003
https://doi.org/10.1088/0953-4075/43/7/074011
https://doi.org/10.1088/0953-4075/43/7/074011
https://doi.org/10.1088/0953-4075/43/7/074011
https://doi.org/10.1088/0953-4075/43/7/074011
https://doi.org/10.1038/nature19345
https://doi.org/10.1038/nature19345
https://doi.org/10.1038/nature19345
https://doi.org/10.1038/nature19345

