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We present a hybrid quantum repeater protocol for the long-distance distribution of atomic entangled
states beyond qubits. In our scheme, imperfect noisy entangled pairs of two qudits, i.e., two discrete-variable
d-level systems, each of, in principle, arbitrary dimension d , are initially shared between the intermediate
stations of the channel. This is achieved via local, sufficiently strong light-matter interactions, involving optical
coherent states and their transmission after these interactions, and optical measurements on the transmitted field
modes, especially efficient continuous-variable homodyne detections (“hybrid” here refers to the simultaneous
exploitation of discrete- and continuous-variable degrees of freedom for the local processing and storage of
entangled states as well as their nonlocal distribution, respectively) and unambiguous state discrimination. For
qutrits we quantify the light-matter entanglement that can be effectively shared through an elementary lossy
channel, and for a repeater spacing of up to 10 km we show that the realistic (lossy) qutrit entanglement is
even larger than any ideal (loss-free) qubit entanglement. After including qudit entanglement purification and
swapping procedures, we calculate the long-distance entangled-pair distribution rates and the final entangled-
state fidelities for total communication distances of up to 1280 km. For example, employing unambiguous state
discrimination, with three rounds of purification, entangled qudit pairs of near-unit fidelity can be distributed
over 1280 km at an ideal maximal rate (assuming perfect gate operations) on the order of 100 Hz.
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I. INTRODUCTION

Long-distance quantum communication is one of the most
challenging tasks in practical quantum information. For future
quantum networks, the distribution of entanglement between
widely separated parties is necessary to make teleportation
and secure communication over long distances possible. In
practice, however, the direct transmission of quantum infor-
mation or entangled states is typically performed by sending
light through a lossy quantum channel (an optical fiber),
which leads to an exponential decay of the success rate or the
fidelity. To overcome this problem, quantum repeaters were
proposed [1–3].

From the perspective of the most recent quantum repeater
research, a quantum repeater protocol can be classified into
three distinct categories, referred to as quantum repeater gen-
erations [4,5]. Though much slower compared to second- and
third-generation quantum repeaters based on quantum error
correction of, respectively, local (operation and memory) or
transmission errors, first-generation quantum repeaters are at-
tractive due to their immediate experimental feasibility (how-
ever, for a potentially practical approach to a third-generation
quantum repeater based on static linear optics and certain
multi-photon entangled states, see [6,7]). In first-generation
quantum repeaters, by means of entanglement swapping [8],
the distribution of long-distance entanglement is achieved via
initial short-distance entanglement distributions. Hence, for
the realization of first-generation quantum repeater schemes,
the heralded generation of short-distance entanglement and
the availability of quantum memories are essential prerequi-
sites.

A prominent instance of a first-generation quantum re-
peater scheme is the well-known Duan-Lukin-Cirac-Zoller

(DLCZ) protocol [9], which employs atomic ensembles as
quantum memories and single photons with linear optics for
entanglement distribution and swapping. A remarkable fea-
ture of the DLCZ scheme is that the so-called purification
of entanglement, turning imperfect mixed entangled states
into purer (in principle, perfect) versions of entangled states,
is built into the process of entanglement distribution and
swapping (purifying the entangled atomic ensembles from
the effects of transmission and memory losses, respectively).
Otherwise, in a standard first-generation quantum repeater
[1,2], quantum error detection must be included via additional
rounds of entanglement purification acting on two or more
copies of entangled states and employing local quantum logic
(together with two-way classical communication). Second-
generation schemes use quantum error correction against
memory errors, while in third-generation quantum repeaters
memories are no longer necessary [10] since, for example,
suitably encoded quantum information is directly sent through
the channel [4–7]. A conceptually distinct version of such a
loss-error-correction-based repeater is the all-optical scheme
of Azuma et al. [11] based on the distribution of entangled
cluster states. This scheme also relies on sufficiently fast
feedforward operations (as opposed to the all-optical scheme
of [6,7]).

All experimental demonstrations to date are for elements
of a first-generation repeater, although light-matter interfaces
and/or memories are still too inefficient to exceed the bounds
[12–14] of repeaterless quantum communication (or to even
scale up a repeater to really large distances). In fact, many
quantum memories that have been demonstrated so far per-
form worse compared to a simple optical fiber loop [15].

A first-generation so-called hybrid quantum repeater
(HQR) protocol for the distribution of atomic qubit-qubit
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entanglement was given in [16–18]. Similar to other hybrid
quantum information processing schemes [19], this protocol
combines the advantages of discrete- and continuous-variable
quantum states. Atomic two-level systems with long coher-
ence time serve as quantum memories, while optical coherent
states are used to generate the initial entanglement between
the atoms using dispersive light-matter interactions and, in
particular, highly efficient homodyne measurements. Employ-
ing such Gaussian measurements and Gaussian states as the
initial resources appears very attractive from a practical point
of view compared to repeater schemes based on the generation
and detection of single photons. A particular experimental
approach to this scheme, based on ions, was considered in
[20]. Another, similar HQR protocol can be found in [21]
and a recent hybrid approach to entanglement swapping using
coherent states and linear optics is presented in [22].

On the fundamental level, higher-dimensional quantum
systems of dimension d, so-called qudits, do not only play
an important role in closing of the detection loophole in
Bell test experiments [23,24]. In addition, it has been shown
in [25] that qudits lead to an increase in data transfer and
especially to a higher security in quantum key distribution
(QKD) [26] compared to schemes involving only qubits [27].
One possibility to realize such improved schemes is the initial
distribution of high-dimensional entanglement using corre-
spondingly high-dimensional quantum repeaters, which is the
topic of this paper.1 Despite the many existing works on qubit
quantum repeaters, rather little attention has been paid to qudit
quantum repeaters aiming at the long-distance distribution of
qudit entanglement and information.

In this paper we generalize the HQR protocol for the
distribution of qubit-qubit entanglement [16,17] to the case
of qudit-qudit entanglement, i.e., bipartite states of multi-
level systems. The structure of the paper is as follows. In
Sec. II we review the HQR protocol for the qubit case and
adapt it to our later generalization for qudits. In Sec. III
we generalize this scheme to the case of three-level systems
(qutrits). After proposing a generalized dispersive qutrit-light
interaction, we discuss the process of entanglement generation
in elementary links using this interaction. We consider both
homodyne detection and unambiguous state discrimination
for the measurement on the light mode. Including entangle-
ment purification for the initial qutrit-qutrit entangled states,
we calculate the final rates and fidelities for our generalized
entanglement distribution scheme in various scenarios. Based
on these results, in Sec. IV we discuss a further generalization
to arbitrarily (finite) dimensional quantum systems before we
conclude in Sec. V.

1Note that inferring from the results of Refs. [12–14], e.g., the
effective secret bit rate in a long-distance QKD scheme based on
direct state transmissions cannot be improved beyond that of, for
instance, a qubit-based BB84 scheme. Thus, on a fundamental level,
beyond-qubit-type encodings do not seem to be particularly useful
for direct long-distance QKD applications. Nonetheless, when em-
ploying quantum repeaters, switching to qudits may indeed be useful.

II. HYBRID QUANTUM REPEATER FOR QUBITS

The physical setup for a qubit HQR is as follows. The
qubit is represented by the two spin states |0〉 and |1〉 of
an atomic electron. The atom is placed into a cavity and
the electronic spin interacts with a bright coherent-state light
pulse. The situation at hand is theoretically described by the
Jaynes-Cummings model in the limit of large detuning [28],
i.e., the probe pulse and the cavity are in resonance, but both
are detuned from the resonance frequency of the electronic
transition.

The interaction Hamiltonian in this model reads H
(2)
int =

h̄gσza
†a, where σz = − 1

2 |0〉〈0| + 1
2 |1〉〈1| corresponds to a

Pauli operator on the spin state and a†a is the photon-number
operator of the light mode. Furthermore, the parameter g

describes the strength of the spin-light coupling.
Based on this interaction Hamiltonian, the correspond-

ing unitary transformation is given by U2(θ ) = exp(iθσza
†a)

(with an effective interaction time θ = gt) and, up to an un-
conditional phase shift of the mode by eiθ/2, acts on the spin-
light system effectively as a controlled phase rotation, i.e.,

U2(θ )[(|0〉 + |1〉) ⊗ |α〉] = |0〉|α〉 + |1〉|αeiθ 〉. (1)

In the literature, this interaction is also known as dispersive in-
teraction [29]. For the generalization that we are aiming at, we
consider the case θ = π , corresponding to a strong interaction
resulting in coherent states | ± α〉 on the light mode.

The repeater protocol now works as follows. The matter
system is prepared in the state |0〉 + |1〉 and interacts disper-
sively with a single-mode coherent state |α〉 (referred to as
a qubus) as described by Eq. (1). Note that this leads to a
pure (effectively qubit-qubit) entangled state between the light
mode and the matter system.

The light mode is then sent through an optical channel
where it inevitably suffers from photon loss. The photon loss
can be modeled by mixing the light mode with a vacuum state
at a beam splitter with transmittance γ , where 1 − γ is related
to the loss probability of a single photon. It is also related to
the optical propagation distance L, i.e., γ = exp(− L

Latt
) with

the attenuation length Latt ≈ 22 km for photons at telecom
wavelength.

After applying the beam splitter, the total pure state of the
matter system, the qubus light mode, and the loss mode read

1√
2

(|0〉|√γα〉|
√

1 − γα〉 + |1〉|−√
γα〉|−

√
1 − γα〉). (2)

The relevant joint state of the matter system and the light mode
is obtained by tracing out the loss mode. Since the coherent
states |α〉 and |−α〉 are not orthogonal, it is useful to transform
these into an orthogonal basis. A suitable orthogonal basis in
this case is the basis of even and odd Schrödinger cat states
(throughout we assume α ∈ R),

|u〉 = 1√
Nu(α)

(|α〉 + |−α〉), (3)

|v〉 = 1√
Nv (α)

(|α〉 − |−α〉), (4)
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with normalization constants Nu(α) = 2(1 + e−2α2
) and

Nv (α) = 2(1 − e−2α2
). Expressed in this basis, one has

|α〉 = 1
2 (

√
Nu(α)|u〉 +

√
Nv (α)|v〉), (5)

|−α〉 = 1
2 (

√
Nu(α)|u〉 −

√
Nv (α)|v〉). (6)

After tracing out the loss mode in this basis, the resulting state
of the matter system and the qubus light mode becomes

ρout = Nu(
√

1 − γα)

4

[
1√
2

(|0〉|√γα〉 + |1〉|−√
γα〉)

]
× H.c.

+ Nv (
√

1 − γα)

4

×
[

1√
2

(|0〉|√γα〉 − |1〉|−√
γα〉)

]
× H.c. (7)

This is a mixed entangled state between the matter system (the
atomic qubit) and the qubus. To study the entanglement of
such a state and also for later purposes, it is most convenient
to use directly the |ũ〉, |ṽ〉 basis on the light mode, where the
tilde refers to the basis vectors in Eqs. (3) and (4) with damped
amplitudes

√
γα.

In addition, a basis change on the matter-qubit system into
the conjugate (Pauli) X basis, |0̃〉 = 1√

2
(|0〉 + |1〉) and |1̃〉 =

1√
2
(|0〉 − |1〉), gives the expression

ρout = Nu(
√

1 − γα)

4

[
1

2

(√
Nu(

√
γα)|0̃〉|ũ〉

+
√

Nv (
√

γα)|1̃〉|ṽ〉
)]

× H.c.

+ Nv (
√

1 − γα)

4

[
1

2

(√
Nu(

√
γα)|1̃〉|ũ〉

+
√

Nv (
√

γα)|0̃〉|ṽ〉
)]

× H.c., (8)

which now represents the state in Eq. (7) in suitable binary
orthogonal bases for both the matter system and the qubus.
Note that this does not change the entanglement properties of
the state since any entanglement measure is invariant under
local basis changes [30–32]. Also note that this matter-light
qubit-qubus entangled state effectively remains an entangled
qubit-qubit state, since the two initial coherent states of the
qubus span a two-dimensional qubit space and because indi-
vidual coherent states remain pure after a loss channel.

After traveling through an optical fiber over the distance
L0, the light mode interacts dispersively with a second matter-
qubit system, also prepared in the state |0〉 + |1〉, but this
time with the inverse angle θ = −π . The joint tripartite state,
written in the same bases as in Eq. (7), then becomes

ρ ′
out = Nu(

√
1 − γα)

4
|C0〉〈C0| + Nv (

√
1 − γα)

4
|C1〉〈C1|,

(9)

where

|C0〉 = 1√
2

(|φ+〉|√γα〉 + |ψ+〉|−√
γα〉) (10)

and

|C1〉 = 1√
2

(|φ−〉|√γα〉 + |ψ−〉|−√
γα〉). (11)

Here we introduced the qubit Bell states

|φ±〉 = 1√
2

(|00〉 ± |11〉), |ψ±〉 = 1√
2

(|10〉 ± |01〉).

(12)

The component |C0〉 in Eq. (9) is the desired target com-
ponent, whereas |C1〉 is the loss component that vanishes in
the loss-free case. Indeed, for γ → 1, one observes Nu(0) =
4 and Nv (0) = 0 such that in this case the corresponding
output density operator ρ ′

out = |C0〉〈C0| represents a pure
state. Opposed to the original HQR for qubits [17], here
every term in |C0〉 contains matter two-qubit entanglement
because of our choice θ = ±π . This choice will enable us
later to obtain a natural generalization to qudits. To achieve
the goal of distributing entanglement between the two sepa-
rated matter systems over the distance L0, the final step is a
measurement on the light mode, for instance, by homodyne
detection. Unlike in the original HQR protocol [17], where
the dispersive interaction is assumed to be weak (and hence
a p-homodyne detection is ultimately preferred over an x-
homodyne detection with, respectively, state distinguishabil-
ities ∼αθ versus αθ2 for small but otherwise unfixed θ ), a
suitable detection scheme in our case for strong and fixed
θ = ±π is a measurement of the quadrature x̂ = 1

2 (a + a†)
instead of p̂ = 1

2i
(a − a†).

The position distribution of coherent states with complex
amplitude β can be obtained by the square of their position
wave functions

|ψβ (x)|2 =
√

2

π
exp{−2[x − Re(β )]2}. (13)

Because of the finite overlap of the coherent states |√γα〉
and |−√

γα〉, it is impossible to perfectly distinguish these
states and an error due to this nonorthogonality has to be taken
into account. Based on Eq. (13), it is obvious that |√γα〉 and
|−√

γα〉 have Gaussian position distributions around
√

γα

and −√
γα, respectively. It is therefore useful to assign the

result of the x measurement to one of three possible windows.
The first window is w0 = [

√
γα − �,∞] with

√
γα >

� > 0. If the measurement result falls in this range, then the
light mode is effectively projected onto |√γα〉. Note that this
is an approximate projection due to the nonorthogonality, i.e.,
the resulting reduced state for the two matter qubits is still a
superposition of |φ+〉 and |ψ+〉 in the first (target) component,
while the weight of |ψ+〉 can be reduced by increasing the
value of

√
γα. The same is true in the second component for

|φ−〉 and |ψ−〉.
As for the second window, we define w1 =

[−∞,−√
γα + �], which is symmetric to w0 and therefore

represents the approximate projection on |−√
γα〉. Unlike w0,

one has now |ψ±〉 as the dominant terms in the superpositions
in the two components. It is again true that the nondominant
term in the superposition can be made arbitrarily small
by increasing

√
γα. A third window w2 can be defined

in between w0 and w1, and a measurement result in this
range will be considered as a failure event to be discarded
(see Fig. 1). Useful figures of merit for the performance
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FIG. 1. Phase-space representation of two coherent states |√γα〉
and |−√

γα〉 to be distinguished by homodyne detection. The mea-
surement window w2 includes all failure events that are discarded.

of this entanglement distribution scheme are the success
probabilities for the two nonfailure windows w0 and w1 as
well as the fidelity of the corresponding target state in the
first component. As the fidelity, we define the overlap of the
maximally entangled Bell states |φ+〉 (w0) or |ψ+〉 (w1) with
the (reduced) mixed state in Eq. (9) after the corresponding
homodyne measurement outcome for the light mode.

The success probability for a measurement result to fall in
the first window reads

pw0 = 1

2

∫ ∞

√
γα−�

dx[|ψ√
γα (x)|2 + |ψ−√

γα (x)|2]. (14)

For the second window we have

pw1 = 1

2

∫ −√
γα+�

−∞
dx[|ψ√

γα (x)|2 + |ψ−√
γα (x)|2], (15)

which equals pw0 for symmetry reasons. The same holds true
for the two fidelities

Fw0 = Fw1

= Nu(
√

1 − γα)

4

×
∫ −√

γα+�

−∞ dx|ψ−√
γα (x)|2∫ −√

γα+�

−∞ dx[|ψ√
γα (x)|2 + |ψ−√

γα (x)|2]
. (16)

The formulas for the fidelities and the success probabilities
imply the crucial dependence of the performance on the
choice of � and

√
γα: If we choose � = �0 := √

γα, then
we have no failure window and every measurement result
is assigned to one of the two coherent states | ± √

γα〉.
The corresponding success probability equals unity at the
expense of a rather low fidelity. With � < �0, the success
probability is clearly less than unity and the fidelity increases
correspondingly.

In general, the fidelity drops for too small
√

γα due to the
nonorthogonality and thus indistinguishability of the coherent
states | ± √

γα〉. The overall effect becomes manifest in bit-
flip errors in the target Bell states. Though leading to near
orthogonality, large amplitudes

√
γα result in a near-equal

mixture of the state in Eq. (9) which then, after a near-
deterministic discrimination, consists of one of the two pos-

sible Bell states in the first component and its phase-flipped
version in the second component. This state therefore has very
low entanglement and hence is of limited practical interest. So
the task is to find a regime of α and distances L0 such that both
reasonable fidelities and success probabilities can be obtained.

Besides homodyne detection, unambiguous state discrim-
ination (USD) has been considered for hybrid quantum re-
peaters in the literature [16]. The advantage here is that the
effects originating from the finite overlaps of the coherent
states no longer appear in the fidelity due to an error-free state
discrimination. The corresponding effects solely influence the
success probabilities depending on the weights of the incon-
clusive discrimination results. Two-state USD for coherent
states |±√

γα〉 is well known and can be optimally performed
via a single beam splitter and on-off detections [33].

Further steps in the original repeater protocol address the
purification of the mixed state in Eq. (9) after homodyne
detection and entanglement swapping on the matter system
or via the qubus to distribute the generated entanglement over
longer distances. For more details, see, e.g., [16].

III. HYBRID QUANTUM REPEATER FOR QUTRITS

A. Dispersive light-matter interaction

The dispersive interaction [see Eq. (1)] lies at the heart of
the HQR for qubits and therefore, as a first step to extend this
repeater scheme to qutrits, a generalization of the dispersive
interaction to the qutrit case is necessary. In analogy to the
dispersive interaction for qubits, we define the qutrit-qubus
interaction Hamiltonian as

H
(3)
int = h̄gS (3)

z a†a, (17)

where the operator S (3)
z acts on the qutrit basis states |0〉, |1〉,

and |2〉 as

S (3)
z |0〉 = −1|0〉, S (3)

z |1〉 = 0|1〉, S (3)
z |2〉 = 1|2〉. (18)

The matter system could be realized, for example, by a spin-
1 particle where the basis states are the eigenstates with
the corresponding magnetic quantum numbers mz = −1, 0, 1.
Such a spin realization of a qutrit has been demonstrated
in the framework of nuclear magnetic resonance for various
applications [34,35].

Similar to the qubit case, the corresponding unitary trans-
formation is U3(θ ) = exp(iθS (3)

z a†a), which again corre-
sponds to a conditional phase rotation on the light-matter
system (up to an unconditional phase shift of the qubus mode
by eiθ ), i.e.,

U3(θ )[(|0〉 + |1〉 + |2〉) ⊗ |α〉]
= |0〉|α〉 + |1〉|αeiθ 〉 + |2〉|αe2iθ 〉. (19)

For our purposes, we will choose θ = 2π
3 to obtain a rather

strong dispersive interaction.

B. Loss-free case

The qutrit hybrid repeater protocol works in complete
analogy to the qubit case. To illustrate the concept, we first
omit photon losses in the optical fiber and assume a noiseless
quantum channel.
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The repeater protocol works as follows. First, the mat-
ter system is initiated in the state 1√

3
(|0〉 + |1〉 + |2〉) and

interacts with a light mode in a coherent state |α〉 via the
qutrit dispersive interaction with θ = 2π

3 . This results in the
entangled matter-qubus state

1√
3

(|0〉|α〉 + |1〉|αe2πi/3〉 + |2〉|αe−2πi/3〉). (20)

The light mode is then sent to a second matter system,
separated from the first one by a distance L0 and also prepared
in the state 1√

3
(|0〉 + |1〉 + |2〉). The incoming light mode

interacts dispersively with the second matter system, but this
time with the reverse angle θ = − 2π

3 . The resulting pure
state is

1√
3

(
1√
3

(|00〉 + |11〉 + |22〉)|α〉

+ 1√
3

(|02〉 + |10〉 + |21〉)|αe2πi/3〉

+ 1√
3

(|01〉 + |12〉 + |20〉)|αe−2πi/3〉
)

. (21)

To keep the notation short and also for later purposes, it it
useful to define the set of maximally entangled qutrit Bell
states

|φkj 〉 = 1√
3

2∑
m=0

exp

(
2πikm

3

)
|m,m � j 〉, (22)

where � denotes subtraction modulo 3 and k, j = 0, 1, 2.
Equation (21) can therefore be rewritten as

1√
3

(|φ00〉|α〉 + |φ01〉|αe2πi/3〉 + |φ02〉|αe−2πi/3〉). (23)

To generate a maximally entangled state between the mat-
ter systems, a homodyne measurement is performed on the
light mode to distinguish the three coherent states of the mode
(see Fig. 2). Unlike the qubit case, here a measurement of p̂ is
useful, because it allows one to (almost) discriminate all three
coherent states (as opposed to the case of an x̂ measurement).
Moreover, for an ideal loss-free channel, increasing the ampli-
tude α leads to near orthogonality of the coherent states such
that a perfect, near maximally entangled qutrit-qutrit state
can be deterministically distributed over the distance L0. To
further extend the entanglement, two such elementary pairs

 

FIG. 2. Phase-space representation of the three coherent states
|α〉 and |αe±2πi/3〉 to be distinguished by homodyne detection.

next to each other are connected by entanglement swapping,
via a Bell measurement on adjacent repeater nodes. By one
successful entanglement swapping step, qutrit-qutrit entangle-
ment can thus be shared over the distance 2L0, and so forth.

We will address all the steps of the qutrit repeater protocol
in detail in the following sections and also explain which
subtleties and necessary generalizations occur in practice
compared to the idealized loss-free case discussed here.

C. Matter-light qutrit-qubus hybrid entanglement

At the beginning of the qutrit HQR protocol, the matter
system is prepared in the state 1√

3
(|0〉 + |1〉 + |2〉). The dis-

persive interaction with a coherent state leads to the state in
Eq. (20). In the realistic case, the light mode is sent through
an optical loss channel (e.g., an optical fiber), which is again
simulated by a coupling of the mode with an ancilla vacuum
state. This time, the application of the beam splitter leads to

1√
3

(|0〉|√γα〉|
√

1 − γα〉 + |1〉|√γαe2πi/3〉|
√

1 − γαe2πi/3〉 + |2〉|√γαe−2πi/3〉|
√

1 − γαe−2πi/3〉). (24)

To trace out the loss mode, it is again useful to switch to an orthogonal basis. While in the qubit case that basis is given by a kind
of coherent-state qubit Hadamard transform, the qutrit basis is given by a kind of coherent-state qutrit Hadamard gate to yield

|u〉 = 1√
Nu(α)

(|α〉 + |αe2πi/3〉 + |αe−2πi/3〉),

|v〉 = 1√
Nv (α)

(|α〉 + e2πi/3|αe2πi/3〉 + e−2πi/3|αe−2πi/3〉), (25)

|w〉 = 1√
Nw(α)

(|α〉 + e−2πi/3|αe2πi/3〉 + e2πi/3|αe−2πi/3〉),
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with normalization constants

Nu(α) = 3 + 6e−(3/2)α2
cos

(√
3
4α2

)
,

Nv (α) = 3 − e−(3/2)α2

[
3 cos

(√
3
4α2

)
+

√
3 sin

(√
3
4α2

)]
, (26)

Nw(α) = 3 − e−(3/2)α2

[
3 cos

(√
3
4α2

)
−

√
3 sin

(√
3
4α2

)]
.

The coherent states above can thus be written as

|α〉 = 1
3 [

√
Nu(α)|u〉 +

√
Nv (α)|v〉 +

√
Nw(α)|w〉],

|αe2πi/3〉 = 1
3 [

√
Nu(α)|u〉 + e−2πi/3

√
Nv (α)|v〉 + e2πi/3

√
Nw(α)|w〉], (27)

|αe−2πi/3〉 = 1
3 [

√
Nu(α)|u〉 + e2πi/3

√
Nv (α)|v〉 + e−2πi/3

√
Nw(α)|w〉].

Substituting this into Eq. (24) for the loss mode and tracing out the loss mode gives the three-component mixed state

ρout = Nu(
√

1 − γα)

9

[
1√
3

(|0〉|√γα〉 + |1〉|√γαe2πi/3〉 + |2〉|√γαe−2πi/3〉)

]
× H.c.

+ Nv (
√

1 − γα)

9

[
1√
3

(|0〉|√γα〉 + e−2πi/3|1〉|√γαe2πi/3〉 + e2πi/3|2〉|√γαe−2πi/3〉)

]
× H.c.

+ Nw(
√

1 − γα)

9

[
1√
3

(|0〉|√γα〉 + e2πi/3|1〉|√γαe2πi/3〉 + e−2πi/3|2〉|√γαe−2πi/3〉)

]
× H.c. (28)

This represents an entangled state between the qutrit matter system and the qubus. Similar to the qubit case, the resulting
density matrix still effectively represents a state of two qutrits (one optical and one material), since the three coherent states
{|√γα〉, |√γαe±2πi/3〉} effectively span a three-dimensional Hilbert space.

For studying the entanglement properties of ρout, it is helpful to express the light mode in the {|u〉, |v〉, |w〉} basis and the
matter system in the qutrit (generalized Pauli) X basis,

|0̃〉 = 1√
3

(|0〉 + |1〉 + |2〉), |1̃〉 = 1√
3

(|0〉 + e2πi/3|1〉 + e−2πi/3|2〉), |2̃〉 = 1√
3

(|0〉 + e−2πi/3|1〉 + e2πi/3|2〉). (29)

Equation (28) can thus be rewritten as

ρout = Nu(
√

1 − γα)

9

[
1

3
(
√

Nu(
√

γα)|0̃〉|ũ〉 +
√

Nv (
√

γα)|1̃〉|ṽ〉 +
√

Nw(
√

γα)|2̃〉|w̃〉)

]
× H.c.

+ Nv (
√

1 − γα)

9

[
1

3
(
√

Nu(
√

γα)|2̃〉|ũ〉 +
√

Nv (
√

γα)|1̃〉|ṽ〉 +
√

Nw(
√

γα)|0̃〉|w̃〉)

]
× H.c.

+ Nw(
√

1 − γα)

9

[
1

3
(
√

Nu(
√

γα)|1̃〉|ũ〉 +
√

Nv (
√

γα)|0̃〉|ṽ〉 +
√

Nw(
√

γα)|2̃〉|w̃〉)

]
× H.c., (30)

where |ũ〉, |ṽ〉, and |w̃〉 denote the basis vectors in Eq. (25)
with amplitudes

√
γα.

To quantify the qutrit-qutrit entanglement of this state, we
choose the so-called entanglement negativity [36,37] as our
figure of merit. The negativity N of a bipartite quantum state
of a system AB is defined as

N (ρ) = ‖ρTA‖ − 1

2
, (31)

where ρTA is the partial transposition of the bipartite state with
respect to system A and ‖ · ‖ denotes the trace norm.

A plot of the negativities for different initial amplitudes
α and various elementary distances L0 with γ = exp(− L0

Latt
)

is shown in Fig. 3. The dashed orange line indicates the
entanglement negativity of a pure maximally entangled qubit

Bell state. Up to a distance of approximately L0 = 10 km, it is
possible to generate matter-qubus entanglement stronger than
any, even ideal qubit-qubit entanglement. Taking into account
that the realistic distribution of qubit-qubit entanglement is
also subject to loss, the difference in entanglement negativity
will be even more significant. However, a crucial step still is
to transfer this entanglement to a sufficient extent from the
matter-light system to a matter-matter system for storage.

D. Matter-matter qutrit-qutrit entanglement

To distribute entanglement between two matter qutrits, the
light mode of the state in Eq. (28) interacts with a second
matter system, initialized in the state 1√

3
(|0〉 + |1〉 + |2〉).

This time, similar to the qubit case, the controlled phase
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FIG. 3. Negativity of the effective qutrit-qutrit state dependent
on α for various distances: 10 km (black line), 8 km (red line), 5 km
(green line), and 2 km (blue line) (from bottom to top). The orange
dashed line indicates the negativity of a maximally entangled pure
two-qubit Bell state.

rotation takes place with the opposite angle θ = − 2π
3 . One

obtains

ρ ′
out = Nu(

√
1 − γα)

9
|C0〉〈C0| + Nv (

√
1 − γα)

9
|C1〉〈C1|

+ Nw(
√

1 − γα)

9
|C2〉〈C2|, (32)

where the individual components are given by

|C0〉 = 1√
3

(|φ00〉|√γα〉

+ |φ02〉|√γαe−2πi/3〉 + |φ01〉|√γαe2πi/3〉), (33)

|C1〉 = 1√
3

(|φ20〉|√γα〉 + |φ22〉|√γαe−2πi/3〉

+ |φ21〉|√γαe2πi/3〉), (34)

|C2〉 = 1√
3

(|φ10〉|√γα〉 + |φ12〉|√γαe−2πi/3〉

+ |φ11〉|√γαe2πi/3〉), (35)

with the two-qutrit Bell states from Eq. (22).
In order to obtain entanglement between the two mat-

ter systems, the coherent states |√γα〉, |√γαe−2πi/3〉, and
|√γαe2πi/3〉 have to be distinguished (see Fig. 2). Like in
the loss-free case, this can be done using a homodyne mea-
surement on the light mode. Unlike the qubit case, an x̂

measurement is not suitable here, because |√γαe2πi/3〉 and
|√γαe−2πi/3〉 cannot be distinguished. Therefore, we choose
the quadrature p̂ whose Gaussian momentum distribution for
coherent states with complex amplitude β reads

|ψβ (p)|2 =
√

2

π
exp{−2[p − Im(β )]2}. (36)

This time, it is useful to define at least three windows
to which a measurement result is assigned when the light
mode of the output state in Eq. (32) is measured (see Fig. 2).
The first window is a symmetric interval around p = 0,
w0 = [−�,�]. A measurement result in this interval, similar
to the qubit case, corresponds to an approximate projection
on |√γα〉. A projection onto the states |√γαe±2πi/3〉 is

assumed if a value falls into w1 = [
√

3
2

√
γα − �,∞] or w2 =

[−∞,−
√

3
2

√
γα + �], respectively. Note that we need � �

1
2

√
3
4

√
γα =: �0 to exclude overlapping windows. We may

decide to add two extra windows w3 and w4 to include the
possibility of discarding measurement results (see Fig. 2). In-
clusion of such failure events renders our qutrit entanglement
distribution probabilistic.

Using the momentum wave functions for the coherent
states, the qutrit-qutrit-qubus |C0〉 component of ρ ′

out after
measuring the value p in the homodyne detection of the qubus
has the conditional state for the two matter qutrits

σC0
p = Trqubus (|p〉〈p|C0〉〈C0|p〉〈p|) = 1

3 [|φ00〉〈φ00||ψ√
γα (p)|2 + |φ02〉〈φ02||ψ√

γαe−2πi/3 (p)|2 + |φ01〉〈φ01||ψ√
γαe2πi/3 (p)|2

+ |φ00〉〈φ02|ψ√
γα (p)ψ∗√

γαe−2πi/3 (p) + |φ00〉〈φ01|ψ√
γα (p)ψ∗√

γαe2πi/3 (p) + |φ02〉〈φ00|ψ√
γαe−2πi/3 (p)ψ∗√

γα (p)

+ |φ02〉〈φ01|ψ√
γαe−2πi/3 (p)ψ∗√

γαe2πi/3 (p) + |φ01〉〈φ00|ψ√
γαe2πi/3 (p)ψ∗√

γα (p) + |φ01〉〈φ02|ψ√
γαe2πi/3 (p)ψ∗√

γαe−2πi/3 (p)].

(37)

If we only accept the selection window w0 = [−�,�], the
resulting unnormalized state is obtained by doing the p inte-
gration

σC0
w0

=
∫ �

−�

dp σC0
p . (38)

For carefully chosen α and L0, the undesired off-diagonal
parts of the density operator can be made very small and,
similar to the qubit case [17], they will eventually quickly
vanish after a few purification steps. Therefore we neglect

these terms in the following, and obtain the unnormalized state

ρ̃C0
w0

= 1

3

(
|φ00〉〈φ00|

∫ �

−�

dp|ψ√
γα (p)|2

+ |φ02〉〈φ02|
∫ �

−�

dp|ψ√
γαe−2πi/3 (p)|2

+ |φ01〉〈φ01|
∫ �

−�

dp|ψ√
γαe2πi/3 (p)|2

)
. (39)

032349-7



MARCEL BERGMANN AND PETER VAN LOOCK PHYSICAL REVIEW A 99, 032349 (2019)

The same calculation as above for |C0〉 can be made for the
other two components in ρ ′

out of Eq. (32), |C1〉 and |C2〉. The
total conditional (unnormalized) density matrix then becomes

ρ̃w0 = Nu(
√

1 − γα)

9
ρ̃C0

w0
+ Nv (

√
1 − γα)

9
ρ̃C1

w0

+ Nw(
√

1 − γα)

9
ρ̃C2

w0
, (40)

whose norm is the success probability

pw0 = Tr[ρ̃w0 ]

= 1

3

∫ �

−�

dp[|ψ√
γα (p)|2 + |ψ√

γαe−2πi/3 (p)|2

+ |ψ√
γαe2πi/3 (p)|2], (41)

where we used Tr[ρ ′
out] = 1 and Tr[ρ̃C0

w0
] = Tr[ρ̃C1

w0
] =

Tr[ρ̃C2
w0

]. The corresponding fidelity for the target state is then
calculated as

Fw0 = 〈φ00|ρ̃w0 |φ00〉
pw0

= Nu(
√

1 − γα)

9

1
3

∫ �

−�
dp|ψ√

γα (p)|2
pw0

. (42)

The success probabilities for the other two selection windows
are obtained in complete analogy,

pw1 = 1

3

∫ ∞

(
√

3/2)
√

γα−�

dp[|ψ√
γα (p)|2 + |ψ√

γαe−2πi/3 (p)|2

+ |ψ√
γαe2πi/3 (p)|2],

pw2 = 1

3

∫ −(
√

3/2)
√

γα+�

−∞
dp[|ψ√

γα (p)|2 + |ψ√
γαe−2πi/3 (p)|2

+ |ψ√
γαe2πi/3 (p)|2]. (43)

The corresponding fidelities with respect to the target states
|φ01〉 and |φ02〉 for these windows are, respectively,

Fw1 = Nu(
√

1 − γα)

9

1
3

∫ ∞
(
√

3/2)
√

γα−�
|ψ√

γαe2πi/3 (p)|2
pw1

(44)

and

Fw2 = Nu(
√

1 − γα)

9

1
3

∫ −(
√

3/2)
√

γα+�

−∞ |ψ√
γαe−2πi/3 (p)|2

pw2

.

(45)

To estimate the performance of this entanglement-generation
scheme, we define the average fidelity as

Fav =
∑2

i=0 pwi
Fwi

Psucc
, (46)

where Psucc = ∑2
i=0 pwi

is the total success probability. The α

dependence of the success probability and the average fidelity
for various values of � is shown in Figs. 4 and 5 for L0 =
5 km.

Clearly, if � = �0, then there is no failure window at all
and all measurement results are accepted. This corresponds
to unit success probability Psucc = 1. On the other hand, for

0 1 2 3 4 5
α

0.2

0.4

0.6

0.8

1.0

Psucc

FIG. 4. Success probability for the homodyne-based distribution
of qutrit-qutrit entanglement over a distance of 5 km for various �:
� = �0 (red line), � = 0.7�0 (green line), � = 0.5�0 (blue line),
� = 0.2�0 (orange line), and � = 0.001�0 (magenta line) (from
top to bottom).

smaller (but not too small) �, i.e., � < �0, the success
probability still tends to unity for increasing α, as long as
the three coherent states remain well within their respective
selection windows. The fidelity, however, shows the opposite
behavior. The smaller � is chosen, the higher the average
fidelity for moderate values of α. Increasing α makes the
fidelity finally drop to 1/3, which is a direct consequence of
the loss channel whose mixed output becomes more and more
balanced for larger α. For each chosen value of �, there is an
optimal value for α leading to a maximal fidelity. For instance,
still with L0 = 5 km, choosing � = 0.2�0 and α ≈ 1 leads to
an average fidelity of Fav ≈ 0.7 at a very reasonable success
probability of Psucc ≈ 0.4. The corresponding plots for ele-
mentary distances of L0 = 10 km are shown in Figs. 6 and 7.

E. Unambiguous state discrimination

In this section we consider an alternative measurement
scheme for a qutrit hybrid repeater based upon so-called

0 1 2 3 4 5
α

0.3

0.4

0.5

0.6

0.7

Fav

FIG. 5. Average fidelity for the homodyne-based distribution of
qutrit-qutrit entanglement over a distance of 5 km for various �: � =
�0 (red line), � = 0.7�0 (green line), � = 0.5�0 (blue line), � =
0.2�0 (orange line), and � = 0.001�0 (magenta line) (from bottom
to top).
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0 1 2 3 4 5
α

0.2

0.4

0.6

0.8

1.0

Psucc

FIG. 6. Success probability for the homodyne-based distribution
of qutrit-qutrit entanglement over a distance of 10 km for various �:
� = �0 (red line), � = 0.7�0 (green line), � = 0.5�0 (blue line),
� = 0.2�0 (orange line), and � = 0.001�0 (magenta line) (from
top to bottom).

unambiguous state discrimination. Compared to the
homodyne-based scheme, the conceptual difference in
the USD-based scheme is that the nonorthogonality of
the coherent states only affects Psucc and no longer Fav ,
as USD enables one to discriminate nonorthogonal states
probabilistically in an error-free fashion. The idea is that a
successful and error-free projection onto one of the states
|√γα〉 or |√γαe±2πi/3〉 would always lead to a maximally
entangled state in the first component of Eq. (32). The
task is therefore to find the most efficient possible scheme
in the framework of quantum theory for unambiguously
discriminating between the three coherent states above.

This problem was treated by Chefles [38], who derived the
optimal success probability as

PD � min
r

2∑
j=0

e−2πijr/3eγα2(e2πij/3−1), (47)

0 1 2 3 4 5
α

0.3

0.4

0.5

0.6

Fav

FIG. 7. Average fidelity for the homodyne-based distribution of
qutrit-qutrit entanglement over a distance of 10 km for various �:
� = �0 (red line), � = 0.7�0 (green line), � = 0.5�0 (blue line),
� = 0.2�0 (orange line), and � = 0.001�0 (magenta line) (from
bottom to top).

FIG. 8. Success probabilities (increasing with increasing α) and
fidelities (decreasing with increasing α) for the USD-based scheme
for 5 km (red dotted line) and 10 km (green solid line) dependent
on α.

with r = 0, 1, 2 (see also Refs. [39,40]). The relation between
this optimal probability and the corresponding fidelity of the
final maximally entangled state is shown in Fig. 8.

F. Entanglement purification

Entanglement purification aims at generating fewer high-
fidelity copies from many noisy copies of a certain pure target
state via local operations and classical communication. By
iterating this purification protocol, a fidelity arbitrarily close
to unity can be achieved. The purification of mixed qubit
states was investigated by Bennett et al. [41] for the class of
Werner states [42]. Nearly at the same time, Deutsch et al.
[43] demonstrated a similar purification protocol for states
diagonal in the Bell basis. Both protocols require only two
copies for each step with Deutsch’s scheme, leading to a better
efficiency compared to the Bennett scheme. The latter was
demonstrated experimentally [44,45] and also generalized to
arbitrary dimensions [46,47].

As shown in the next two sections for both USD and
homodyne detection, we deal in both cases with Bell-diagonal
mixed quantum states beyond qubits. Therefore, we choose
a qudit generalization of the Deutsch protocol presented in
[48] for the purification step. Because of the different arising
output states to be purified, we treat USD and homodyne
detection separately.

1. USD

Since USD perfectly distinguishes between the three co-
herent states |√γα〉 and |√γαe±2πi/3〉, the exact final state
on the repeater segment for a projection onto, for instance,
|√γα〉 reads as

ρeff = Nu(
√

1 − γα)

9
|φ00〉〈φ00| + Nv (

√
1 − γα)

9
|φ10〉〈φ10|

+ Nw(
√

1 − γα)

9
|φ20〉〈φ20|, (48)
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where, as defined earlier,

|φ00〉 = 1√
3

(|00〉 + |11〉 + |22〉),

|φ10〉 = 1√
3

(|00〉 + e−2πi/3|11〉 + e2πi/3|22〉),

|φ20〉 = 1√
3

(|00〉 + e2πi/3|11〉 + e−2πi/3|22〉).

(49)

To perform a purification of this state, i.e., to increase the
statistical weight of |φ00〉 in Eq. (48), at least two copies of the
matter-matter output state are required. The protocol in [48]
in this case works as follows: The first matter-qutrit system is
subject to the transformation

|0〉 �→ 1√
3

(|0〉 + |1〉 + |2〉),

|1〉 �→ 1√
3

(|0〉 + eiφ|1〉 + e−iφ|2〉),

|2〉 �→ 1√
3

(|0〉 + e−iφ|1〉 + eiφ|2〉),

(50)

while on the second system

|0〉 �→ 1√
3

(|0〉 + |1〉 + |2〉),

|1〉 �→ 1√
3

(|0〉 + e−iφ|1〉 + eiφ|2〉),

|2〉 �→ 1√
3

(|0〉 + eiφ|1〉 + e−iφ|2〉)

(51)

is performed where φ = 2π
3 . The components of the mixture

are then transformed as

|φ00〉 �→ |φ00〉 = 1√
3

(|00〉 + |11〉 + |22〉),

|φ10〉 �→ |φ01〉 = 1√
3

(|01〉 + |12〉 + |20〉),

|φ20〉 �→ |φ02〉 = 1√
3

(|10〉 + |21〉 + |02〉).

(52)

A mixture of |φ00〉, |φ01〉, and |φ02〉 with statistical weights
p0, p1, and p2, where p0 + p1 + p2 = 1, can now be purified
using the purification scheme of [48]. Note that the purifi-
cation of the state in Eq. (48) can be considered as a qutrit
version of [44,45]: One takes two copies of the state that is
shared between two parties A and B. Local subtraction gates
are applied on the qutrits belonging to A and B before A and
B select one of the two copies and measure its respective spin.
Equal spin results lead to the new mixed state

ρ ′ =
∑2

j=0 p2
j |φ0j 〉〈φ0j |∑2
j=0 p2

j

, (53)

whose fidelity with respect to the target state |D̃0〉 is now
increased, provided p0 > 1/3 and p1, p2 < p0.

2. Homodyne scheme

After the homodyne detection, the conditional state result-
ing from Eq. (32) also represents a mixed state. Depending on
the channel distance, the selection window, and the amplitude
α, the resulting state in the first component is a mixture of
the dominant target state |φ00〉 with small extra components
of |φ02〉 and |φ01〉 (if the result belongs to window w0).
Furthermore, small off-diagonal terms appear which will be
neglected. This is similar for the other two components of the
mixture with their rotated Bell states. The resulting total state
is therefore treated as Bell diagonal of the form

ρ =
2∑

k,j=0

Akj |φkj 〉〈φkj | (54)

with some statistical weights Akj for all nine Bell states
dependent on the measurement result. Compared to USD,
error terms appear and have to be taken into account. The
purification scheme presented in [48] can nevertheless deal
with this situation. The scheme works again with two copies
of the state in Eq. (54). Local subtraction gates are applied and
finally spin measurements are performed. Equal spin results
give the state

ρ ′ =
∑

j,k,g AkjAgj |φk⊕g,j 〉〈φk⊕g,j |∑
j,k,g AkjAgj

(55)

with success probability

p3 =
∑
j,k,g

AkjAgj

and increased fidelity depending on the initial statistical
weights. Note that ⊕ denotes addition modulo 3.

G. Entanglement swapping

In the previous sections we have shown how to entangle
two qutrits over a distance L0. The distance L0, however,
is typically too short for general applications in quantum
communication. It is therefore necessary to further extend
the entanglement over larger distances. This can be done by
entanglement swapping.

To perform entanglement swapping, two entangled qutrit-
qutrit pairs are generated next to each other, covering a total
distance of 2L0. To connect the two pairs and thus distribute
entanglement over twice the initial distance, a Bell mea-
surement is carried out on the two adjacent matter systems.
A successful Bell measurement projects the remaining two
matter systems onto a maximally entangled state.

In analogy to the qubit case, a Bell measurement on two
qutrits can be performed by applying a qudit sum gate (CNOT

or CSHIFT), followed by measurements in the X and in the
Z basis [see Eq. (18)]. As pointed out in [49], Hadamard
transformations and a CPHASE gate suffice to implement the
sum gate. In the following, we assume that arbitrary single-
qutrit rotations and measurements can be performed on the
matter systems and show how to construct the sum gate based
on these assumptions.
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In our framework, a CPHASE gate is represented by the
unitary operation

UCP = exp

(
−2πi

3
S (3)

z1
S (3)

z2

)
, (56)

where the operators S (3)
zi

correspond to the operations intro-
duced in Eq. (18) on the ith qutrit. Like in the qubit case
of a CNOT gate, a decomposition for the qudit CSHIFT gate is
given by

CSHIFT = (H ⊗ 1) CPHASE(H ⊗ 1), (57)

where H is the qutrit Hadamard transformation. Indeed,
one observes by direct calculation (H ⊗ 1) CPHASE(H ⊗
1)|x, y〉 = |x � y, y〉 for x, y ∈ Z2. Note that � denotes
subtraction modulo 3. A more formal proof of this decom-
position for arbitrary dimensions is given in Sec. IV. With
HQR protocols for qubits and qutrits in mind, an extension
to higher dimensions, e.g., four-level systems (ququarts), is
straightforward.

H. Rate analysis

1. Methods and assumptions

In this section we quantify the performance of our qutrit
HQR protocol for the generation of entanglement over the
total channel distance L. The performance can be assessed by
the entanglement-generation rate, i.e., the number of entan-
gled pairs over the entire distance per unit time. Besides this,
the fidelity of the generated states is of particular interest.

The atomic matter systems also serve as quantum mem-
ories (as needed because of the probabilistic step of en-
tanglement purification after the entanglement distribution)
and we assume matter systems with infinite coherence time,
i.e., perfect memories. In addition, we assume deterministic
and error-free gates on them. In particular, the entanglement
swapping operation is treated as deterministic, employing the
gates as described in the preceding section. Strictly speaking,
photon transmission loss is the only error source entering our
rate analysis and the resulting rates have to be understood as
upper bounds of the actual achievable rates. For this scenario,
analytical formulas for the rates dependent on the number
of elementary segments as well as the number of purifica-
tions performed on each segment after the distributions have
been derived in [50]. Note that we include one to several
rounds of entanglement purification only right after the initial
entangled-state distributions. In this theoretical treatment, our
repeater scheme effectively becomes a second generation
quantum repeater (recall Sec. I) where rates are ultimately
limited by R � c

L0
(instead of R � c

L
if purifications were

performed until the final nesting level [1,2]) [4,5].
We consider 2n segments of elementary distance L0, cov-

ering a total distance L = 2nL0. Entanglement is generated in
each segment with a probability P0. If the obtained state is not
directly purified, the resulting rate becomes

Rn = c

2L0

1

Zn(P0)
= 1

T0Zn(P0)
, (58)

where

Zn(P0) =
2n∑

j=1

(
2n

j

)
(−1)j+1

1 − (1 − P0)j
(59)

is the average total number of attempts it takes for all segments
to eventually share an entangled pair (recall that initially
shared pairs can be stored as long as needed), T0 = 2L0

c

is the elementary time unit for sending the quantum states
and also the classical information to confirm their successful
distribution (as well as purification), and c is the speed of light
in the optical fiber.

If one round of purification is performed, the same formula
can be applied, but now P0 has to be substituted by an effective
probability

Q1(L0) = P0P1

(
2 − P0

3 − 2P0

)
, (60)

where P1 is the probability for the first round of purification to
succeed. Furthermore, the rates with two and three rounds of
purification can be calculated using the effective probabilities

Q2(L0) = Q1(L0)P2

(
2 − Q1(L0)

3 − 2Q1(L0)

)
(61)

and

Q3(L0) = Q2(L0)P3

(
2 − Q2(L0)

3 − 2Q2(L0)

)
, (62)

where P2 and P3 are the success probabilities for two and
three rounds of purification, respectively. Note that without
the use of quantum memories, Q3 would scale as P 8

0 P 4
1 P 2

2 P3,
which (assuming small probabilities) is turned into a scaling
like P0P1P2P3 with the help of the quantum memories. Higher
rounds of purification can be considered in a recursive fashion.
We analyze the rates for the USD- and homodyne-based
scheme separately in the next two sections.

2. USD-based scheme

For the USD scheme, P0 is given by the optimal probability
in Eq. (47) to distinguish the three coherent states |√γα〉
and |√γαe±2πi/3〉. For |√γα〉, the resulting state is given by
Eq. (48) and the initial fidelity of the target state reads

F0 = Nu(
√

1 − γα)

9
(63)

with

F1 = Nv (
√

1 − γα)

9
, F2 = Nw(

√
1 − γα)

9
(64)

for the other two components (and hence the infidelity F1 +
F2 with regard to the desired state). One round of purification
succeeds with probability

P1 = F 2
0 + F 2

1 + F 2
2 (65)

and the resulting improved fidelity is

F ′
0 = F 2

0

F 2
0 + F 2

1 + F 2
2

. (66)

For more rounds of purification, the fidelities and success
probabilities can be obtained recursively. After entanglement
swapping, the final fidelity of the entangled state distributed
over the total distance is lower bounded by (F̃0)2n

, where F̃0

is the final fidelity for each segment, possibly obtained after
some rounds of purification.
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3. Homodyne-based scheme

An exact rate analysis for the HQR with entanglement
distribution based on homodyne detection is much more de-
manding than for the USD case. This is due to the fact that
at adjacent elementary segment potentially different mixed
quantum states are generated depending on the corresponding
measurement result. As already pointed out, these states can
be brought into a similar form, i.e., the components are equal,
but the statistical weights are not necessarily equal. An exact
rate analysis is therefore out of reach.

To nevertheless assess the performance of that scheme,
we model the situation with an effective state on each ele-
mentary segment. This effective state has the average fidelity
Fav (α, γ ) as the statistical weight of the first component
(target Bell state |φ00〉), whereas the other two components
are equally weighted with Fi = 1

8 [1 − Fav (α, γ )] for i =
2, 3, . . . , 8. This effectively corresponds to a model of white
noise on the matter systems which is often an acceptable
approximation.

For an elementary distance of L0 = 5 km, we choose
α ≈ 1, which leads to a maximum initial fidelity of approx-
imately 0.7. As the generation probability P0 we insert the
success probability Psucc = ∑2

i=0 pwi
for obtaining a result

in one of the success windows (see Sec. III D) which equals
approximately 0.4 in this case. For L0 = 10 km, we also have
α ≈ 1, but now Fav ≈ 0.6, which requires many rounds of
purification and does not lead to reasonable rates anymore.

Using these initial values, the formulas for the rates and
fidelities, including some possible rounds of purification, can
directly be applied. For quantitative examples and an illustra-
tion of the trade-off between repeater rates and fidelities, see
the Appendix.

To summarize some of the results presented there, for
elementary distances as short as L0 = 5 km, the USD-based
scheme performs better than the homodyne-based scheme for
both success probability and total fidelity. In the case of USD,
at least three rounds of purification are needed in order to
obtain reasonable fidelities and rates for distances as large
as 640 km. For the homodyne scheme, such total distances
already require five and more rounds of purification.

Results for a situation with a more practical repeater spac-
ing, L0 = 20 km, indicate that for L = 1280 km near-unit
fidelities at rates on the order of hertz are only achievable
using USD, because in the homodyne-based scheme the initial
output fidelities are very low and therefore an impractical
number of rounds of purification are required (this also leads
to extremely low rates). Note that a similar observation was
made for the original qubit scheme based on homodyne
detection [17].

IV. GENERAL QUDIT CASE

Based on the results obtained in the preceding sections for
specific examples, we now in turn propose HQR protocols for
arbitrary finite-dimensional quantum systems.

The dispersive interaction between a general qudit, i.e.,
a d-level system, and a light mode can be realized by the
Hamiltonian

H
(d )
int = h̄gS (d )

z a†a, (67)

with S (d )
z |k〉 = ( 2k−d+1

2 )|k〉 for k = {0, 1, . . . , d − 1} and
where S (2)

z = σz. The corresponding unitary is Ud (θ ) =
exp(iθS (d )

z a†a) and the relevant case of a strong interaction
is obtained by setting θ = 2π

d
.

The first step in the protocol is the preparation of the
matter state 1√

d

∑d−1
k=0 |k〉, which then interacts with an optical

coherent state |α〉 via the strong dispersive interaction. This
results in a hybrid entangled qudit-light (qudit-qubus) state

1√
d

d−1∑
k=0

|k〉|αe2πik/d〉. (68)

After locally generating qudit-light entanglement, the light
mode is sent through an optical channel of length L0 where
it is subject to photon loss. Including again an ancilla vacuum
mode and mixing it with the optical mode results in

1√
d

d−1∑
q=0

|q〉|√γαe2πiq/d〉|
√

1 − γαe2πiq/d〉. (69)

As in the specific examples above, the crucial point is now
to find a suitable basis for tracing out the loss mode. Here, in
the general case, this basis consists of the d vectors

|vm〉 = 1√
Nvm

(α)

d−1∑
k=0

e2πikm/d |αe2πik/d〉, (70)

with m = 0, 1, . . . , d − 1. We can thus recast the coherent
states of the ancilla light mode in Eq. (69) as

|αe2πik/d〉 = 1

d

d−1∑
m=0

√
Nvm

(α)e−2πikm/d |vm〉 (71)

and find, for Eq. (69),

1

d
√

d

d−1∑
q,m=0

√
Nvm

(
√

1 − γα)e−2πiqm/d |q〉|√γαe2πiq/d〉|vm〉.

(72)

Tracing out the loss mode in this basis is now a trivial task and
one obtains

ρout =
d−1∑
m=0

Nvm
(
√

1 − γα)

d2

×
⎡
⎣

⎛
⎝ 1√

d

d−1∑
q=0

e−2πiqm/d |q〉|√γαe2πiq/d〉
⎞
⎠ × H.c.

⎤
⎦

(73)

for the d-component qudit-light output state.
Again, this can be further simplified by basis transforma-

tions on both the light mode and the matter system. The light
mode can be expressed in the basis given in Eq. (70), while the
matter system can be written in the (generalized Pauli) qudit
X basis

|k̃〉 = 1√
d

d−1∑
m=0

e2πikm/d |m〉 (74)
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for k = 0, 1, . . . , d − 1. This gives the expression

ρout =
d−1∑
m=0

Nvm
(
√

1 − γα)

d2

×
[(

1

d

d−1∑
r=0

√
Nvr

| ˜m ⊕ r〉|ṽr〉
)

H.c.

]
(75)

for Eq. (73), where ⊕ denotes addition modulo d. Note that
a tilde again indicates basis vectors with damped amplitude√

γα on the light mode and the X basis on the matter system.
After traveling through the loss channel over a distance L0,

the light mode reaches a second matter system, also prepared
in the state 1√

d

∑d−1
k=0 |k〉. The light mode interacts dispersively

with the second matter system, this time with the inverse angle
θ = − 2π

d
. The resulting state becomes

ρ =
d−1∑
m=0

Nvm

d2
|Tm〉〈Tm|, (76)

with the components

|Tm〉 = 1

d

d−1∑
q=0

d−1∑
l=0

e−2πiqm/d |q〉|l〉|√γαe2πi(q−l)/d〉, (77)

written in the original basis [like in Eq. (73)].
The state discrimination in the general case involves the d

coherent states |√γα〉, . . . , |√γαe2πi(d−1)/d〉, which can be
graphically represented as coherent states “on a ring” (see
Fig. 9 for d = 8). A projection onto one of the d coherent
states collapses each component onto a maximally entangled
state. However, by increasing the dimension d, a projection
scheme based on homodyne detection becomes more and
more futile since no direction is uniquely specified anymore.
A scheme for unambiguously discriminating exactly these d

coherent states was derived in [38] for arbitrary dimensions
(for d = 3, recall Sec. III E). An upper bound for the success
probability is given by

PD � min
r

d−1∑
j=0

e−2πijr/deγα2(e2πij/d−1), (78)

FIG. 9. Phase-space representation of the qubus mode for d = 8.

r = 0, 1, . . . , d − 1, where Eq. (47) is recovered for d = 3.
Since the upper bound on the right-hand side depends on
both α and γ , the minimization with respect to r is hard
analytically. We therefore calculate the bound numerically.

After the USD, the resulting mixed state will be a mix-
ture of d maximally entangled Bell states of the form (k =
0, . . . , d − 1)

|φkj 〉 = 1√
d

d−1∑
y=0

e2πiky/d |y, y � j 〉 (79)

for one fixed j = 0, . . . , d − 1, according to the specific iden-
tified coherent state (here � denotes subtraction modulo d).
For example, in the qutrit case d = 3, the result j = 0 corre-
sponds to identifying |√γα〉 and the three Bell states in the
mixture are given by Eq. (49). If j �= 0, a j -fold application
of X = ∑d−1

k=0 |k + 1〉〈k| transforms all these states to

|φk0〉 = 1√
d

d−1∑
y=0

e2πiky/d |y, y〉. (80)

By means of local unitaries, the different components of the
mixtures with |φk0〉 can always be transformed to a mixture of
the states

|ψj 〉 ≡ |φ0j 〉 = 1√
d

d−1∑
y=0

|y, y � j 〉, (81)

with now all j included. We therefore obtain

ρ =
d−1∑
j=0

pj |ψj 〉〈ψj | (82)

for the state to be purified.
The purification now works as follows. We prepare two

copies of the state in Eq. (82) such that the total joint four-
qudit state reads

ρ ⊗ ρ =
d−1∑
j=0

d−1∑
k=0

pjpk|ψj 〉|ψk〉〈ψj |〈ψk|, (83)

where the individual terms are

|ψj 〉|ψk〉 = 1

d

d−1∑
y=0

d−1∑
y ′=0

|y, y � j 〉|y ′, y ′ � k〉. (84)

One applies a local CSHIFT gate on systems 1 and 3 as well 2
and 4 in order to obtain

1

d

d−1∑
y=0

d−1∑
y ′=0

|y − y ′, y � y ′ ⊕ k � j 〉|y ′, y ′ � k〉. (85)

After that, the first spins of the first two systems are measured.
If the spins are parallel, it follows k = j such that only
diagonal parts contribute. As a consequence, the second two
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systems collapse to |ψk〉. The new state then becomes

ρ ′ =
∑d−1

j=0 p2
j |ψj 〉〈ψj |∑d−1

j=0 p2
j

. (86)

The fidelity with respect to the target state |ψ0〉 is thus

F ′ = p2
0∑d−1

j=0 p2
j

, (87)

which is increased compared to the initial fidelity p0 if p0 > 1
d

and pi < p0 for i = 1, . . . , d − 1.
After possibly several rounds of purification, a high-fidelity

entangled state can be obtained between the two separated qu-
dits. This is referred to as the initial entanglement generation
or distribution.

To further extend the entanglement, two elementary seg-
ments next to each other are connected via entanglement
swapping through Bell measurements on adjacent repeater
nodes, i.e., a projection on maximally entangled qudit-qudit
states. Generalizing the qutrit case, we show that the CSHIFT

gate lies at the heart of such Bell measurements and that these
can be realized by a CPHASE gate based on the generalized
dispersive interaction.

The CPHASE gate for an arbitrary dimension d is realized
by the two-qudit unitary transformation

Ud = exp

(
−2πi

d
S (d )

z1
S (d )

z2

)
, (88)

with the generalized spin operator S
(d )
i acting on qudit i.

We show by direct calculation that the sequence H ⊗ 1 →
CPHASE → H ⊗ 1 acts as a controlled phase shift gate on an
arbitrary two-qudit state:

(H ⊗ 1)CPHASE(H ⊗ 1)|xy〉

= (H ⊗ 1)CPHASE
1√
d

d−1∑
k=0

exp

(
2πikx

d

)
|ky〉

= (H ⊗ 1)
1√
d

d−1∑
k=0

exp

(
2πik(x − y)

d

)
|ky〉

= |x − y, y〉. (89)

Together with arbitrary qudit rotations and measurements
in the qudit X and Z basis, this suffices to implement a
deterministic Bell state analyzer for qudits [49].

V. DISCUSSION AND CONCLUSIONS

We introduced a hybrid quantum repeater protocol for the
distribution of arbitrary finite-dimensional bipartite entangled
states over large distances with a specific focus on qutrit
entanglement. A generalization of the dispersive light-matter
interaction from the qubit to the general qudit case lies at
the heart of our protocol and can be expressed by higher
spin operators. The distribution of matter-matter entanglement
between neighboring repeater stations is mediated via coher-
ent states interacting dispersively and subsequently with the
matter systems. We investigated both USD and homodyne
detection of the light mode and compared the rates and
final fidelities. By exploiting purification on the elementary

TABLE I. Results on the rates and fidelities for L0 = 5 km
(USD), α = 1.2, and L � 640 km.

Rounds of purification none one two three
Initial fidelity 0.75 0.944 0.998 ∼1

Distance (km) Effective probability 0.64 0.30 0.19 0.13

Rate (Hz)
10 10175 4290 2647 900
20 7936 3185 1942 656
40 6366 2488 1506 507
80 5285 2024 1220 409
160 4501 1701 1021 342
320 3914 1464 877 294
640 3461 1284 768 257

Fidelity
10 0.56 0.891 0.996 0.999993
20 0.315 0.793 0.991 0.999985
40 0.09 0.63 0.983 0.99997
80 0 0.397 0.966 0.99994
160 0 0.158 0.934 0.9998
320 0 0.02 0.872 0.9997
640 0 0 0.761 0.9995

segments, sufficiently high initial fidelities can be achieved
to cover distances up to 640 km (homodyne) and 1280 km
(USD) with final fidelities close to unity. With three rounds
of entanglement purification directly after the initial entangle-
ment distributions, rates ∼100 Hz are, in principle, possible
in the case of USD.

The idealizations made in this paper with respect to per-
fect matter memories and gate operations are undoubtedly
experimentally demanding to approach (i.e., to emulate by
sufficiently good memories and gates), but clearly lead to
upper bounds on both the success probabilities and fidelities.
On the other hand, no repeater schemes currently exist for
the distribution of qudit-qudit entanglement. In particular,

TABLE II. Results on the rates and fidelities for L0 = 10 km
(USD), α = 1.2, and L � 1280 km.

Rounds of purification none one two three
Initial fidelity 0.652 0.87 0.987 0.999

Distance (km) Effective probability 0.414 0.147 0.078 0.05

Rate (Hz)
20 3020 1010 524 343
40 2271 738 380 248
80 1788 570 293 191
160 1463 461 236 156
320 1234 385 197 128
640 1065 331 169 110
1280 936 289 147 96

Fidelity
20 0.420 0.76 0.974 0.999
40 0.18 0.57 0.95 0.999
80 0.03 0.33 0.9 0,999
160 0.001 0.1 0.814 0.998
320 0 0.01 0.66 0.996
640 0 0 0.436 0.992
1280 0 0 0.19 0.984
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TABLE III. Results on the rates and fidelities for L0 = 5 km (homodyne), α ≈ 1, and L � 640 km.

Rounds of purification none one two three four five
Initial fidelity 0.730 0.815 0.954 0.964 0.998 0.999

Distance (km) Effective probability 0.38 0.180 0.087 0.055 0.035 0.023

Rate (Hz)
10 5496 2487 1173 744 466 311
20 4117 1823 852 539 336 225
40 3233 1412 656 414 258 172
80 2641 1143 529 334 208 139
160 2225 957 442 279 173 116
320 1919 821 379 239 148 99
640 1686 719 331 208 130 86

Fidelity
10 0.53 0.66 0.91 0.93 0.997 0.997
20 0.28 0.44 0.83 0.87 0.995 0.995
40 0.08 0.195 0.684 0.75 0.989 0.990
80 0.01 0.04 0.47 0.56 0.979 0.979
160 0 0 0.22 0.32 0.959 0.959
320 0 0 0.05 0.1 0.920 0.921
640 0 0 0 0.01 0.84 0.85

standard click-based protocols such as the DLCZ scheme
[9] do not exist for qudits and it has even been shown that
such schemes are unrealizable for the most common and
convenient types of encoding (see [51]). Therefore, we believe
that our scheme can serve as an in-principle version of a
genuine beyond-qubit quantum repeater, in which case it
seems justified to first consider channel loss as the absolutely
dominating error contribution [provided one can expect a
sufficiently little (though nonzero) error contribution from the
local gates and operations that does not entirely spoil the
repeater’s scaling].

Since our scheme assumes perfect matter systems (with
perfect coherence properties for sufficiently long times) and
operations on them, future research may aim at investigating
different physical platforms and the specific decoherence

models for these matter systems. Like for the qubit case
[52], quantum error correction codes could be employed on
the matter systems turning the scheme to a genuine second-
generation quantum repeater scheme and thus preserving the
communication rates obtained here under idealizing assump-
tions.
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APPENDIX: RATE ANALYSIS FOR THE QUTRIT
HYBRID QUANTUM REPEATER

In this Appendix, we show Tables I–IV summarizing the
results on the rates and fidelities for our qutrit quantum

TABLE IV. Results on the rates and fidelities for L0 = 20 km (USD), α = 0.5, and L � 1280 km.

Rounds of purification none one two
Initial fidelity 0.862 0.986 0.9998

Distance (km) Effective probability 0.014 0.007 0.004

Rate (Hz)
40 92 46 30
80 33 17 11
160 26 13 9
320 21 11 7
640 17 9 6
1280 15 8 5

Fidelity
20 0.862 0.986 0.9999
40 0.743 0.973 0.9998
80 0.552 0.946 0.9995
160 0.304 0.895 0.999
320 0.093 0.802 0.998
640 0.009 0.643 0.996
1280 0 0.413 0.992
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repeater scheme (d = 3), as described in Sec. III H. We con-
sider various total distances up to 1280 km, two possible
elementary distances (L0 = 5, 10 km), between zero and three

rounds of entanglement purification directly after the initial
entanglement distribution, and the two possible detection
schemes (homodyne and USD).
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