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Quantum-enhanced parameter estimation has widespread applications in many fields. An important issue
is to protect the estimation precision against the noise-induced decoherence. Here we develop a general
theoretical framework for improving the precision for estimating an arbitrary parameter by monitoring the
noise-induced quantum trajectories (MQT) and establish its connections to the purification-based approach to
quantum parameter estimation. Monitoring the noise-induced quantum trajectory can be achieved in two ways:
(i) Any quantum trajectories can be monitored by directly monitoring the environment, which is experimentally
challenging for realistic noises, and (ii) certain quantum trajectories can also be monitored by frequently
measuring the quantum probe alone via ancilla-assisted encoding and error detection. This establishes an
interesting connection between MQT and the full quantum-error-correction protocol. Application of MQT to
estimate the level splitting and decoherence rate of a spin 1/2 under typical decoherence channels demonstrate
that it can avoid the long-time exponential loss of the estimation precision and, in special cases, recover the
Heisenberg scaling.
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I. INTRODUCTION

The precise estimation of parameters characterizing phys-
ical processes [1,2] has applications in many fields, such
as gravitational-wave detection [3,4], frequency spectroscopy
[5,6], magnetometry [7,8], optical phase estimation [9], and
atomic clocks [10]. With classical probes, repeated mea-
surements can be used to improve the estimation precision
according to the classical 1/

√
N scaling with respect to the

number N of repetitions. With quantum probes, quantum
resources (such as entanglement) can be utilized to improve
the estimation beyond the classical scaling and even attain
the fundamental Heisenberg 1/N scaling allowed by quantum
mechanics, where N is the number of probes used in the
estimation. However, the inevitable presence of environmental
noises decoheres the quantum probes [11], limits the avail-
able quantum resources, and severely degrades the estimation
precision. This poses a critical challenge to the practical
realization of quantum-enhanced parameter estimation.

To address this problem, several methods have been devel-
oped, such as dynamical decoupling [12–16] (see Refs. [2,17]
for a review), time optimization [18–20], and quantum error
correction (QEC) [21–28] or feedback control [29–31]. The
idea of dynamical decoupling is to apply pulsed [13,16,32–39]
or continuous [15,40–42] control on the quantum probe to
reduce its coupling to the noise and hence prolong its
coherence time. It has achieved remarkable success in
detecting alternating signals [43,44], noises [40,41,45–49],
and other quantum objects [50–56], but it is only applicable to
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non-Markovian noises [57–60]. The idea of time optimization
is to mitigate decoherence by shortening the evolution time
of the quantum probe. It can improve the scaling of the
estimation precision beyond the classical scaling, but requires
vanishingly short evolution time and large-scale entangle-
ment. Note that many Markovian environments only allow
the classical 1/

√
N scaling even if the most general scheme is

employed [61–69]. In this case, using short-range correlated
states, which can be modeled by matrix product states [65],
already gives almost optimal performance. The idea of QEC
is to detect and then correct the noise-induced erroneous
evolution. This is a powerful method applicable to both
Markovian and non-Markovian noises [21–28]. For Hamil-
tonian parameter estimation, recent works [68,69] show that
when the unitary Hamiltonian evolution can be distinguished
from the noise-induced evolution, QEC can even recover the
ultimate Heisenberg scaling; otherwise only a constant-factor
improvement over the classical scaling is possible.

Very recently, an interesting method was proposed [70–72]
to improve the estimation precision. The idea is to monitor
the environment [73–75] continuously to (fully or partially)
extract the information that leaks into the environment. For
certain Markovian environments, this method can recover
the Heisenberg scaling [70–72], but previous studies focus
on specific Markovian environments and measurements and
usually rely on Gaussian approximation or numerically solv-
ing the stochastic master equations. Moreover, this method
requires direct measurement of the environment, which is very
challenging for realistic noise processes.

In this work we address the above problems. First, we
develop a general theoretical framework for improving the
precision of parameter estimation via continuous monitoring
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of a general (either Markovian or non-Markovian) environ-
ment and further establish its connection to the Purification-
based approach to quantum parameter estimation [61], which
has motivated many works that derive fundamental bounds
on the estimation precision [20,62–69,76,77]. Second, for a
Markovian environment, we provide a superoperator approach
to determine the fundamental bounds on the estimation pre-
cision. This approach corresponds to an exact integration of
the stochastic master equation [71,72] and may provide exact
analytical expressions for some simple models. Third, we
relax the conceptually simple but experimentally challenging
requirement of monitoring the environment to the concept of
monitoring the quantum trajectories (MQT): Any quantum
trajectories can be monitored by monitoring the environment,
but certain quantum trajectories can also be monitored by
frequently measuring the quantum probe (without monitor-
ing the environment) via ancilla-assisted encoding and error
detection [21–23], i.e., the first two steps of QEC. This
QEC-based MQT not only makes certain MQT experimen-
tally feasible, but also establishes an interesting connection
between MQT and the full QEC-based metrology [21–28].
The QEC-based MQT can be regarded as a QEC protocol
without corrective operations, so it is less powerful than QEC
when perfect error correction is available. Nevertheless, MQT
itself provides insight into how the information leaks into
the distinct quantum trajectories and how it is recovered.
Moreover, for certain models where corrective operations
are not necessary, the MQT becomes advantageous because
it avoids faulty corrective operations that may degrade the
estimation precision significantly [22]. We apply this method
to the estimation of the level splitting ω and the decoherence
rate γ of a spin 1/2 under three decoherence channels: spin
relaxation, spin flip, and spin dephasing. We find that it can
significantly improve the precision for estimating ω under
the spin-relaxation channel, avoid the exponential loss of
the precision for estimating γ (estimating ω) under all the
decoherence channels (under the spin-flip channel), and even
recover the Heisenberg scaling for estimating ω under the
spin-dephasing channel.

Monitoring quantum trajectories can be achieved either by
directly monitoring the environment or, for certain quantum
trajectories, by the first two steps of QEC, i.e., QEC-based
MQT. The former can be illustrated for some toy models (e.g.,
the flip of a spin 1/2 due to its Heisenberg-type exchange
interaction with another spin 1/2, which plays the role of
the environment, can be detected by measuring the latter),
but becomes very challenging for realistic noises, even for
very simple cases (e.g., the relaxation of a qubit inside a
single-mode cavity is accompanied by the emission of a cavity
photon, so detecting the qubit relaxation requires detecting the
cavity output at the single-photon level [78–80]). By contrast,
QEC-based MQT amounts to quantum error detection without
correction (see Sec. II E for a detailed discussion), so it can be
achieved in any experimental platform where QEC has been
demonstrated, such as the nitrogen-vacancy center [26,81,82],
superconducting qubits [83,84], and trapped ions [85–87].

This paper is organized as follows. In Sec. II we give the
general theory of MQT. In Sec. III we apply MQT to estimate
the level splitting and decoherence rate of a spin 1/2. In
Sec. IV we summarize and provide conclusions.

II. GENERAL IDEA AND THEORY

To estimate an unknown parameter θ , the quantum probe
starts from certain initial state ρ0 and then undergoes certain
θ -dependent evolution for an interval T into the final state
ρ(θ ), followed by an optimal measurement of ρ(θ ) to transfer
all the information about θ from the quantum probe into the
measurement outcome. After repeating the above procedures
ν � 1 times, we can use the ν measurement outcomes to
construct an optimal unbiased estimator to θ , such as the
maximum likelihood estimator or the Bayesian estimator [88].
The estimation precision for θ is determined by the quantum
Cramér-Rao bound [89,90] as

δθ ≡ 1√
νF[ρ(θ )]

, (1)

where F[ρ(θ )] is the quantum Fisher information (QFI) [90]
about θ provided by a single copy of ρ(θ ), while νF[ρ(θ )]
is the total QFI provided by ν copies of ρ(θ ). In Appendix A
we provide a detailed introduction to all the relevant concepts,
such as QFI, classical Fisher information (CFI), optimal mea-
surements, and optimal unbiased estimators.

A. Nonunitary evolution and purification

When the environment (or the quantum trajectories of the
quantum probe) is not monitored, the noise-induced decoher-
ence during the θ -dependent evolution is a black box [see
Fig. 1(a)], so our state of knowledge about the quantum probe
is described by the nonselective density matrix ρ̄(t ). The
most general nonunitary evolution of ρ̄(t ) is described by a
time-local master equation [91,92]

d

dt
ρ̄(t ) = L(t )ρ̄(t ),

QFI QFI

CFI

quantum
jump

detector
collect

(a) (b)
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... ...l1 l2 ln
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FIG. 1. Quantum parameter estimation by (a) conventional
method and (b) monitoring quantum trajectories: The former treats
the noise-induced decoherence as a black box, while the latter gains
access to the quantum Fisher information of every trajectory and
the classical Fisher information contained in the timings of all the
quantum jumps.
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where L(t ) is a θ -dependent Liouvillian, e.g., L(t )ρ̄ =
−i[H (t ), ρ̄] in the absence of decoherence or L(t )ρ̄ =
−i[H (t ), ρ̄] + ∑

a γa(t )D[ca(t )]ρ̄ under a general decoher-
ence channel, where D[c]ρ ≡ cρc† − {c†c, ρ}/2 describes
the decoherence in the Lindblad form, {ca(t )} are time-
dependent quantum jump operators, and {γa(t )} are time-
dependent decoherence rates. The final state of the quantum
probe is

ρ̄(θ ) ≡ T exp

(∫ T

0
L(t )dt

)
ρ0 ≡ Nθ (ρ0), (2)

where T is the time-ordering superoperator and Nθ stands
for the θ -dependent nonunitary evolution, i.e., the quantum
channel, which maps a θ -independent initial state ρ0 to a
θ -dependent final state ρ̄(θ ). The nonunitary nature of the
quantum channel is manifested in the fact that the final state
is mixed even if the initial state is pure.

Recently, there was remarkable progress in establishing
practical bounds on the achievable estimation precision in the
presence of decoherence [20,61–69,76,77]. The key idea is to
purify the nonunitary quantum channel Nθ of the quantum
probe into a unitary evolution of an extended system con-
sisting of the quantum probe and an environment and then
minimize the QFI of the extended system [61,62]. In the
following we use this purification formalism to establish a
general theory of MQT for an arbitrary environment.

When the environment causing the decoherence is in-
cluded, the joint evolution of the extended system (consisting
of the quantum probe and the environment) during [0, T ] is
described by a unitary evolution operator Uext (θ ) and the final
state of the extended system is

ρext (θ ) ≡ Uext (θ )(|E0〉〈E0| ⊗ ρ0)U †
ext (θ ), (3)

where |E0〉 is the θ -independent initial state of the envi-
ronment. Therefore, including the environment purifies the
nonunitary quantum channel Nθ of the quantum probe into a
unitary evolution of the extended system, which maps a pure
initial state |E0〉 ⊗ |ψ0〉 into a pure final state Uext (θ )|E0〉 ⊗
|ψ0〉. Tracing out the environmental degree of freedom in an
arbitrary orthonormal complete, θ -independent basis {|El〉}
gives the reduced density matrix of the quantum probe

ρ̄(θ ) = TrE ρext (θ ) =
∑

l

	l (θ )ρ0	
†
l (θ ) ≡

∑
l

ρ̃l (θ ), (4)

where

	l (θ ) ≡ 〈El |Uext (θ )|E0〉 (5)

are Kraus operators acting on the quantum probe. Equation (4)
gives a representation of the nonunitary quantum channel Nθ

in terms of a set of Kraus operators {	l (θ )} [61] or equiv-
alently a representation of ρ̄(θ ) = Nθ (ρ0) [see Eq. (2)] in
terms of a set of quantum trajectories ρ̃l (θ ) ≡ 	l (θ )ρ0	

†
l (θ ),

which occurs with a probability Pl (θ ) ≡ Tr ρ̃l (θ ). The com-
pleteness of the environmental basis

∑
l |El〉〈El | = 1 leads to

the completeness of the Kraus operators
∑

l 	
†
l (θ )	l (θ ) = 1

and hence the normalization Tr ρ̄(θ ) = ∑
l Pl (θ ) = 1. For a

pure initial state ρ0 = |ψ0〉〈ψ0| of the quantum probe, the final

state of the extended system is

|
ext (θ )〉 = Uext (θ )|E0〉 ⊗ |ψ0〉 =
∑

l

|El〉 ⊗ 	l (θ )|ψ0〉,

(6)

where 	l (θ )|ψ0〉 is a pure-state quantum trajectory of the
quantum probe.

Replacing Uext (θ ) by uE (θ )Uext (θ ), with uE (θ ) an arbitrary
unitary operator acting on the environment, leaves the quan-
tum channel Nθ and hence the final state ρ̄(θ ) = Nθ (ρ0) of
the quantum probe invariant, but changes 	l (θ ) to

πl (θ ) ≡ 〈El |uE (θ )Uext (θ )|E0〉 =
∑

l ′
ull ′ (θ )	l ′ (θ ),

where ull ′ (θ ) ≡ 〈El |uE (θ )|El ′ 〉 is a unitary matrix, so it
gives a different representation of the nonunitary quantum
channel Nθ in terms of a different set of Kraus operators
{πl (θ )} or equivalently a representation of ρ̄(θ ) = Nθ (ρ0)
in terms of a different set of quantum trajectories ρ̄(θ ) =∑

l πl (θ )ρ0π
†
l (θ ). Therefore, the purification (and hence rep-

resentation) of the nonunitary quantum channel Nθ is not
unique: Given a purification Uext (θ ) and hence a representa-
tion {	l (θ ) ≡ 〈El |Uext (θ )|E0〉} for Nθ , exhausting all possible
unitaries uE (θ ) exhausts all possible unitary purifications
uE (θ )Uext (θ ) and hence all possible Kraus operator repre-
sentations {πl (θ ) ≡ ∑

l ′ ull ′ (θ )	l ′ (θ )} of Nθ . Physically, this
means that there is an infinite number of different environ-
ments that lead to the same reduced evolution Nθ of the quan-
tum probe. Next we consider a hierarchy of constraints on our
ability to measure the joint system and derive a hierarchy of
inequalities for the precision for estimating θ . In the following
we omit the dependences of various quantities on θ for brevity.

B. Hierarchy of estimation precision

Here we consider a fixed environment that purifies the
nonunitary evolution N of the quantum probe into a unitary
evolution Uext of the extended system consisting of the quan-
tum probe and the environment. Correspondingly, the final
state ρ̄ = N (ρ0) of the quantum probe is purified into ρext

in Eq. (3) for the extended system.
First, when arbitrary joint measurements of the extended

system are available, we can make an optimal joint measure-
ment (see Appendix A) of the extended system to extract all
the QFI F[ρext] in the final state ρext, so the fundamental
precision follows from Eq. (1) as

δθext ≡ 1√
νF[ρext]

. (7)

This fundamental estimation precision was considered in
Refs. [71,72,74] for specific quantum channels, such as a
time-homogeneous Markovian quantum channel, as described
by a time-homogeneous master equation.

Second, when arbitrary joint measurements are not avail-
able, but arbitrary separate measurements of the quantum
probe and the environment are available, we can utilize dif-
ferent measurements of the environment to unravel ρ̄ into
different sets of quantum trajectories [see Fig. 1(b)]. Specif-
ically, a projective measurement of the environment in an
arbitrary orthonormal complete, θ -independent basis {|El〉}
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has a probability Pl ≡ Tr ρ̃l to yield an outcome |El〉 and
the occurrence of this outcome collapses the quantum probe
into the corresponding quantum trajectory ρ̃l ≡ 	lρ0	

†
l [with

	l given by Eq. (5)], which can be normalized as ρl = ρ̃l/Pl .
The average amount of information in the measurement out-
come is quantified by the CFI

F [{Pl}] =
∑

l

(∂θPl )2

Pl
, (8)

while the average amount of information in the quantum
trajectory ρl is quantified by the QFI F[ρl ]. The latter can
be fully extracted by an optimal measurement of the quantum
probe (see Appendix A). Therefore, the average amount of
information extracted from a measurement of the environment
in the basis {|El〉} and an optimal measurement of the quantum
probe is

F ≡ F [{Pl}] +
∑

l

PlF[ρl ], (9)

which coincides with the QFI F[ρext|{El }] in the joint state

ρext|{El } ≡
∑

l

|El〉〈El | ⊗ 	lρ0	
†
l =

∑
l

Pl |El〉〈El | ⊗ ρl

(10)

after measuring the environment in the basis {|El〉}. The joint
state before the measurement (3) can be written as

ρext ≡
∑

ll ′
|El〉〈El ′ | ⊗ 	lρ0	

†
l ′ ,

so the measurement of the environment removes all off-
diagonal coherences in the measurement basis {|El〉}. After
repeating this procedure ν � 1 times, we can use the ν

outcomes from the measurements of the environment and the
ν outcomes from the optimal measurements of the quantum
probe to construct an optimal unbiased estimator to θ (see
Appendix A). The fundamental estimation precision of this
MQT method follows from Eq. (1) as

δθMQT ≡ 1√
νF

. (11)

In a previous work, Albarelli et al. [71] considered homodyne
measurement of a Markovian bosonic environment (leading
to time-homogeneous Markovian dynamics) and arrived at
Eq. (11) for this specific model through straightforward (but
somewhat tedious) derivation with the assistance of both the
classical Cramér-Rao bound and the quantum Cramér-Rao
bound. Here our analysis shows that (i) Eq. (11) is valid
for general nonunitary dynamics and general (projective)
measurements on the environment and (ii) Eq. (11) follows
directly from the quantum Cramér-Rao bound [Eq. (1)]. A
similar analysis has been used to discuss quantum parameter
estimation with postselection [93].

Third, if only the quantum probe can be measured, then
we can use an optimal measurement (see Appendix A) on
the quantum probe to extract all the QFI F[ρ̄] in ρ̄, so the
estimation precision follows from Eq. (1) as

δθ̄ ≡ 1√
νF[ρ̄]

. (12)

Since the evolution ρext → ρext|{El } and ρext|{El } → ρ̄ =
TrE ρext|{El } are both nonunitary, while no θ -independent
quantum operation can increase the QFI [94], we have

F[ρext] � F = F[ρext|{El }] � F[ρ̄] (13)

and hence

δθext � δθMQT � δθ̄ .

In the above, F[ρ̄] (F[ρext]) is uniquely determined by the
quantum state ρ̄ (ρext), while ρext|{El } and hence F still de-
pend on the measurement of the environment. Optimal MQT
requires choosing an optimal measurement basis {|El〉} to
maximize F. The second inequality, i.e., F � F[ρ̄], is just
the extended convexity of the QFI [95,96], so our analysis
not only provides a physically intuitive proof for the extended
convexity of the QFI, but also identifies the physical meaning
of F as the QFI F[ρext|{El }] in the postmeasurement state
ρext|{El } [93].

Recent work by Albarelli et al. [72] gives an equation simi-
lar to Eq. (13) for the special case of photon-counting and ho-
modyne measurement of a Markovian bosonic environment.
They further conjectured that F is a nondecreasing function
of the measurement efficiency. Here our general formalism
allows a simple generalization: Since an imperfect measure-
ment can be regarded as a perfect measurement followed by
a nonunitary quantum operation, while any θ -independent
quantum operation cannot increase the QFI [94], F[ρext|{El }],
and hence F, is a nondecreasing function of the measurement
efficiency of the environment for any environment.

C. Connection to purification-based QFI bounds

Another advantage of our general formalism is that it pro-
vides an interesting connection between the MQT approach
and the minimization over purification (MOP) technique in
quantum parameter estimation [61], which has motivated
many works that derive fundamental bounds on the estimation
precision [20,62–69,76,77]. In the context of MOP, the aim
is to find the maximum of the QFI F[ρ̄] in the nonselec-
tive final state ρ̄ = N (ρ0) by optimizing the initial state ρ0.
Due to the convexity of the QFI, the maximum of F[ρ̄] is
always attained by pure initial states, so it suffices to consider
ρ0 = |ψ0〉〈ψ0|. Even in this case, the final state ρ̄ is still
mixed, so calculating F[ρ̄] requires diagonalizing ρ̄, which
becomes tedious when the Hilbert space of the quantum probe
is large. By contrast, for a θ -dependent pure state |ψ〉, its
QFI can be easily evaluated by the formula [89,90] F[ψ] =
4(〈∂θψ |∂θψ〉 − 〈ψ |i∂θψ〉2) (see Appendix A). Interestingly,
Escher et al. [62] proves a purification-based definition of the
QFI:

F[ρ̄] = min

ext

F[
ext] = min
{	l }

4(〈ψ0|α|ψ0〉 − 〈ψ0|β|ψ0〉2),

(14)

where α ≡ ∑
l (∂θ	

†
l )(∂θ	l ) and β ≡ i

∑
l 	

†
l ∂θ	l are Her-

mitian operators acting on the quantum probe and the min-
imization runs over all possible purifications |
ext〉 [see
Eq. (6)] of ρ̄ or equivalently all possible Kraus operator
representations of N . Independently, Fujiwara and Imai [61]
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proved

F[ρ̄] = min

ext

4〈∂θ
ext|∂θ
ext〉 = min
{	l }

4〈ψ0|α|ψ0〉. (15)

These two definitions are equivalent because the pu-
rification that saturates Eq. (15) obeys 〈
ext|i∂θ
ext〉 =
〈ψ0|β|ψ0〉 = 0 [61,67]. An upper bound for the maximal
QFI maxψ0 F[ρ̄] can be obtained by exchanging maxψ0 and
min{	l } [63,66–69,77,97],

max
ψ0

F[ρ̄] � 4 min
{	l }

‖α‖,

where ‖A‖ is the maximal eigenvalue of
√

A†A. When in
addition to the quantum probe access to some ancillas is
available, this upper bound is attainable; otherwise this upper
bound is not necessarily attainable [61,97].

To make a connection to the MQT method, we notice
that when ρ0 = |ψ0〉〈ψ0|, the quantum trajectories are pure
states ρ̃l = |ψ̃l〉〈ψ̃l | = Pl |ψl〉〈ψl |, where |ψ̃l〉 ≡ 	l |ψ0〉 is the
unnormalized trajectory, Pl = 〈ψ̃l |ψ̃l〉 is the occurrence prob-
ability, and |ψl〉 ≡ |ψ̃l〉/

√
Pl is the normalized trajectory. The

QFI F[
ext] in the final state ρext = |
ext〉〈
ext| [see Eq. (6)]
of the extended system is

F[
ext] = 4(〈ψ0|α|ψ0〉 − 〈ψ0|β|ψ0〉2)

= F [{Pl}]

+ 4

⎡
⎣∑

l

Pl〈∂θψl |∂θψl〉 −
(∑

l

Pl〈ψl |i∂θψl〉
)2

⎤
⎦.

For comparison, the QFI in the postmeasurement state
ρext|{El } = ∑

l Pl |El〉〈El | ⊗ |ψl〉〈ψl | of the extended system is

F = F[ρext|{El }] = F [{Pl}] +
∑

l

PlF[ψl ],

where F[ψl ] is the QFI in the normalized trajectory |ψl〉. As
discussed in the preceding section, the inequality F[
ext] �
F[ρext|{El }] [see Eq. (13)] follows from the simple fact that
ρext|{El } is obtained from |
ext〉 by a nonunitary operation,
which cannot increase the QFI [94]. Alternatively, we rewrite
their difference as

F[
ext] − F = 4(|u|2|v|2 − |u · v|2),

where u and v are two real vectors (u)l = √
Pl and (v)l =√

Pl〈ψl |i∂θψl〉. Therefore, the inequality F[
ext] � F simply
follows from the Cauchy-Schwarz inequality. This inequality
is saturated if and only if u ∝ v, i.e., when

〈ψl |∂θψl〉 = λ(θ ), (16)

where λ(θ ) is an arbitrary l-independent constant.
Now we discuss the connection and distinction between

the MOP technique and the MQT method. In the context of
MOP, the ultimate goal is to derive the tightest upper bound
for the maximal QFI maxψ0 F[ρ̄], which characterizes the
fundamental precision for estimating the parameter θ of a
given quantum channel Nwithout any access to the environ-
ment. As a result, the environment, the purification |
ext〉,
and the QFI F[
ext] are not physical objects but instead
mathematical tools for converting the direct evaluation of the
mixed-state QFI F[ρ̄] to a minimization problem: F[ρ̄] =

min
ext F[
ext]. The key physics is that the quantum channel
N and hence the final state ρ̄ = N (|ψ0〉〈ψ0|) can be gener-
ated by an infinite number of fictitious environments. Each
distinct environment corresponds to a distinct joint unitary
evolution Uext and hence a distinct Kraus operator represen-
tation {	l} [see Eq. (5)] of N and a distinct purification
|
ext〉 [see Eq. (6)] of ρ̄. The purification-based definitions
of the QFI [Eq. (14) or (15)] dictate that (i) F[
ext] � F[ρ̄],
i.e., including the environment never decreases the QFI, and
(ii) there exist QFI-preserving environments for which the
joint state |
ext〉 contains the same QFI as the reduced state
F[
ext] = F[ρ̄].

By contrast, in the context of the MQT method, we as-
sume that we have access to the physical environment that
is coupled to the quantum probe. In this case, the quantum
probe and the physical environment undergo physical unitary
evolution Uext as determined by their physical Hamiltonians
and mutual couplings, so we no longer have any degree
of freedom to choose the environment. Here the joint state
|
ext〉 and its QFI F[
ext] are completely determined by the
initial state |ψ0〉 of the quantum probe, while F = F[ρext|{El }]
also depends on the basis {|El〉} of the measurement of the
environment. The ultimate goal is to optimize the initial state
|ψ0〉 and the measurement basis {|El〉} for maximal F, e.g.,
if we can find a suitable basis that satisfies Eq. (16), then F
attains its maximum F[
ext]. Interestingly, the purification-
based definition of the QFI suggests that when the physical
environment happens to be QFI preserving, i.e., F[
ext] =
F[ρ̄], then Eq. (13) dictates F[
ext] = F = F[ρ̄] and hence
δθext = δθMQT = δθ̄ , i.e., including the environment provides
no advantage in improving the estimation precision.

D. Superoperator approach for Markovian dynamics

Here we consider homogeneous Markovian quantum chan-
nel N = eLT described by a time-independent Liouvillian
L, e.g., Lρ̄ = −i[H, ρ̄] in the absence of decoherence or
Lρ̄ = −i[H, ρ̄] + ∑

a γaD[ca]ρ̄ in the presence of decoher-
ence. With all detectable quantum jumps [98–105] denoted by
the superoperator J (see the next section for an example), L
becomes the sum of J and L0 ≡ L − J and the nonselective
final state of the quantum probe unravels into all possible
quantum trajectories [cf. Eq. (4)]

ρ̄ = ρ̃� +
∫ T

0
dt1ρ̃t1 +

∫ T

0
dt2

∫ t2

0
dt1ρ̃t1t2 + · · · , (17)

where

ρ̃� ≡ eL0T ρ0

is the trajectory with no quantum jump,

ρ̃t1 ≡ eL0(T −t1 )J eL0t1ρ0

is the trajectory with one exclusive quantum jump at t1,

ρ̃t1t2 ≡ eL0(T −t2 )J eL0(t2−t1 )J eL0t1ρ0

is the trajectory with two exclusive quantum jumps at t1 and t2,
etc. The trace of each quantum trajectory gives its occurrence
probability (density), e.g., the jumpless trajectory occurs with
a probability P� ≡ Tr ρ̃�, the trajectory ρ̃t1 occurs with a
probability density pt1 ≡ Tr ρ̃t1 , the trajectory ρ̃t1t2 occurs with
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a probability density pt1t2 ≡ Tr ρ̃t1t2 , etc. The normalization
Tr ρ̄ = 1 leads to the normalization of all the probabilities

P� +
∫ T

0
pt1 dt1 +

∫ T

0
dt2

∫ t2

0
dt1 pt1t2 + · · · = 1.

These analytical expressions for the quantum trajectories in
terms of the quantum jump superoperator J and jumpless
evolution superoperator L0 correspond to an exact integration
of the stochastic master equation [71,72].

In MQT, we not only track the quantum trajectory, but also
record the timing of every observed quantum jump during the
evolution [see Fig. 1(b)]. At the end of the evolution, we make
an optimal measurement of the quantum probe to transfer
all the QFI in the quantum probe into the measurement out-
come. After repeating this measurement cycle ν � 1 times,
we can use all the observed timings and the ν measurement
outcomes to construct an optimal unbiased estimator to θ

(see Appendix A). The fundamental precision is given by
Eq. (11), where F = F + F̄ [cf. Eq. (9)] is the sum of the CFI
[cf. Eq. (8)]

F = (∂θP�)2

P�
+

∫ T

0

(∂θ pt1 )2

pt1

dt1 + · · · (18)

contained in all the timings of the quantum jumps and the
trajectory-averaged QFI

F̄ ≡ P�F[ρ�] +
∫ T

0
pt1F[ρt1 ]dt1 + · · · , (19)

where ρ� ≡ ρ̃�/P�, ρt1 ≡ ρ̃t1/pt1 , etc., are normalized quan-
tum trajectories.

For the estimation of Hamiltonian parameters, the jumpless
trajectory ρ̃� is less (usually not) influenced by the deco-
herence, so its QFI is much higher than other trajectories
and the nonselective state ρ̄. When [J ,L0] = 0, we have
ρ̃t1···tn ≡ J nρ̃� and ρ̄ = eJ T ρ̃�, i.e., all the quantum jumps
can be deferred after the jumpless evolution. If J further
preserves the QFI, then all the quantum trajectories contain
the same QFI as the jumpless trajectory, so F � F[ρ�] and
δθMQT � 1/

√
νF[ρ�].

The capability of MQT to resolve different quantum tra-
jectories motivates a probabilistic protocol by postselection
of quantum trajectories. In this protocol, after resolving the
quantum trajectories, we only perform optimal measurements
of high-QFI trajectories and then construct an optimal unbi-
ased estimator based on the outcomes of these measurements,
while discarding all zero-QFI and even low-QFI trajectories.
On one hand, this treatment reduces the workload of per-
forming a large number of optimal measurements and con-
structing optimal unbiased estimators from a large number of
measurement outcomes (see Appendix A). On the other hand,
discarding any trajectory with nonzero QFI will degrade the
fundamental estimation precision. Therefore, one can balance
between the estimation precision and the cost of measurement
and data postprocessing to optimize the whole parameter
estimation process. A similar situation has been encountered
in other probabilistic metrology protocols such as weak-value
amplification [106,107], where postselection gains technical
advantages in data processing [108] at the cost of degrading
the fundamental estimation precision [93,109].

E. Monitoring quantum trajectories via noiseless ancillas:
Connection to QEC

In most cases, MQT requires direct measurement of the
noisy environment, an experimentally challenging task for
realistic noise processes. Fortunately, when the Hamiltonian
evolution and the decoherence channel satisfy certain con-
ditions, it is possible to achieve MQT by quantum error
encoding and error detection assisted by noiseless ancillas
[21–23,69], i.e., we can use QEC to resolve the quantum
trajectories, but do not apply any corrective operations. Such
QEC-based MQT can be regarded as a QEC protocol without
corrective operations, so it is less powerful than the full
QEC-based metrology [21–28,68,69]. Nevertheless, MQT it-
self provides an interesting insight into how the information
leaks into the distinct quantum trajectories and how they are
recovered. Moreover, for very special cases where corrective
operations are not necessary (see Appendix B for an example),
MQT becomes advantageous as it avoids faulty corrective
operations [22].

We begin with a simple example: monitoring the spin-
flip channel of a spin 1/2 in the Lindblad form d ρ̄(t )/dt =
γD[Sx]ρ̄(t ). Here the quantum jump operator Sx induce ran-
dom jumps between |↑〉 and |↓〉. These random jumps can be
monitored via the QEC protocol [22], which adds an ancilla
that is not affected by the noise. Physically, this can be real-
ized in a nitrogen-vacancy center [8,110], where the electron
spin serves as the quantum probe spin 1/2 and the 15N nuclear
spin serves as the ancilla. We use |↑〉 and |↓〉 for the spin 1/2,
|0〉 and |1〉 for the ancilla, σz for the Pauli matrix on the spin
1/2, and σ (a)

z for the Pauli matrix on the ancilla: σ (a)
z |0〉 = |0〉

and σ (a)
z |1〉 = −|1〉. The syndrome operator is � ≡ σzσ

(a)
z .

The code subspace spanned by |↑〉|0〉 and |↓〉|1〉 is the eigen-
subspace of the syndrome operator with eigenvalue +1, so we
denote the code subspace by �+. The occurrence of a spin flip
maps the code subspace �+ onto an orthogonal error subspace
as spanned by |↓〉|0〉 and |↑〉|1〉. This error subspace is an
eigensubspace of the syndrome operator � with eigenvalue
−1, so we denote it by �−. The occurrence of another spin
flip maps �− back to �+. Therefore, frequently measuring
the syndrome operator � allows us to monitor the spin flip
in real time. For Hamiltonian parameter estimation, if the
Hamiltonian commutes with � and hence leaves �± invariant,
then monitoring the spin flip does not affect the coherent
Hamiltonian evolution. As an example, we consider H = ωSz,
with ω the unknown parameter to be estimated. The total non-
selective evolution is d ρ̄(t )/dt = −i[H, ρ̄(t )] + γD[Sx]ρ̄(t ).
Starting from an initial state |ψ0〉 = a|↑〉|0〉 + b|↓〉|1〉 ∈ �+,
in the absence of quantum jumps, the Hamiltonian evolution
keeps the state inside �+: |ψ (t )〉 = a|↑〉|0〉 + eiωt b|↓〉|1〉.
The occurrence of a quantum jump at t0 maps |ψ (t0)〉 to
|ψ̃ (t0)〉 = a|↓〉|0〉 + eiωt0 b|↑〉|1〉 ∈ �−, which can be detected
as a sign switch of �. The subsequent Hamiltonian evolution
keeps the state inside �−: |ψ̃ (t )〉 = a|↓〉|0〉 + eiω(t0−t )b|↑〉|1〉.
The occurrence of another quantum jump at t1 maps |ψ̃ (t1)〉
back to the code subspace |ψ (t1)〉 = a|↑〉|0〉 + eiω(t0−t1 )b
|↓〉|1〉 ∈ �+, which can be detected as another sign switch
of �. Here, in contrast to the full QEC protocols [21–27],
we only monitor the quantum trajectory without applying any
corrective operations.
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FIG. 2. QEC-based MQT for two spins 1/2 with the assistance
of a noiseless ancilla. The four distinct eigensubspaces of the two-
component syndrome operator � = (σ (1)

z σ (a)
z , σ (2)

z σ (a)
z ) define the

code subspace �+,+ and three error subspaces �−,+, �+,−, and �−,−.
Different subspaces are connected by the flip of individual spins.

The following are the key ingredients of this QEC-based
MQT. (i) The code subspace �+ and the error subspace �−
are eigensubspaces of the syndrome operator � with distinct
eigenvalues. (ii) The quantum jump operator anticommutes
with the syndrome operator, so it maps an eigenstate of the
syndrome operator to another eigenstate with an opposite
eigenvalue, i.e., it induces the transition between �+ and
�− and hence can be detected by measuring the syndrome
operator [111]. If, in addition, the Hamiltonian commutes
with the syndrome operator so that the Hamiltonian evolution
leaves �+ and �− invariant, then the detection of the quantum
jump does not affect the Hamiltonian evolution, similar to
the full QEC-based metrology [22,26]. For example, a single
noiseless ancilla allows us to monitor the spin flip of an
arbitrary number N of spins 1/2 by using the N-component
syndrome operator � ≡ (σ (1)

z σ (a)
z , . . . , σ (N )

z σ (a)
z ), where σ (i)

z
is the Pauli operator for the ith spin 1/2 and the flip of the ith
spin 1/2 is detected as the sign switch of the ith component
σ (i)

z σ (a)
z (see Fig. 2 for an example for N = 2). When the

Hamiltonian leaves each eigensubspace invariant, e.g., H =
ω(S(1)

z + · · · + S(N )
z ), MQT does not affect the Hamiltonian

evolution.
The requirement that MQT leave the Hamiltonian evo-

lution intact can be satisfied only when the Hamiltonian
is completely transversal to the quantum jump operator [2]
(e.g., ωSz is transversal to Sx in our example). Generally,
the Hamiltonian is the sum of a transversal component H⊥
(i.e., the component outside the Lindblad span of the deco-
herence channel [68,69]) and a parallel component H‖ (i.e.,
the component inside the Lindblad span of the decoherence
channel [68,69]): The former keeps each eigensubspace of
the syndrome operator invariant, while the latter (as well as
the quantum jump) can induce transitions between differ-
ent eigensubspaces. However, frequent measurement of the
syndrome operator leads to the quantum Zeno effect that
effectively suppresses H‖ so that only H⊥ survives [69]. In
this case, MQT changes the intrinsic Hamiltonian evolution

and hence cannot reveal the intrinsic evolution of the quantum
trajectories.

The discussion above suggests that for Hamiltonian pa-
rameter estimation, there is an interesting connection between
QEC-based MQT and the full QEC-based metrology [68,69].
(i) When H⊥ = 0, the QEC-based MQT will completely
freeze the Hamiltonian evolution, so the full QEC proto-
col is not applicable to improve the estimation precision.
(ii) When H⊥ �= 0, the QEC-based MQT will suppress H‖
but leave H⊥ intact, so the full QEC protocol can recover the
Heisenberg scaling of the estimation precision in the noiseless
case [68,69]. In particular, when H‖ = 0, the QEC-based
MQT leaves the Hamiltonian evolution intact, so the full
QEC protocol can fully recover the estimation precision in the
noiseless case [68,69].

III. APPLICATION TO SPIN 1/2

We consider a spin 1/2 S undergoing the nonselective
evolution ρ̇(t ) = Lρ(t ) starting from a general initial state

ρ0 =
[
ρ↑↑ ρ↑↓
ρ∗

↑↓ ρ↓↓

]
,

with ρ↓↓ ≡ 1 − ρ↑↑, where Lρ ≡ −i[ωSz, ρ] + γD[c]ρ, Sz

is the z component of the spin, ω is the level splitting,
c represents an arbitrary quantum jump operator, and γ is
the decoherence rate. Monitoring the quantum jump J ρ ≡
γ cρc† amounts to decomposing L into the quantum jump J
and the jumpless evolution eL0tρ = e−iH̃tρeiH̃†t , where

H̃ ≡ ωSz − i
γ

2
c†c

is an effective non-Hermitian Hamiltonian that governs the
jumpless trajectory ρ̃� = eL0T ρ0. We consider the estimation
of the level splitting ω or the decoherence rate γ (at ω = 0)
under three decoherence channels: spin relaxation c = S− =
|↓〉〈↑|, spin flip c = Sx, and spin dephasing c = Sz. We use a
subscript ω (γ ) to denote the information about ω (γ ), e.g.,
the CFI about ω (γ ) is Fω (Fγ ) and the total information about
ω (γ ) from MQT is Fω (Fγ ).

For the spin-relaxation channel, QEC-based MQT is not
possible, so MQT requires direct measurement of the environ-
ment, which is experimentally challenging for many realistic
environments. For the special environment, i.e., the single-
mode cavity, the spin relaxation due to the cavity field is
always accompanied by the emission of a cavity photon, so
it can be monitored by using a photon detector to measure the
cavity output [29]. For the spin-flip channel, the Hamiltonian
H = ωSz is completely transversal to the quantum jump Sx, so
QEC-based MQT is applicable and the syndrome operator is
� ≡ σzσ

(a)
z (see Sec. II E). For the spin-dephasing channel,

the Hamiltonian H = ωSz completely lies in the Lindblad
span [68,69] of the decoherence channel, i.e., H⊥ = 0, so
QEC-based MQT will completely freeze the Hamiltonian
evolution. Therefore, only when ω = 0 can the QEC-based
MQT be used to estimate γ and, in this case, the results for
Fγ are identical to the spin-flip channel since Sz and Sx are
connected by a unitary π/2 rotation around the y axis. In other
cases, MQT requires directly monitoring the environment,
which may be experimentally challenging. In Appendix B
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we give an example for using QEC-based MQT to recover
the Heisenberg scaling of frequency estimation for multiple
qubits.

In a recent work, Albarelli et al. [71] considered the funda-
mental estimation precision of frequency by directly monitor-
ing the radiation field from an ensemble of atoms undergoing
Markovian collective dephasing. Another work by Albarelli
et al. [72] further includes the Markovian spin-flip channel
and demonstrated the interesting possibility of recovering the
Heisenberg scaling of the estimation precision with respect
to the number N of atoms. These works focus on frequency
estimation and its scaling with respect to the number N of
atoms and rely on either the Gaussian approximation in the
limit of a large number of atoms [71] or numerical integration
of the stochastic master equation [72]. Here we focus on the
time scaling of the estimation precision for both the frequency
ω and the dissipation rate γ of a single spin 1/2. Moreover,
the superoperator formalism in Sec. II D allows us to obtain
explicit analytical expressions. In the following we first give
the quantum trajectories and their information content for
each decoherence channel and then discuss the estimation
precision for ω and γ .

A. Quantum trajectories and Fisher information

For the spin-relaxation channel, H̃ = ωSz − i(γ /2)|↑〉〈↑|
and J 2 = 0, so the spin can undergo at most one quantum

jump. The jumpless trajectory is

ρ̃� =
[

e−γ T ρ↑↑ e−γ T/2e−iωT ρ↑↓
e−γ T/2eiωT ρ∗

↑↓ ρ↓↓

]
. (20)

The trajectory with an exclusive quantum jump at t1 is ρ̃t1 =
γ e−γ t1ρ↑↑|↓〉〈↓|. Other trajectories ρ̃t1···tn with n � 2 quantum
jumps are absent. The sum of all the quantum trajectories
gives the nonselective density matrix

ρ̄ =
[

e−γ T ρ↑↑ e−γ T/2e−iωT ρ↑↓
e−γ T/2eiωT ρ∗

↑↓ 1 − ρ↑↑e−γ T

]
. (21)

For the spin-flip channel, H̃ = ωSz − i(γ /8) and J 2 =
(γ /4)2, so an arbitrary number of quantum jumps is possible.
The jumpless trajectory is

ρ̃� = e−γ T/4

[
ρ↑↑ e−iωT ρ↑↓

eiωT ρ∗
↑↓ ρ↓↓

]
. (22)

The trajectory with n quantum jumps at t1, . . . , tn is

ρ̃t1···tn =
(γ

4

)n
e−γ T/4

[
ρ↑↑ ρ↑↓ exp

( − iω
∫ T

0 s(t )dt
)

ρ∗
↑↓ exp

(
iω

∫ T
0 s(t )dt

)
ρ↓↓

]
(23)

for even n and σxρ̃t1···tnσx for odd n, where σx is the Pauli
matrix and s(t ) starts from +1 at t = 0 and reverses its sign at
t1, . . . , tn. The sum of all the trajectories gives the nonselective
final state

ρ̄ =
[

1
2 + e−γ T/2

2 (ρ↑↑ − ρ↓↓) ( f ρ↑↓ + gρ∗
↑↓)e−γ T/4

( f ∗ρ∗
↑↓ + gρ↑↓)e−γ T/4 1

2 − e−γ T/2

2 (ρ↑↑ − ρ↓↓)

]
,

(24)

where f = cos(wT ) − i(ω/w) sin(wT ) and g =
γ sin (wT )/4w with w ≡

√
ω2 − (γ /4)2.

For the spin-dephasing channel, H̃ = ωSz − i(γ /8) and
J 2 = (γ /4)2, so an arbitrary number of quantum jumps is
possible. The jumpless trajectory is the same as the spin-flip
channel. The trajectory with n quantum jumps at t1, . . . , tn is

ρ̃t1···tn =
(

γ

4

)n

e−γ T/4

[
ρ↑↑ (−1)nρ↑↓e−iωT

(−1)nρ∗
↑↓eiωT ρ↓↓

]
,

(25)

which is independent of the timings of the n quantum jumps.
Summing all the trajectories gives the nonselective final state

ρ̄ =
[

ρ↑↑ e−γ T/2e−iωT ρ↑↓
e−γ T/2eiωT ρ∗

↑↓ ρ↓↓

]
. (26)

In Table I we list the information for estimating ω and
for estimating γ at ω = 0 for each decoherence channel. In
the MQT approach, after ν repeated measurement cycles, the
estimation precision

δθ = 1√
νFθ

(27)

is determined by the total information Fθ (θ = ω or γ ) from
each measurement cycle. In the conventional approach, after
ν repeated measurement cycles, the estimation precision

δθ̄ = 1√
νFθ [ρ̄]

(28)

is determined by the QFI Fθ [ρ̄] (θ = ω or γ ) of the nonse-
lective final state ρ̄ in each measurement cycle. According to
Eq. (13), we always have Fθ � Fθ [ρ̄], so MQT always im-
prove the estimation precision, but the degree of improvement
depends on the parameter to be estimated and the decoherence
channel.

From Table I we see that estimating the Hamiltonian
parameter ω is very different from estimating the decoherence
parameter γ (at ω = 0).

(i) For all the decoherence channels, the CFI about ω (γ )
is zero (nonzero), i.e., the timings of the quantum jumps
contain information about γ , but no information about ω.
Physically, γ characterizes the rate of the quantum jump, so
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TABLE I. Information about the qubit frequency ω or the decoherence rate γ (at ω = 0) under different decoherence channels, where s(t )
starts from +1 at t = 0 and switches its sign at every quantum jump (t1, . . . , tn) and ρ++, ρ−−, and ρ+− are matrix elements of the initial state
ρ0 in the basis |±〉 ≡ (|↑〉 ± |↓〉)/

√
2. The expression for Fω[ρ̄] under the spin-flip channel is valid up to leading order of γ /ω.

Information about ω Spin-relaxation channel (c = S−) Spin-flip channel (c = Sx) Spin-dephasing channel (c = Sz)

Fω[ρ�]
4T 2 |ρ↑↓|2e−γ T

(ρ↑↑e−γ T +ρ↓↓ )2 4T 2|ρ↑↓|2 4T 2|ρ↑↓|2
Fω[ρt1···tn ] 0 4

[ ∫ T
0 s(t )dt

]2|ρ↑↓|2 4T 2|ρ↑↓|2
Fω 0 0 0

Fω = F̄ω
4T 2 |ρ↑↓|2e−γ T

ρ↑↑e−γ T +ρ↓↓
32|ρ↑↓|2

γ 2

(
γ T
2 − (

1 − e−γ T/2
))

4T 2|ρ↑↓|2
Fω[ρ̄] 4T 2|ρ↑↓|2e−γ T 4T 2|ρ↑↓|2e−γ T/2 4T 2|ρ↑↓|2e−γ T

Information about γ at ω = 0 Spin-relaxation channel (c = S−) Spin-flip channel (c = Sx) Spin-dephasing channel (c = Sz)

Fγ [ρ�]
T 2ρ↑↑ρ↓↓e−γ T

(ρ↑↑e−γ T +ρ↓↓ )2 0 0

Fγ [ρt1···tn ] 0 0 0

Fγ
ρ↑↑ (1−e−γ T )

γ 2 − T 2ρ↑↑ρ↓↓e−γ T

ρ↑↑e−γ T +ρ↓↓
T
4γ

T
4γ

Fγ
ρ↑↑
γ 2 (1 − e−γ T ) T

4γ

T
4γ

Fγ [ρ̄]
T 2ρ↑↑[ρ↑↑−|ρ↑↓|2(ρ↑↑e−γ T +1)]e−γ T

ρ↑↑ (1−ρ↑↑e−γ T )−|ρ↑↓|2
T 2 |ρ+−|2e−γ T ρ++ρ−−
ρ++ρ−−−|ρ+−|2e−γ T

T 2 |ρ↑↓|2e−γ T ρ↑↑ρ↓↓
ρ↑↑ρ↓↓−|ρ↑↓|2e−γ T

the occurrence probabilities of all the quantum trajectories
depend on γ , but are independent of ω, leading to nonzero
Fγ but vanishing Fω according to Eq. (18). Therefore, for
estimating ω, we do not need to record the timings of the
quantum jumps.

(ii) For the spin-flip and spin-dephasing channels, the QFI
about ω (γ ) is nonzero (zero) for all the trajectories. Physi-
cally, the dependence of the normalized quantum trajectories
on ω and γ originates from the jumpless evolution L0 or
equivalently H̃ = ωSz − i(γ /8), which imprints the ω depen-
dence but no γ dependence onto the normalized quantum
trajectories. Therefore, for estimating γ , we only need to
record the timings of the quantum jumps, while measurements
over the final state are not necessary.

(iii) For the spin-relaxation channel, the trajectory with
quantum jumps has vanishing QFI about ω and γ , because
a single quantum jump projects an arbitrary state into |↓〉
and hence eliminates all the information. Therefore, once
a quantum jump is detected, we can immediately stop the
current measurement cycle and start the next measurement
cycle to reduce the total time cost.

(iv) The information about ω is all proportional to |ρ↑↓|2,
i.e., the projection of the initial spin in the xy plane, because
ω is imprinted onto the quantum probe through the Larmor
precession around the z axis. The positive definiteness of the
density matrix dictates |ρ↑↓|2 � ρ↑↑ρ↓↓, so in the following
we set |ρ↑↓|2 = ρ↑↑ρ↓↓ to optimize the estimation precision
for ω.

B. Estimation of ω

For the spin-relaxation channel, the jumpless trajectory
[Eq. (20)] contains the QFI

Fω[ρ�] = 4T 2 ρ↑↑e−γ T ρ↓↓
(ρ↑↑e−γ T + ρ↓↓)2

and occurs with a probability P�(T ) = ρ↑↑e−γ T + ρ↓↓, while
the trajectories with a quantum jump contains no QFI. Given
an arbitrary evolution time T , preparing the initial state
ρ↓↓ = 1 − ρ↑↑ = 1/(eγ T + 1) makes the QFI of the jumpless
trajectory attain its maximum T 2. This motivates a parameter
estimation protocol based on the probabilistic preparation of
the jumpless trajectory (which contains all the information
about ω): ν successful preparations of the jumpless trajectory
herald the estimation precision δω = 1/

√
νT , which attains

the Heisenberg scaling. The drawback is that the success prob-
ability P�(T ) = 2/(eγ T + 1) for each preparation decreases
with increasing T .

For deterministic parameter estimation, we should take into
account the occurrence probabilities of the quantum trajecto-
ries. The estimation precision of MQT is determined by

Fω = Fω[ρ̄]

ρ↑↑e−γ T + ρ↓↓
,

where Fω[ρ̄] = 4T 2ρ↑↑e−γ T ρ↓↓ is the QFI of the conven-
tional approach. For small ρ↓↓, the enhancement of Fω relative
to Fω[ρ̄] could be very large when γ T � 1. In addition,
MQT also shortens the total time cost: Once a quantum
jump is detected, we should immediately stop the current
measurement cycle (because the trajectory with a quantum
jump has no QFI) and start the next measurement cycle. In
this case, the average time cost for each measurement cycle is

Tave = P�T +
∫ T

0
t1Trρ̃t1 dt1 = ρ↑↑

γ
(1 − e−γ T ) + ρ↓↓T,

(29)

which is shorter than T , especially when ρ↓↓ is small. Since
the total time cost of ν repeated measurement cycles is νTave,
the estimation precision per unit time, i.e., the sensitivity
δω

√
νTave = 1/

√
Fω/Tave [cf. Eq. (27)], is determined by the
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FIG. 3. Optimal information extraction rates (obtained by op-
timizing the initial states) for estimating (a)–(c) ω and (d) γ for
different decoherence channels. Black lines are for MQT and orange
lines for the conventional method.

information extraction rate

Fω

Tave
� 4γ T 2

(
√

eγ T − 1 + √
γ T )2

γ T �1−→ 4γ T 2e−γ T ,

where the inequality is saturated at ρ↓↓/ρ↑↑ =√
(1 − e−γ T )/γ Teγ T . For comparison, the information

extracting rate of the conventional method is

Fω[ρ̄]

T
� Te−γ T ,

where the inequality is saturated at ρ↓↓ = ρ↑↑ = 1/2. There-
fore, MQT enhances the long-time information extraction rate
by a factor 4γ T , although both Fω and Fω[ρ̄] exhibit the same
exponential decay, as shown in Fig. 3(a).

For the spin-flip channel, the jumpless trajectory [Eq. (22)]
contains the QFI

Fω[ρ�] = 4T 2ρ↑↑ρ↓↓

that attains the Heisenberg scaling with respect to T , while
the trajectory with n quantum jumps at t1, . . . , tn [Eq. (23)]
contains the QFI

Fω[ρt1···tn ] = 4

(∫ T

0
s(t )dt

)2

ρ↑↑ρ↓↓,

where s(t ) starts from +1 at t = 0 and reverses its sign
at t1, . . . , tn. Physically, every quantum jump reverses the
direction of the phase accumulation [manifested as the sign
reversal of s(t )] and

∫ T
0 s(t )dt is the net phase accumulation

time. For example, we consider the trajectory with a single
quantum jump at t1. Starting from an initial state a|↑〉 + b|↓〉,
the quantum probe first evolves as a|↑〉 + eiωt1 b|↓〉 and then
undergoes a spin flip into the state a|↓〉 + eiωt1 b|↑〉 and then
evolve into the final state a|↓〉 + e−iω(T −t1 )eiωt1 b|↑〉, so its net
phase accumulation time is t1 − (T − t1), which coincides
with

∫ T
0 s(t )dt .

Here the Heisenberg scaling of Fω[ρ�] again motivates a
probabilistic parameter estimation protocol based on prepar-
ing the jumpless trajectory: ν successful preparations with

evolution time T and ρ↑↑ = ρ↓↓ = 1/2 herald the estimation
precision δω = 1/

√
νT , which attains the Heisenberg scaling

with respect to T . The drawback is that the success probability
P�(T ) = e−γ T/4 for each preparation decreases with increas-
ing T , so this probabilistic protocol reduces the workload
of data processing at the cost of reducing the fundamental
estimation precision. For deterministic parameter estimation,
we average the QFI of every trajectory over their occurrence
probabilities to obtain

Fω

T

γ T �1−→ 16

γ
ρ↑↑ρ↓↓.

For comparison, the information extraction rate of the conven-
tional method is (for ω � γ )

Fω[ρ̄]

T
≈ 4T ρ↑↑ρ↓↓e−γ T/2.

Thus MQT avoids the long-time exponential decay of the
sensitivity (i.e., precision per unit time), as shown in Fig. 3(b).
Physically, the jumpless trajectory has a negligible occur-
rence probability, so the long-time linear scaling Fω = F̄ω ∝
T comes from the QFI of other trajectories: The random
quantum jumps leads to random sign reversal of s(t ), so
[
∫ T

0 s(t )dt]2 and hence the QFI of each trajectory increase
linearly with T on average, similar to a random walk. Mon-
itoring quantum trajectories gives access to this trajectory-
resolved QFI, as opposed to the ensemble QFI Fω[ρ̄] from
the conventional method.

When we take into account the finite interval � between
successive syndrome measurements in QEC-based MQT for
the spin-flip channel, we obtain

Fω ≈ 32ρ↑↑ρ↓↓
γ 2

e−γ T/4e2ζ

[
(1 − ζe−ζ )N + (1 + ζe−ζ )N

×
(

γ T

2
e−ζ − 1

)]
(30)

under the condition 1/� � ω � γ and γ T � 1/γ�, where
ζ ≡ γ�/4 and N ≡ T/� is the total number of syndrome
measurements during the interval T . When the syndrome
measurements are much faster than the decoherence (ζ � 1),
Fω approaches the ideal results in Table I. When each
syndrome measurement is imperfect, we can combine
several adjacent imperfect syndrome measurements into a
composite measurement to suppress the measurement error
exponentially.

Finally, we turn to the spin-dephasing channel. Interest-
ingly, each quantum jump merely flips the phase between |↑〉
and |↓〉 without affecting the phase accumulation [Eq. (25)],
so every quantum trajectory contain the same QFI

Fω = Fω[ρ�] = Fω[ρt1···tn ] = 4T 2ρ↑↑ρ↓↓, (31)

in contrast to the conventional method

Fω[ρ̄] = 4T 2ρ↑↑ρ↓↓e−γ T .

So MQT can restore the Heisenberg scaling of the estimation
precision, as shown in Fig. 3(c). Unfortunately, QEC-based
MQT for the dephasing channel of a single spin 1/2 is
not possible, so direct measurement over the environment is
necessary. For multiple qubits, the key to the recovery of the
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Heisenberg scaling for estimating ω is [J ,L0] = 0 and the
preservation of the QFI under the quantum jump J [see the
discussions after Eq. (18)]. When this condition is satisfied,
QEC-based MQT can be used to recover the Heisenberg
scaling (see Appendix B for an example).

C. Estimation of γ

For the spin-relaxation channel, the estimation precision of
MQT is determined by Fγ ≈ ρ↑↑/γ 2 at γ T � 1. By contrast,
the estimation precision of the conventional method is deter-
mined by Fγ [ρ̄] ≈ T 2ρ↑↑e−γ T at γ T � 1. Thus MQT avoids
the exponential loss of the QFI in the conventional method. In
addition, it also shortens the total time cost from T to Tave

[Eq. (29)]. The information extraction rate, which determines
the sensitivity δγ

√
νTave = 1/

√
Fγ /Tave, is

Fγ

Tave
� 1

γ
, (32)

where the inequality is saturated at ρ↓↓ = 0. The information
extracting rate of the conventional method is

Fγ [ρ̄]

T
� T

eγ T − 1
, (33)

where the inequality is saturated at ρ↑↓ = ρ↓↓ = 0. Therefore,
MQT avoids the long-time exponential loss of the sensitivity,
as shown in Fig. 3(d).

For the spin-flip channel, the information about γ is en-
tirely the CFI in the timings of the quantum jumps: Fγ = Fγ =
T/4γ . The information extraction rate from the MQT is

Fγ

T
= 1

4γ
. (34)

The information extraction rate of the conventional method is

Fγ [ρ̄]

T
� T

4(eγ T − 1)
, (35)

where ρ++ and ρ−− are the populations of |±〉 ≡ (|↑〉
± |↓〉)/

√
2 in the initial state ρ0 and the inequality is saturated

at |ρ+−|2 = ρ++ρ−− and ρ++ = ρ−− = 1/2. Equation (35) is
also the ultimate precision bound [112] for adaptive estima-
tion of the dephasing rate without MQT. Comparing Eq. (34)
to Eq. (35), we see that MQT avoids the long-time exponential
loss of the sensitivity. At ω = 0, including the finite interval
� between successive syndrome measurements in QEC-based
MQT for the spin-flip channel amounts to a multiplicative
factor 4ζ/(e4ζ − 1) (with ζ ≡ γ�/4 and N ≡ T/�) to Fγ .
When ζ � 1, Fγ approaches the ideal results in Table I.
For the spin-dephasing channel, we obtain exactly the same
results, with |↑〉 (|↓〉) playing the role of |+〉 (|−〉).

FIG. 4. Typical framework of quantum parameter estimation.

IV. CONCLUSION

Quantum-enhanced parameter estimation has widespread
applications in many fields. An important issue is to pro-
tect the estimation precision against the noise-induced de-
coherence. For this purpose, we have developed a general
theoretical framework for improving the precision of param-
eter estimation by monitoring the noise-induced quantum
trajectories of the quantum probe and further establish its
connection to the purification-based approach to quantum
parameter estimation [61]. For Markovian environment, we
provide a superoperator approach to determining the funda-
mental bounds on the estimation precision. This approach
may provide exact analytical expressions for some simple
models. Monitoring quantum trajectories can be achieved in
two ways: (i) Any quantum trajectories can be monitored
by directly monitoring the environment, which is experimen-
tally challenging for realistic noises, and (ii) certain quantum
trajectories can also be monitored by frequently measuring
the quantum probe (without monitoring the environment)
via ancilla-assisted encoding and error detection, as used
in quantum error correction. This QEC-based MQT can be
achieved in any experimental platform where QEC has been
demonstrated, such as the nitrogen-vacancy center [26,81,82],
superconducting qubits [83,84], and trapped ions [85–87]. It
also establishes an interesting connection between MQT and
the metrology protocols based on full QEC [21–28]. We apply
MQT to the estimation of the level splitting ω and the decoher-
ence rate γ of a spin 1/2 under three decoherence channels:
spin relaxation, spin flip, and spin dephasing. We find that
it can significantly improve the precision for estimating ω

under the spin-relaxation channel, avoid the exponential loss
of the precision for estimating γ (estimating ω) under all
the decoherence channels (under the spin-flip channel), and
recover the Heisenberg scaling for estimating ω under the
spin-dephasing channel.
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APPENDIX A: FRAMEWORK OF QUANTUM
PARAMETER ESTIMATION

Here we provide a self-contained introduction to the typical
framework and important concepts in quantum parameter
estimation. A typical (nonadaptive) parameter estimation pro-
tocol using a quantum probe to estimate an unknown real
parameter θ consists of three steps (Fig. 4).

(1) The quantum probe starts from an initial state ρin and
undergoes certain θ -dependent evolution into a final state ρ

that depends on θ . This step imprints the information about
θ into the final state ρ. The information contained in ρ is
quantified by the quantum Fisher information F .

(2) The quantum probe undergoes a measurement, which
produces an outcome according to certain probability dis-
tribution. In this step, the quantum Fisher information F
contained in ρ is transferred into the classical information in
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the measurement outcome. The information contained in each
outcome is quantified by the classical Fisher information F ,
which obeys

F � F . (A1)

(3) Steps 1 and 2 are repeated ν times and the ν out-
comes are processed to yield an estimator θest to the unknown
parameter θ . In this step, the total CFI νF contained in
the ν outcomes is converted to the estimation precision, as
quantified by the statistical error of the estimator

δθ ≡
√

〈(θest − θ )2〉, (A2)

where 〈· · · 〉 denotes the average over many estimators ob-
tained by repeating steps 1–3 many times. For unbiased es-
timators obeying 〈θest〉 = θ , the precision δθ is fundamentally
limited by the inequality

δθ � 1√
νF

⇔ (δθ )−2 � νF, (A3)

known as the Cramér-Rao bound [88–90].

1. Quantum Fisher information

The amount of information about θ contained in a general
θ -dependent quantum state ρ is quantified by its QFI [90]

F ≡ Tr ρL2,

where L is the so-called symmetric logarithmic derivative
operator. It is an Hermitian operator defined through [89]

∂θρ = 1
2 (Lρ + ρL).

The QFI is invariant under any θ -independent unitary trans-
formations. For a pure state ρ = |�〉〈�|, we have L = 2∂θρ

and hence

F = 4(〈∂θ�|∂θ�〉 − |〈�|∂θ�〉|2). (A4)

For a general mixed state with the spectral decomposition ρ =∑
n pn|�n〉〈�n|, its QFI is [113–116]

F[ρ] =
∑

n

(∂θ pn)2

pn
+

∑
n

pnF[|�n〉]

−
∑
m �=n

8pm pn

pm + pn
|〈�m|∂θ�n〉|2,

where {pn} are nonzero eigenvalues of ρ, {|�n〉} are the corre-
sponding orthonormalized eigenstates, and F[|�n〉] is the QFI
of the pure state |�n〉 [see Eq. (A4)]. For a two-level system,
its density matrix can always be expressed in terms of the
Pauli matrices σ as ρ = (1/2)(1 + σ · n), where n ≡ Tr σρ

is the Bloch vector. The QFI for such a state is [16,117,118]

F = |∂θn|2 + (n · ∂θn)2

1 − |n|2 ,

where the second term is absent when |n| = 1, i.e., when
ρ is a pure state. When ρ = ρ (1) ⊗ · · · ⊗ ρ (N ) is the direct
product state of N quantum probes, its QFI is additive: F =∑N

n=1 F[ρ (n)].
The importance of the QFI for parameter estimation is

manifested in the inequalities (A1) and (A3). Namely, given ρ

and hence F , the precision of any unbiased estimator from ν

repetitions of any measurement is limited by the inequality

δθ � 1√
νF

, (A5)

known as the quantum Cramér-Rao bound [89,90]. Saturating
this bound requires saturating Eqs. (A1) and (A3) simultane-
ously, i.e., using optimal measurements to convert all the QFI
into the CFI and using optimal unbiased estimators to convert
all the CFI into the precision of the estimator.

2. Classical Fisher information and optimal measurements

A general measurement with discrete outcomes {u} is
described by the positive-operator-valued measure elements
{Mu} satisfying the completeness relation

∑
u M†

u Mu = 1.
Given a quantum state ρ, it yields an outcome u according to
the probability distribution P(u|θ ) ≡ Tr MuρM†

u that depends
on θ . The amount of information about θ contained in each
outcome is quantified by the CFI [88]

F ≡
∑

u

P(u|θ )

(
∂ ln P(u|θ )

∂θ

)2

. (A6)

For continuous outcomes, we only need to replace
∑

u by
∫

du
everywhere. The inequality (A1) expresses the simple fact that
no new information about θ can be generated in the measure-
ment process: Those measurements that convert all (part) of
the QFI into the CFI are called optimal (nonoptimal). Given
ρ, the optimal measurement is not unique. The projective
measurement of the symmetric logarithmic derivative operator
L has been identified [90] as an optimal measurement.

3. Optimal unbiased estimators

Given the measurement distribution P(u|θ ) and hence
the CFI F of each outcome, the precision δθ of any
unbiased estimator θest (u) constructed from the outcomes
u ≡ (u1, . . . , uν ) of ν repeated measurements is limited by
the Cramér-Rao bound (A3), which expresses the simple
fact that no new information about θ can be generated in the
data processing: Optimal (nonoptimal) unbiased estimators
convert all (part) of the CFI into the useful information (δθ )−2

quantified by the precision δθ . In the limit of large ν, two
kinds of estimators are known to be unbiased and optimal, the
maximum likelihood estimator and the Bayesian estimator
[88], as we introduce now.

Before any measurements, our prior knowledge about the
unknown parameter θ is quantified by a certain probability
distribution P0(θ ), e.g., a δ-like distribution corresponds to
knowing θ exactly, a flat distribution corresponds to com-
pletely no knowledge about θ , and a Gaussian distribution
P0(θ ) ∝ e−(θ−θ0 )2/2σ 2

0 corresponds to knowing θ to be θ0 with
a typical uncertainty σ0.

Upon getting the first outcome u1, our knowledge about θ

is immediately refined from P0(θ ) to

Pu1 (θ ) = P0(θ )P(u1|θ )

N (u1)

according to the Bayesian rule [119], where N (u1) ≡∫
dθ P0(θ )P(u1|θ ) is a normalization factor ensuring Pu1 (θ ) is
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normalized to unity:
∫

Pu1 (θ )dθ = 1. Here Pu1 (θ ) is the poste-
rior probability distribution of θ conditioned on the outcome
of the measurement being u1: Its parametric dependence on u1

means that different measurement outcomes lead to different
refinement of knowledge about θ .

Upon getting the second outcome u2, our knowledge is
immediately refined from Pu1 (θ ) to

Pu1u2 (θ ) = P0(θ )P(u1|θ )P(u2|θ )

N (u1, u2)
,

where N (u1, u2) = ∫
P0(θ )P(u1|θ )P(u2|θ )dθ is a normaliza-

tion factor for the posterior distribution Pu1u2 (θ ). If we omit the
trivial normalization factors, then the measurement-induced
knowledge refinement becomes

P0(θ )
u1−→ P0(θ )P(u1|θ )

u2−→ P0(θ )P(u1|θ )P(u2|θ )
u3−→ · · · .

Upon getting ν outcomes u ≡ (u1, . . . , uν ), our knowledge
about θ is quantified by the posterior distribution

Pu(θ ) ∼ P0(θ )P(u|θ )

up to a trivial normalization factor, where P(u|θ ) =
P(u1|θ ) · · · P(uν |θ ) is the probability for getting the outcome
u. The posterior distribution Pu(θ ) completely describe our
state of knowledge about θ . Nevertheless, sometimes a single
number, i.e., an unbiased estimator, is required as the best
guess to θ . There are two well-known estimators: The max-
imum likelihood estimator [88]

θM(u) ≡ arg max Pu(θ ) (A7)

is the peak position of Pu(θ ) as a function of θ , while the
Bayesian estimator [88]

θB(u) ≡
∫

θPu(θ )dθ (A8)

is the average of θ . For large ν, both estimators are unbiased
and optimal: 〈θα〉 = θ and δθα = 1/

√
νF (θ ), where α = M or

B, 〈· · · 〉 denotes the average over a large number of estimators
obtained by repeating the ν-outcome estimation scheme many
times, and δθα is defined as Eq. (A2) or

δθα =
√∫

[θ − θα (u)]2Pu(θ )dθ. (A9)

APPENDIX B: MONITORING DEPHASING
OF LOGICAL QUBITS

We consider an odd number m of spins 1/2 and each
spin 1/2 is subjected to an independent spin-dephasing
channel. The quantum jump operator Sz of the dephas-
ing channel leads to random transitions between the two
eigenstates |±〉 ≡ (|↑〉 ± |↓〉)/

√
2 of σx during the evolution.

We define the (m − 1)-component syndrome operator � =
(σ (1)

x σ (2)
x , . . . , σ (m−1)

x σ (m)
x ), where σ (i)

x is the Pauli matrix for
the ith spin 1/2. The code subspace as spanned by [21,24]

|⇑〉 ≡ |+〉⊗m + |−〉⊗m

√
2

, |⇓〉 ≡ |+〉⊗m − |−〉⊗m

√
2

is an eigensubspace of � with eigenvalue +1 for every
component of �. This allows us to monitor the simultaneous
quantum jump of at most (m − 1)/2 qubits [21,24], e.g.,
the quantum jump of the ith spin 1/2 switches the sign of
the (i − 1)th and the ith component of �, while leaving
other components of � intact. When the Hamiltonian com-
mutes with the syndrome operator, monitoring the quantum
jump does not affect the Hamiltonian evolution. When the
Hamiltonian further commutes with all the quantum jump
operators S(1)

z , . . . , S(m)
z , the quantum jump does not affect the

Hamiltonian evolution. In this case, MQT can fully recover
the estimation precision in the noiseless case.

As an example, we consider H = (ω/2)σ̄z, where σ̄z ≡
σ⊗m

z maps |⇑〉 to |⇑〉 and |⇓〉 to −|⇓〉. This Hamiltonian com-
mutes with the syndrome operator and all the quantum jump
operators. The initial state |ψ0〉 = (|⇑〉 + |⇓〉)/

√
2 lies inside

the code subspace. In the absence of quantum jumps, the final
state is |ψ〉 = (|⇑〉 + eiωT |⇓〉)/

√
2, whose QFI Fω[|ψ〉] =

T 2 attains the Heisenberg scaling with respect to the time
cost T . By frequently measuring the syndrome operator, we
can track the simultaneous phase flips of at most (m − 1)/2
qubits. Since the phase flips commute with H , they always
map |⇑〉 (|⇓〉) to another eigenstate of H with the same
eigenvalue, thus all the detectable quantum jumps do not
cause the loss of the QFI. For example, a quantum jump of the
kth qubit at time t maps the m-qubit state (|⇑〉 + eiωt |⇓〉)/

√
2

to (σ (k)
z |⇑〉 + eiωtσ (k)

z |⇓〉)/
√

2, where σ (k)
z |⇑〉 (σ (k)

z |⇓〉) is still
an eigenstate of σ̄z with the same eigenvalue +1 (−1). After-
ward, the evolution under H = (ω/2)σ̄z leads to the final state
(σ (k)

z |⇑〉 + eiωT σ (k)
z |⇓〉)/

√
2, which contains the same QFI as

the jumpless state. Therefore, MQT allows us to continuously
track the quantum trajectory and hence recover the Heisenberg
scaling of the estimation precision without error correction, as
long as in between two rounds of syndrome measurements the
number of phase-flipped qubits does not exceed (m − 1)/2.
By contrast, when the quantum trajectories are not monitored,
the QFI of the nonselective final state would decay to zero
on timescales much greater than the single-qubit decoherence
time.

The results above are consistent with the conclusion of
Refs. [68,69] since the Hamiltonian H ∝ σ̄z = σ⊗m

z lies out-
side the Lindblad span of all the decoherence channels. The
results above can also be generalized to N logical qubits,
where each logical qubit is composed of m qubits through
the m-qubit phase-flip code and is driven by the Hamiltonian
(ω/2)σ̄z. Starting from the initial state (|⇑〉⊗N + |⇓〉⊗N )/

√
2,

all the detectable quantum trajectories contain the same QFI
N2T 2, which gives the Heisenberg scaling for the estimation
precision about ω.

APPENDIX C: ESTIMATION PRECISION
FOR SPIN-FLIP CHANNEL

1. Ideal continuous monitoring

For ideal continuous monitoring of the quantum jump (i.e.,
spin flip), the normalized quantum trajectory with n quantum
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jumps at t1, . . . , tn has the QFI

Fω[ρt1···tn ] =
{

4|ρ↑↓|2(T − 2t1 + 2t2 − · · · − 2t2k+1)2 (n = 2k + 1)

4|ρ↑↓|2(T + 2t1 − 2t2 + · · · − 2t2k )2 (n = 2k),

with occurrence probability density pt1···tn = (γ /4)ne−γ T/4.
For n = 0, they reduce to the QFI and the occurrence proba-
bility of the jumpless trajectory. The trajectory-averaged QFI
follows by straightforward calculation:

F̄ω = 4T 2|ρ↑↓|2e−γ T /4
∞∑

k=0

(γ T/4)2k

(2k + 1)!

(
1 + γ T/4

2k + 3

)
.

The sum
∑∞

k=0(· · · ) is equal to (xex − sinh x)/x2 with x ≡
γ T/4, so we obtain the F̄ω listed in Table I. Since pt1···tn is
independent of ω and the timings {t1, . . . , tn} of the quantum
jumps, Eq. (18) gives Fω = 0 and

Fγ = (∂γ P�)2

P�
+

∞∑
n=1

(∂γ Pn)2

Pn
= T

4γ
, (C1)

where

Pn ≡
∫ T

0
dtn · · ·

∫ t2

0
dt1 pt1···tn = (γ T/4)n

n!
e−γ T/4

is the probability for n quantum jumps during [0, T ].

2. Realistic QEC-based monitoring

When we use QEC-based MQT with the syndrome op-
erator � ≡ σzσ

(a)
z with eigenvalues ±1 (see Sec. II E), the

interval � between successive syndrome measurements is
finite. The total evolution interval [0, T ] is divided into N =
T/� � 1 segments of length � sandwiched by N syndrome
measurements at t = �, 2�, . . . , N�. At t = 0, the initial
state of the spin 1/2 and the ancilla is an eigenstate of the syn-
drome operator with eigenvalue λ0 ≡ +1. For clarity we use
λk (=+1 or −1) to denote the outcome of the kth syndrome
measurement, where k = 1, 2, . . . , N . If the kth syndrome
measurement reports a sign switch, i.e., λk = −λk−1, then
the spin 1/2 undergoes an odd number of quantum jumps
during [(k − 1)�, k�]; otherwise (i.e., λk = λk−1) the spin
1/2 undergoes an even number of quantum jumps during
[(k − 1)�, k�]. If γ� � 1, then the possibility of multiple
quantum jumps between neighboring syndrome measurement
is exponentially small, so the syndrome measurements can
resolve well individual quantum jumps. Otherwise, the syn-
drome measurements only give little information about the
quantum jumps.

First, we derive the evolution of the quantum trajectories
between the (k − 1)th and the kth syndrome measurements.
Suppose the previous syndrome measurements give the out-
comes λ1, . . . , λk−1 and the unnormalized quantum trajectory
ρ̃ immediately after the (k − 1)th syndrome measurement is

ρ̃ ≡
[
ρ̃↑↑ ρ̃↑↓
ρ̃∗

↑↓ ρ̃↓↓

]
,

which is an eigenstate of � with eigenvalue λk−1. The nonse-
lective evolution during [(k − 1)�, k�] gives the nonselective

final state

eL�ρ̃ = M+ρ̃ + M−ρ̃,

where Lρ = −i[H, ρ] + γD[Sx]ρ and M± are superopera-
tors

M+ρ̃ ≡ e−ζ

[
ρ̃↑↑ cosh ζ ρ̃↑↓ f (�)

ρ̃∗
↑↓ f ∗(�) ρ̃↓↓ cosh ζ

]
,

M−ρ̃ ≡ e−ζ

[
ρ̃↓↓ sinh ζ ρ̃∗

↑↓g(�)

ρ̃↑↓g(�) ρ̃↑↑ sinh ζ

]
,

with ζ ≡ γ�/4, f (�) ≡ cos(w�) − i(ω/w) sin(w�),
g(�) ≡ γ sin (w�)/4w, and w ≡

√
ω2 − (γ /4)2. Since each

quantum jump leads to the exchanges |↑〉 ↔ |↓〉 and hence
ρ̃↑↑ ↔ ρ̃↓↓ and ρ̃↑↓ ↔ ρ̃↓↑, we identify ρ̃+ ≡ M+ρ̃ (ρ̃− ≡
M−ρ̃) as the unnormalized quantum trajectory containing an
even (odd) number of quantum jumps during [(k − 1)�, k�].
In other words, the unnormalized quantum trajectory at
t = k� is ρ̃− if the kth syndrome measurement reports a sign
switch or ρ̃− otherwise. Their occurrence probabilities
are Tr ρ̃± = [(1 ± e−2ζ )/2]Trρ̃, so the nonselective
evolution is trace preserving: Tr M+ρ̃ + Tr M−ρ̃ = Tr ρ̃.
When Tr ρ̃ = 1, the occurrence probabilities of ρ̃± are
p ≡ (1 + e−2ζ )/2 and 1 − p, respectively.

This single-step evolution can be iterated N times to yield
the quantum trajectories at t = T . Specifically, if only the
syndrome measurements at t = k1�, . . . , km� report sign
switches, then the unnormalized quantum trajectory at t = T
is

ρ̃k1···km = MN−km−1
+ M−Mkm−km−1−1

+ · · ·M−Mk2−k1−1
+

×M−Mk1−1
+ ρ0

and its occurrence probability

Pk1···km ≡ Tr ρ̃k1···km = pN−m(1 − p)m

is independent of k1, . . . , km. Since p is independent of ω, the
CFI about ω vanishes, Fω = 0, and the CFI about γ follows
from Eq. (18) as

Fγ =
N∑

m=0

∑
{k1,...,km}

(∂γ Pk1···km )2

Pk1···km

=
N∑

m=0

(∂γ Pm)2

Pm
= T

4γ

4ζ

e4ζ − 1
,

where Pm ≡ ∑
k1<k2<···<km

Pk1···km = Cm
N pN−m(1 − p)m is the

probability for m quantum jumps during [0, T ] and Cm
N ≡

N!/m!(N − m)! is the binomial coefficient. Next we calculate
the QFI in the normalized quantum trajectories: ρk1···km ≡
ρ̃k1···km/Pk1···km .
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When ω = 0, we have f (�) = cosh ζ , g(�) = sinh ζ , and hence M+ρ0 = pρ0 and M−ρ0 = (1 − p)σxρ0σx, so ρk1···km = ρ0

(for even m) or ρk1···km = σxρ0σx (for odd m) is independent of γ and hence gives zero-trajectory QFI about γ . In this case, the
total information from MQT is Fγ = Fγ .

When ω �= 0, to obtain explicit analytical expression, we assume 1/� � ω � γ and γ T � 1/(γ�), so f (�) ≈ e−iω�,
g(�) ≈ ζ , and hence

ρk1···km =
[
ρ↓↓ a

a∗ ρ↑↑

]
(for m = 2n + 1),

ρk1···km =
[
ρ↑↑ b

b∗ ρ↓↓

]
(for m = 2n),

where

a ≡ ρ∗
↑↓e−γ T/4

pN−2n−1(1 − p)2n+1
ζ 2n+1 exp

[
−iω�

(
N + 1 + 2

2n+1∑
i=1

(−1)iki

)]
,

b ≡ ρ↑↓e−γ T/4

pN−2n(1 − p)2n
ζ 2n exp

[
−iω�

(
N + 2

2n∑
i=1

(−1)i+1ki

)]
.

The trajectory QFI is

Fω[ρk1···km ] = 4|ρ↑↓|2 ζ 2m�2e−γ T/2

[pN−m(1 − p)m]2

{
(N − 2k2n+1 + 2k2n − · · · − 2k1 + 1)2 (m = 2n + 1)

(N − 2k2n + 2k2n−1 − · · · + 2k1)2 (m = 2n).

Averaging the trajectory-QFI over its occurrence probabilities gives

F̄ω ≈ 4|ρ↑↓|2e−γ T/4�2
[N/2]∑
n=0

(
N

N (N − 1) · · · (N − 2n)

(2n + 1)!
(ζe−ζ )2n + (N + 1)N · · · (N − 2n − 1)

(2n + 3)(2n + 1)!
(ζe−ζ )2n+1

)
,

where [x] is the largest integer not greater than x and we have used pN−m ≈ e−(N−m)ζ and (1 − p)m ≈ ζ m. Performing the
summation gives Eq. (30) of the main text.
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