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Recent development of mixed-state encoding (MSE) allows pure-state logical information to be encoded by a
bosonic (continuous-variable) system in mixed physical state. Despite interest due to its counterintuitiveness, the
utility of the current MSE scheme is limited due to several operational drawbacks, namely redundant information
carrier, probabilistic initialization, and requirement of discrete-variable measurement. In this work, we present a
simplified MSE that does not suffer from any of these drawbacks. Specifically, our protocol encodes each qubit
by only one mixed-state bosonic mode and the logical basis can be deterministically initialized from thermal
equilibrium. All logical operations of this encoding can be performed with continuous-variable interaction and
measurement only. Without the necessity of ground-state cooling, our proposal could broaden the set of candidate
systems for implementing quantum computers and reduce the reliance on demanding refrigerating facility for
current quantum computing architectures. Additionally, our protocol can enhance the noise tolerance of logical
qubit even if the system can be efficiently cooled.
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I. INTRODUCTION

Quantum computers are widely believed to offer dramatic
speedup in a variety of applications, such as solving algebraic
problems, physical simulation, and machine learning [1–4]. In
most quantum computing algorithms, the basic unit of inform-
ation is a qubit, which is generally a superposition of two
logical values. For a physical system to be a candidate of
quantum computer, it should meet at least two conditions [5]:
first, it exhibits well characterized (and decoherence-robust)
degrees of freedom for representing qubits; second, physical
controls should be available to implement all logical oper-
ations, including initialization, logic gates, and information
readout.

In the past two decades, several promising quantum com-
puter candidates have been recognized [6]; they can be
roughly divided into two categories: discrete-variable (DV)
and continuous-variable (CV) systems. In DV systems, each
physical degree of freedom exhibits finite but individually ad-
dressable states. Examples of DV systems include the internal
states of trapped ions [7] and the spin states in diamond color
centers [8]. In contrast, each physical degree of freedom of
a CV system behaves as a bosonic quantum mode (qumode)
[9,10]. Each qumode exhibits effectively infinite eigenstates,
but individually addressing a specific state could be challeng-
ing. Examples of CV systems includes cavity and traveling
photonic modes [11], superconducting resonators [12,13],
mechanical oscillators [14–16], and spin ensembles [17,18].
When comparing to DV systems, CV systems are ubiquitous,
and some offer the advantage of long coherence time [19],
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simple error correction [20,21], and efficient generation of
large scale multipartite entanglement [22,23].

At the beginning of quantum computation, the physical
system has to be initialized as a logical basis [5]. Unlike DV
systems, in which the logical bases are usually two physical
eigenstates, there is no natural choice of CV encoding states.
In the literature, numerous CV encodings have been proposed
to represent logical bases as, e.g., Fock states, coherent states,
cat states, etc. [20,21,24–34]. Although each encoding has its
respective operational advantage, the existing encodings have
one property in common: the logical bases are pure physi-
cal states. Therefore, logical basis initialization necessarily
requires a pure qumode state to be prepared from the equi-
librium, i.e., thermal state. This requirement can be fulfilled
if the physical system involves negligible thermal excitation,
e.g., optical mode [35], or if ground-state cooling is efficient,
e.g., motional state of trapped ions [14]. However, there are
also bosonic systems that thermal excitation is significant,
but ground-state cooling is challenging, e.g., mechanical os-
cillator [16], or requires demanding refrigerating facilities
[15,36,37]. If a pure-state encoding is employed in these
systems, the physical impurity will contaminate the encoded
logical information.

Fortunately, purifying a qumode is sufficient but not neces-
sary for logical basis initialization; recently it has been found
that a pure logical state can be encoded by a mixed physical
state [38]. While counterintuitive at first glance, mixed-state
encoding (MSE) shares a similar concept as noiseless sub-
systems in DV systems: quantum information is represented
not only by a particular physical state, but by any state in a
subspace of the Hilbert space [39–41].

To the best of our knowledge, the idea of encoding qubits
by highly mixed CV states was first proposed by Jeong
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and Ralph [42,43]. By transferring a qubit information into
differently displaced thermal states, the nonclassical property
of the qumode prevails even when the thermal excitation is
arbitrarily high. Unfortunately, the proposal did not discuss
the explicit implementation of the logical operations which
are required for universal quantum computation (UQC). Re-
cently, some of us introduced the two-qumode parity (TQP)
encoding, which encodes each logical qubit by two mixed-
state qumodes with opposite parities [38]. All UQC logical
operations, including logical basis initialization, logic gates,
and information readout, can be implemented by realistic
physical processes.

In spite of certain advantages over pure-state encodings,
the practical utility of TQP encoding is limited due to
three major drawbacks. First, each TQP qubit involves two
qumodes, which increases the difficulty of implementation
and squanders the information capacity provided. Second,
logical basis initialization requires quantum nondemolition
(QND) measurement and postselection, which are challenging
for many physical systems. Third, the readout of quantum
information requires fine-grained, DV parity measurement; in
some platform this is less efficient than CV measurement, e.g.,
homodyne detection [44,45].

In this work, we propose a MSE that does not suffer from
the drawbacks of the TQP encoding. In this encoding, the
qubit computational value is represented by the parity of a
single qumode and the qubit coherence is represented by the
sign of a quadrature of the qumode wave function. An arbi-
trarily pure logical state can be initialized from equilibrium
by deterministically displacing a physical thermal state. All
UQC logic gates and information readout can be implemented
by realistic physical processes and homodyne detection. In
principle, our encoding eliminates the necessity of ground-
state cooling, so it can extend quantum computing candidacy
to physical systems where cooling is inefficient. Furthermore,
even for the physical platforms that cooling is efficient, our
scheme allows quantum computation to be operated with
more accessible refrigeration facility [36], and can improve
the noise tolerance of the encoded logical information.

Our paper is organized as follows. A general formalism
of MSE is presented in Sec. II. Our encoding is introduced
in Sec. III. The practical procedure for implementing UQC
is also presented. In Sec. IV, we discuss how fault tolerance
can be introduced through concatenating higher level error
correction on top of our scheme. In Sec. V, we provide
an explicit example that our scheme can improve the noise
tolerance of a pure-state encoded qubit. A conclusion is given
in Sec. VI.

II. PURE- AND MIXED-STATE ENCODING

In pure-state encodings, two pure, orthogonal, physical CV
states, |ψ0〉 and |ψ1〉, are assigned as logical bases to represent
the computational values “0” and “1”. Examples of such pure-
state basis include Fock states, coherent states, cat states, and
others [20,21,24–34]. To initialize a logical qubit, the encod-
ing physical system is prepared in a pure physical state within
the computational subspace spanned by {|ψ0〉, |ψ1〉}. Logic
gates are physical operations that transform a state within the
computational subspace, or generally within a tensor product

of such subspaces that represents a multiqubit state. A logical
readout can be implemented by a physical measurement that
distinguishes |ψ0〉 from |ψ1〉.

In MSE, the computational values are no longer repre-
sented by two particular physical states, but by two subspaces
{|ψ (1)

0 〉, |ψ (2)
0 〉, . . .} and {|ψ (1)

1 〉, |ψ (2)
1 〉, . . .}. Each state in the

subspaces are orthogonal, i.e., 〈ψ (l )
i |ψ (k)

j 〉 = δi jδkl , where
i, j ∈ {0, 1} is the computational value; k, l is the index of the
basis state in each subspace.

At initialization, the physical system has to be prepared
in a pure logical state. For each logical qubit, this could be
a physical state that represents, e.g., a logical computational
basis |0L〉 or |1L〉, or a logical coherence basis |+L〉 or |−L〉.
In contrast to pure-state encoding, MSE does not require a
pure logical state to be represented by a pure physical state.
For example, to initialize |0L〉, the encoding qumode can be
prepared in any (pure or mixed) physical state within the
subspace {|ψ (k)

0 〉}.
After initialization, physical operation Û is applied to

implement logic gates. A MSE logic gate is required to
transform every state in each subspace in the same fashion
[38]. Explicitly, for any multiqubit basis |ψ (k1 )

i1
ψ

(k2 )
i2

. . .〉, the
amplitude of transformation c̃i1i2..., j1 j2... has to be independent
of the basis index {k1, k2, . . .}, i.e.,

Û
∣∣ψ (k1 )

i1
ψ

(k2 )
i2

. . .
〉 =

∑
j1, j2,...

c̃i1i2..., j1 j2...

∣∣ψ (k1 )
j1

ψ
(k2 )
j2

. . .
〉
, (1)

where in and jn are the computational value of the nth qubit; kn

is the basis index of the nth qubit. After computation, quantum
information can be read out by a physical measurement that
distinguishes the subspaces {|ψ (k)

0 〉} and {|ψ (k)
1 〉}.

To see how this formalism permits quantum computation
with mixed physical states, we note that the computational
result is determined by the probability of each logical mea-
surement outcome, |c̃i1i2..., j1 j2...|2, which is independent of
the basis index. Therefore, the same computational result is
generated even if the initial physical state is a mixture of basis
states with different basis indices.

Following the spirit of UQC, any logical unitary transfor-
mation can be decoupled into a sequence of logic gates [1].
Reference [38] shows that any (single- and multiqubit) MSE
logic gate can be sufficiently generated by exponentiating the
tensor product of the physical operators

X̂E ≡
∑

k

X̂ (k), ẐE ≡
∑

k

Ẑ (k), (2)

where X̂ (k) and Ẑ (k) are the Pauli operators of the kth pair
of basis {|ψ (k)

0 〉, |ψ (k)
1 〉} (see definition in Appendix A). The

subscript E denotes the operator is acting on physical states.
Within the encoding subspace, these operators satisfy

X̂ 2
E = Ẑ2

E = ÎE , [X̂E , ẐE ]+ = 0, (3)

where ÎE ≡ ∑
n Î (n) is the identity operator; [·, ·]+ is the

anticommutator. We also define

ŶE ≡ iX̂E ẐE =
∑

k

Ŷ (k). (4)
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It is easy to see that these physical operators obey the same
algebra as Pauli matrices, i.e., for μ, ν ∈ {1, 2, 3}

[Q̂μ,E , Q̂ν,E ] = 2iεμνωQ̂ω,E , (5a)

[Q̂μ,E , Q̂ν,E ]+ = 2δμνQ̂0,E , (5b)

where {Q̂0, Q̂1, Q̂2, Q̂3} ≡ {Î, X̂ , Ŷ , Ẑ}. We hereafter refer to
these physical operators as analogous Pauli operators (APO).

Before moving forward, we briefly discuss the physical
meaning of the definitive APO, ẐE and X̂E . ẐE classifies the
physical states into basis subspaces that represent different
computational values. In fact, such classification is also em-
ployed in classical computation: a logical value is usually
encoded by a physical state that is not fully characterized.
For instance, a light bulb can represent two bit values by two
sufficiently distinct brightnesses; within a reasonable range, a
fluctuation of brightness will not affect the encoded bit value.

The crucial difference between classical and quantum com-
putation is that the latter permits a coherent superposition
of computational values. In pure-state encoding, this is rep-
resented by a superposition of pure physical basis states. In
MSE, however, a “coherent superposition of mixed state” does
not make sense. We recall that quantum superposition arises
because not all quantum operators commute. In pure-state
encodings, a coherent superposition could be characterized by
an operator that does not commute with Pauli Z , such as Pauli
X . MSE generalizes this idea to all basis pairs in the subspace
[cf. Eq. (2)]. In other words, X̂E , which does not commute
with ẐE , characterizes the coherence of a MSE qubit. We
note that a MSE qubit with coherent superposition could then
be recognized as a “mixture of pure superposition states.”

A. Representation of logical information

As adopted from Ref. [38], Eq. (2) expresses an APO
as a summation of Pauli operators of each basis pair. This
definition could intuitively explain the key idea of MSE, i.e.,
physical purity is not necessary for UQC. However, if we
want to use this definition to evaluate the quantum information
encoded in a general physical state, the state has to be resolved
into each of the basis states. Because a qumode could exhibit
infinite basis pairs, the evaluation process is generally tedious.

Alternatively, we introduce another definition of APO:
by the physical Hermitian operators that obey the algebra
in Eqs. (5a) and (5b). The Hermitian operators could be
expressed in terms of the qumode operators (â and â†),
without resolving into the pure-state bases (though it could;
see Appendix B). An immediate advantage is that the physical
implementation of the logic gates can be more easily inferred
as physical interaction is usually described in terms of qumode
operators but not basis states.

For any MSE, a logical qubit can be expressed by the
APO as

ρL = 1
2 (〈ÎE 〉ÎL + 〈X̂E 〉X̂L + 〈ŶE 〉ŶL + 〈ẐE 〉ẐL ). (6)

Q̂L’s are the Pauli operators for the logical basis states
{|0L〉, |1L〉}. We can see another advantage of this definition:
the encoded quantum information can be evaluated by simply
calculating the expectation values, 〈Q̂E 〉 ≡ Tr{Q̂Eρ} for any

physical state ρ. This is particularly useful in analyzing the
performance of MSE encoded qubit under noisy processes.

Similarly, an N-qubit logical state can be represented by

ρL = 1

2N

∑
μ

Tr{Q̂μ,Eρ}Q̂μ,L, (7)

where μ ≡ {μ1, μ2, . . .} for μn ∈ {0, 1, 2, 3}; Q̂μ ≡ Q̂μ1 ⊗
Q̂μ2 ⊗ · · · Q̂μN . We note that the number of qubits is not
necessarily the same as the number of qumodes because each
qubit can be encoded by multiple qumodes, i.e., Q̂μi can be a
multimode operator.

We emphasize that the logical state ρL resides in the hypo-
thetical logical Hilbert space, which should not be confused
with the physical Hilbert space in which the qumode state ρ

resides. In general, different physical states can produce the
same expectation values 〈Q̂E 〉, so the same logical state ρL

can be represented by either one or a mixture of such physical
states. Therefore, the purity of ρ is generally not the same
as ρL. In fact, a pure logical qubit can be encoded by an
arbitrarily mixed physical state [38,42,43].

B. Logic gates

A general N-qubit logical state can be expressed in terms
of the logical operators, i.e.,

ρL = 1

2N

∑
μ

Tr{Q̂μ,LρL}Q̂μ,L. (8)

In quantum computation, the quantum algorithm is specified
by a unitary transformation ÛL, which transforms the logical
state as

ÛLρLÛ †
L = 1

2N

∑
μ

Tr{Q̂μ,LÛLρLÛ †
L }Q̂μ,L

= 1

2N

∑
μμ′

cμμ′Tr{Q̂μ′,LρL}Q̂μ,L. (9)

The operation of ÛL is defined by its transformation coeffi-
cients cμμ′ of each logical operator, i.e.,

Û †
L Q̂μ,LÛL ≡

∑
μ′

cμμ′Q̂μ′,L. (10)

By the virtue of UQC, any logical unitary can be constructed
by applying a universal set of logic gates in an appropriate
sequence [1], i.e.,

ÛL = U (Q̂μ,L ) = u1(Q̂μ,L )u2(Q̂μ,L ) . . . , (11)

where U and u are functionals of Pauli operators; the subscript
of u denotes the sequence of logic gates. Depending on the
choice of universal gate set, each u can be composed of the
Pauli operators of at most two qubits. One such choice is [38]

u ∈ {eiθ X̂ , eiφẐ , eiφẐ⊗Ẑ}, (12)

where θ and φ are controllable real numbers. The first two
operations correspond to the single-qubit X - and Z-axis ro-
tation, which suffice to implement any single-qubit unitary.
The last operation is a two-qubit conditional Z rotation, which
generates entanglement.
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For any encoded state given by Eq. (7), a physical trans-
formation ÛE can implement the logical unitary ÛL if the
transformed physical state ÛEρÛ †

E encodes the logical state
ÛLρLÛ †

L in Eq. (9), i.e.,

1

2N

∑
μ

Tr{Q̂μ,EÛEρÛ †
E }Q̂μ,L = ÛLρLÛ †

L . (13)

It is easy to see that this criterion is satisfied if the physical
transformation obeys

Û †
E Q̂μ,EÛE ≡

∑
μ′

cμμ′Q̂μ′,E (14)

for any μ. Because the APO follow the same algebra as Pauli
operators, ÛE can be constructed as

ÛE ≡ U (Q̂μ,E ) = u1(Q̂μ,E )u2(Q̂μ,E ) . . . . (15)

Hence UQC can be implemented by realizing the basic phys-
ical operations u(Q̂μ,E ), e.g., those in Eq. (12), which act as
analogous logic gates.

C. Projective measurement

Apart from unitary transformation, projective measure-
ment is another important logical operation. Two main utilities
of projective measurement are to extract the processed quan-
tum information and to postselectively apply a projection to
the unmeasured qubits.

Any single-qubit projective measurement is equivalent to
a Pauli basis measurement after qubit rotation [46]. Without
loss of generality, we consider the X -basis logical qubit
measurement. If the first logical qubit of the N-qubit state in
Eq. (7) is measured in X̂L basis, the remaining (N − 1)-qubit
(unnormalized) state becomes

〈±L1 |ρL|±L1〉

= 1

2N−1

∑
μ\μ1

Tr

{(
ÎE1 ± X̂E1

2
⊗ Q̂μ,E

)
ρ

}
Q̂μ,L

= 1

2N−1

∑
μ\μ1

TrN\1

{
Q̂μ,E Tr1

{(
ÎE1 ± X̂E1

2

)
ρ

}}
Q̂μ,L.

(16)

We note that the subscript j of Lj and Ej indicates the jth
logical qubit and the qumode(s) representing it. The normal-
ization of the above state is the probability P of obtaining the
outcome ±, i.e.,

P(±) = Tr{〈±L1 |ρL|±L1〉} = Tr

{
ÎE1 ± X̂E1

2
ρ

}
. (17)

In Eq. (16), we can see that the unnormalized physical
state, which represents the projected (N − 1)-qubit state, can
be produced by projecting the qubit-1 qumodes with the phys-
ical projectors (ÎE ± X̂E )/2. As a result, physically realizing
these projectors implements the logical X -basis measurement
in MSE.

D. Summary for mixed-state encoding

We have shown that, if there are two physical operators X̂E

and ẐE that obey Eq. (3), a set of APO can be constructed that
obeys the same algebra as Pauli operators, Eqs. (5a) and (5b).
These APO specify all essential ingredients of an encoding:
how a multiqubit logical state is represented [Eq. (7)], what
physical operations are required to implement the universal
logic gates [Eq. (15)], and what physical projectors can im-
plement the logical projective measurement [Eq. (16)]. From
Eq. (7), we can see that different physical states can represent
the same logical state if they have the same expectation values
for all APO. This permits a pure logical state to be encoded
by a mixed physical state.

III. QUADRATURE-SIGN PARITY ENCODING

So far, the TQP encoding in Ref. [38] is the only known
MSE that all logical operations for UQC are specified. In
this encoding, a logical qubit is encoded by two qumodes
with opposite parity. The X̂E and ẐE of this encoding are
respectively the two-qumode symmetry and the parity of the
second qumode. Although the TQP encoding could allow
UQC without ground-state cooling, its practical utility is lim-
ited due to three main drawbacks: two qumodes are required to
encode a qubit, measurement and postprocessing are required
to initialize a logical basis, and information readout requires
DV parity measurement.

We present here an encoding that does not suffer from any
of these drawbacks. The definitive APO are given by

X̂E ≡
∫ ∞

−∞

(x)|xq〉〈xq|dx, ẐE ≡ eiπ â†â = P̂, (18)

where 
(x) is the sign function; P̂ is the parity operator;
|xq〉 is the q-quadrature eigenstate with eigenvalue x; the
quadratures follow the standard definition â ≡ (q̂ + i p̂)/

√
2.

A schematic illustration of the corresponding basis subspace
is shown in Fig. 1. It is straightforward to check that these
operators obey Eq. (3), where the encoding space is the entire
space of a qumode:

ÎE =
∫ ∞

−∞
|xq〉〈xq|dx. (19)

q

p
)b()a(

FIG. 1. Physical basis states corresponding to the QSP encoding
APO in Eq. (3). (a) Every state where the Wigner function contains
only positive (negative) q-quadrature variable can encode the logical
coherence basis |+L〉 (|−L〉). (b) Every state composed of only even
(odd) boson number can encode the logical computational basis |0L〉
(|1L〉).
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The remaining APO, ŶE , is defined by Eq. (4).
We hereby call our encoding quadrature-sign parity (QSP)

encoding. Because all APO are single-mode operators, each
QSP qubit is encoded by only one qumode. This circumvents
the TQP encoding drawback that requires two qumodes per
qubit.

A. Logical basis initialization

As seen from the definition of X̂E in Eq. (18), any state
of which the wave function has nonvanishing amplitude only
at positive (negative) q quadrature, i.e., its Wigner function
resides in the right (left) half of phase space, can encode the
logical coherence basis |+L〉 (|−L〉). This feature allows a
deterministic initialization of logical basis from physical equi-
librium (i.e., thermal state) by applying unitary displacement
in q quadrature. As such, initializing a QSP qubit is more
efficient than initializing a TQP qubit, which requires QND
measurement and postselection [38].

Quantitatively, a displaced thermal state with real and pos-
itive displacement α, i.e., ρ = ρD ≡ D̂(α)ρthD̂†(α), exhibits
logical infidelity to the ideal |+L〉 as

1 − 〈+L|ρL|+L〉 = 1

2
(1 − Tr{X̂E D̂(α)ρthD̂†(α)})

= 1

2
erfc

(
α√

n̄ + 1/2

)
, (20)

where D̂(α) ≡ exp (αâ† − α∗â) is the displacement operator;
ρth is the physical thermal state with mean excitation n̄ ≡
Tr{â†âρth} [10]; erfc(x) is the complementary error function.
For any n̄, the logical infidelity can be reduced exponentially
by increasing the displacement α.

We note that the representation of logical qubits by dis-
placed thermal states may look similar to [42,43]. However,
we emphasize two crucial differences in our scheme. First,
most techniques presented in [42,43] are dedicated to dis-
placed thermal states; their applicabilities to other mixed
states are likely but not discussed in detail. In contrast, our
scheme is applicable to any mixed state ρ with confined
q-quadrature variance, i.e., 1 − Tr{X̂E D̂(α)ρD̂†(α)} � 1 for a
sufficiently large α. This feature of QSP encoding is useful for
the quantum computer architecture that reuses qumodes after
measurement, where the after-measurement state is generally
not a thermal state. Because displacement operation is usually
faster than dissipative cooling, QSP encoding can thus reduce
the qubit reinitialization time.

Second, Refs. [42,43] focus on verifying the quantum
properties of displaced thermal states, but the implementation
of UQC logical operations is not explicitly discussed. In the
following, we will present the general procedure to quantum
compute with QSP encoding states. This is the main contribu-
tion of the current work.

B. Logic gate and qubit measurement

UQC can be implemented by applying, in sequence, the
basic operations in Eq. (12), which include analogous X -axis
rotation exp(iθ X̂E ), analogous Z-axis rotation exp(iθ ẐE ), and
an entangling gate exp(iθ ẐE ⊗ ẐE ). In QSP encoding, the lat-
ter two are respectively single- and two-qumode exponential

parity gates:

eiθ ẐE j = eiθP̂ j ≡ R̂ j (θ ), eiθ ẐE j ẐEl = eiθP̂ j P̂l ≡ Ê jl (θ ), (21)

where P̂i is the parity operator of the ith qumode. These gates
can be deterministically implemented by dispersively cou-
pling the qumodes to an auxiliary physical qubit [38,47,48].
Its experimental realization has recently been demonstrated
with superconducting microwave cavities [49].

Alternatively, the exponential-parity gate might also be
realizable by the approach of universal CV quantum computa-
tion [50,51]. In this approach, any Hamiltonian consisting of
a polynomial order of quadrature operators can be efficiently
engineered by concatenating lower-order Hamiltonians. At
first glance, this approach is deemed not applicable to the
exponential-parity gate, because the series expansion of its
effective Hamiltonian, P̂ , involves an infinite order of quadra-
ture operators,

P̂ =
∞∑

k=0

(iπ )k

k!
(â†â)k =

∞∑
k=0

(iπ )k

k!

(
q̂2 + p̂2 − 1

2

)k

. (22)

Nevertheless, for our purpose it is not necessary to imple-
ment an exponential-parity gate that is accurate for any state.
We would be satisfied if the gate is accurate with respect to our
QSP qubit, which is initialized as a displaced thermal state.
We note that because all terms in Eq. (22) preserve the boson
number, if the Hamiltonian is implemented accurately the
processed physical states will share the same boson number
distribution as the displaced thermal state. For these states,
the population of high boson number decreases exponentially.
Specifically, we show in Appendix C that the population with
boson number rmax � 30(n̄ + 1/2) is negligible. The series in
Eq. (22) can then be truncated at a finite order kmax without
introducing significant gate error (details in Appendix C).

The remaining operation is exp(iθ X̂E ), which is difficult
to physically implement because X̂E is highly nonlinear. Nev-
ertheless, the necessity of this gate can be circumvented by
employing, instead of the circuit-based model, measurement-
based quantum computation (MBQC) [52–54].

Implementing UQC with MBQC involves two criteria:
first, the ability to prepare a cluster state with a specific graph;
second, logical qubit measurement in any basis on the X -Y
plane. In the following, we will show that both criteria can be
deterministically implemented with QSP encoding.

1. Cluster state construction

A cluster state is prepared by applying logical controlled-
phase gate (CPhase; see Appendix D for the logic table) to
qubits that are initialized as |+L〉. The quantum computing al-
gorithm executed by MBQC is determined by the graph of the
cluster state. Each vertex of the graph denotes a logical qubit,
and each edge specifies the qubits that have to be entangled by
CPhase. Such cluster state with a specific structure is usually
referred to as a graph state.

To prepare a graph state in QSP encoding, all qumodes are
first initialized as |+L〉 by displacement (cf. Sec. III A). The
logical CPhase gate can be deterministically implemented by
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a sequence of exponential-parity gates, i.e.,

Ĉ jl ≡ ei π
4 (ÎE −ẐE ) j (ÎE −ẐE )l = R̂ j

(
−π

4

)
R̂l

(
−π

4

)
Ê jl

(
π

4

)
,

(23)

where an unimportant global phase is omitted. A graph state
can be deterministically prepared by applying CPhase to the
qumodes that represent the edge-connected vertices.

We note that in MBQC literatures [52–54], a graph state is
usually constructed by first preparing a 2D cluster state; then
a collection of qubits is distangled by Z-basis measurement.
However, Z-basis measurement is not necessary if the CPhase
gate can be deterministically applied to selected qubits. This
could be advantageous to the physical platforms where a
Z-basis measurement (i.e., parity measurement in QSP encod-
ing) is challenging to realize.

2. Logical X-axis measurement

As discussed in Sec. II C, a logical X -axis measurement
can be realized by a physical measurement with projectors
(ÎE ± X̂E )/2. Because X̂E in the QSP encoding is the sign of
q quadrature, intuitively its projector could be implemented
by homodyne detecting the qumode in q quadrature, and
distinguishing the outcome by its sign.

To verify this intuition, we consider when the first qumode
of an N-qumode state is homodyne detected in q quadra-
ture. For a measurement outcome x, the remaining (N − 1)-
qumode state is projected to

ρ ′(x) ≡ 〈xq|ρ|xq〉
Tr{〈xq|ρ|xq〉} . (24)

The probability of obtaining an outcome between x and x +
dx is

P(x)dx = Tr{〈xq|ρ|xq〉}dx. (25)

If we retain no information but the sign (±) of the out-
come, the remaining (N − 1)-qumode state is conditionally
projected to

±
∫ ±∞

0
P(x)ρ ′(x)dx = ±

∫ ±∞

0
〈xq|ρ|xq〉dx

= Tr1

{(
±

∫ ±∞

0
|xq〉〈xq|dx

)
ρ

}

= Tr1

{
ÎE1 ± X̂E1

2
ρ

}
. (26)

The last relation shows that the physical projector (ÎE ± X̂E )/2
is implemented on qumode 1. Hence the logical X -basis
measurement of QSP encoding is realized.

3. Logical X-Y plane and Z-axis measurement

We recall that a measurement along any axis on the X -Y
plane, i.e., (cos θ X̂ + sin θŶ ) for any θ , can be implemented
by applying a Z-axis rotation before an X -basis measurement

[46], i.e.,

Tr

{
ÎL ± (cos θ X̂L + sin θŶL )

2
ρL

}

= Tr

{
ÎL ± X̂L

2
ei θ

2 ẐL ρLe−i θ
2 ẐL

}
. (27)

Following this idea, a logical X -Y plane measurement in the
QSP encoding can be realized by first applying Z-axis rota-
tion, i.e., ρ → R̂(θ/2)ρR̂†(θ/2); then the qumode is measured
in the logical X basis (cf. Sec. III B 2).

At the end of MBQC, quantum information is typically
read out in the Z basis. A Z-basis measurement can be
physically implemented by the projector (Î ± ẐE )/2, which
is the parity measurement in QSP encoding. Nevertheless,
physically realizing Z-basis measurement is sufficient but not
necessary. Alternatively, we can always modify our quantum
computing algorithm to execute an extra round of Hadamard
gate on each result qubit. Because an X -basis measurement
is equivalent to a Z-basis measurement after a Hadamard gate
[46], the quantum information can then be read out by X -basis
measurement.

The above physical processes complete the requirement of
conducting universal MBQC with QSP encoding. A summary
of the procedure is shown in Fig. 2.

IV. LOGICAL FAULT TOLERANCE

So far we have discussed the ideal implementation of UQC
with QSP encoding. In practice, the protocol could suffer from
various sources of error, such as imperfect initialization due
to finite displacement, faulty implementation of exponential-
parity gates, decoherence of qumodes, etc. These imperfec-
tions will lead to a faulty logical cluster state and inaccurate
execution of the computing algorithm.

In principle, if the physical errors are sufficiently small, the
encoded quantum information could be protected from faults
by quantum error correction [55–57]. For our scheme that em-
ploys cluster-state MBQC, fault tolerance can be introduced
through concatenating an additional logical layer on top of
the QSP logical cluster state. In order to eliminate naming
confusions, we call this additional layer the supralogical layer
(SLL).

Here we outline the procedure of how quantum error-
correcting code is implemented through the SLL. Due to
its structural simplicity, we choose the topological code as
presented in [58] and [59]. This code is equivalent to the
surface code from [60], which forms the basis of the quantum
computing architectures expected within the next few years.

The key idea of implementing fault-tolerant quantum com-
putation is to execute the SLL quantum circuits in a fault-
tolerant way. For any quantum algorithm to be computed,
its quantum circuit can be prepared for fault tolerance in the
following steps. First, the circuit is transformed into another
one that has a well defined structure [61]: it consists of only
SLL qubits initialized in a restricted set of states, interacting
through SLL controlled-NOT (CNOT) gates, and measured by
SLL measurements. The second step is to compile the SLL
circuit into topologically error-correcting structures that rep-
resent the initializations, the CNOTs, and the measurements
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p

q

Equilibrium

Initialization

CPhase

(a)

(b)

(c)

(e) (f)

X-axis measurement X-Y plane measurement

(d)

graph state

FIG. 2. Procedure for quantum computing with QSP encoding.
At each stage, the Wigner function of qumode is illustrated. ρ and
|ψL〉 respectively denote the physical and logical state. (a) Before
computation, each qumode is in thermal state ρth. (b) Logical
coherence basis is deterministically initialized by displacing the
thermal state, i.e., ρ = ρD = D̂(α)ρthD̂†(α). (c) Two logical qubits
are entangled by logical CPhase gate, which can be realized by a
sequence of exponential-parity gates [cf. Eq. (23)]. (d) A graph state
can be constructed by applying CPhase gates to selected qumodes.
(e) Logical X -basis measurement is implemented by q-quadrature
homodyne detection. The logical measurement outcome is deter-
mined by the sign of the homodyne detection outcome (denoted by
arrows). (f) Measurement along other basis on the logical X -Y plane:
logical Z-axis rotation is applied before logical X -axis measurement.
The logical state will be projected to |±θ,L〉 ≡ (|0L〉 ± eiθ |1L〉)/

√
2,

which is the ±1 eigenstate of (cos θ X̂L + sin θŶL ).

[59]; the group of these structures is usually known as an
assembly [62]. Each assembly structure has a shape (i.e., it
is a 3D object), which specifies the graph of the lower level
(QSP) logical cluster state and how computation is executed

with such state. Finally, the logical cluster state is constructed
deterministically by the method in Sec. III B 1.

After state preparation, SLL quantum computation is ex-
ecuted by performing specific measurements on the QSP
logical qubits according to the rules of the assembly. In the
defects and braids encoding method from [59,62], logical Z
measurements are employed for implanting the defects in the
cluster state, and logical X measurements are conducted for
syndrome detection. Syndromes are used in the classical error
correction algorithm that is running parallel to the quantum
system. We note that the Z measurements can be avoided
in our scheme, by simply not entangling into the cluster the
qubits which are known to be Z measured later.

Apart from logical X measurement and cluster state for-
mation, an additional non-Clifford element is required for
the universality of quantum computation. In the topological
error correction (surface code) scheme we are considering,
this element is the preparation of SLL T state, which is used
to implement the non-Clifford T gate [63]. A SLL T state can
be constructed from a logical qubit T state:

|TL〉 ≡ 1√
2

(|0L〉 + eiπ/4|1L〉). (28)

In our QSP encoding, this state can be deterministically
prepared by applying Z-axis rotation R̂( π

8 ) to the logical X
basis |+L〉. In practice, this preparation is not fault tolerant,
which would introduce error in the SLL circuit. Nevertheless,
higher fidelity T states can be distilled by consuming multiple
copies of lower fidelity T states [60].

In summary, quantum computation can be made fault tol-
erant by concatenating a SLL on top of the QSP encoding
logical cluster state. When using surface codes inside the
SLL, fault tolerance introduces only a computational resource
overhead (hardware and time) dictated mainly by the chosen
code distance and the T -state distillation.

V. NOISE TOLERANCE

We have discussed the notion that the QSP encoding allows
quantum computation to be implemented directly with ther-
mal state qumodes. This eliminates the necessity of cooling
the qumodes to their ground state, which is thus an advantage
in phyical systems where ground-state cooling is challenging
or resources demanding. On the other hand, for the systems
that ground-state cooling is efficient, we now demonstrate that
QSP encoding can also provide an advantage: improving the
error tolerance of quantum information.

It is known that every MSE exhibits noiseless subsystems
(NS) [38–41,47]. When an encoding physical state is trans-
formed by noise, the quantum information is not corrupted if
the resultant state is within the same subspace. This is in stark
contrast to pure-state encodings, where quantum information
is lost if the erroneous physical state is not composed of the
encoding bases (unless error correction is executed [64]).

As a MSE, QSP encoding also exhibits certain NS. To
illustrate this idea, we show an explicit example where the
QSP encoding can improve the dephasing tolerance of (pure-
state) cat-code qubits. The logical computational basis of cat
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code is given by [27]

|0cs〉 = 1

N+
(|α〉 + | − α〉), |1cs〉 = 1

N−
(|α〉 − | − α〉),

(29)

where N± ≡ √
2[1 ± exp(−2|α|2)]; α is again real and posi-

tive. The basis states have definite but opposite parity, so they
are also a logical computational basis of QSP encoding. For
sufficiently large α, the logical X bases are approximately
coherent states, i.e., |±cs〉 ≈ | ± α〉. The Wigner function of
these coherent states is localized in either side of the phase
space, so these states are also a logical coherence basis of
QSP encoding. In fact, these are no coincidence: a displaced
thermal state qubit will become a cat-code qubit when there is
no initial thermal excitation, i.e., ρth = |0〉〈0|.

Under a pure dephasing process, a physical state ρ evolves
as [65]

ρ̇ = κ
(
â†âρâ†â − 1

2 (â†â)2ρ − 1
2ρ(â†â)2

)
, (30)

where κ is the dephasing rate. For any initial state ρ(0), the
evolved state at time t is given by

ρ(t ) =
∫ ∞

−∞
e−iϕâ†âρ(0)eiϕâ† â 1√

2πκt
e− ϕ2

2κt dϕ. (31)

ρ(t ) can be viewed as a statistical mixture of rotated initial
state, where the rotation angle ϕ follows a Gaussian distribu-
tion with variance ϕ2 = κt .

Assume the initial physical state of a cat-code qubit is
ρ(0) = |θ, φ〉〈θ, φ|, where

|θ, φ〉 ≡ cos
θ

2
|0cs〉 + eiφ sin

θ

2
|1cs〉. (32)

θ and φ characterize the encoded qubit information. After
dephasing, the logical fidelity of a pure-state cat-code qubit
is given by the physical fidelity between the initial and final
state [66], i.e.,

Fcs(θ, φ) ≡ 〈θ, φ|ρ(t )|θ, φ〉. (33)

On the other hand, if the dephased cat-code qubit is consid-
ered as a QSP qubit, the logical state is evaluated by Eq. (6).
The logical fidelity is computed by

FQSP(θ, φ) ≡ Tr{ρL(t )ρL(0)}, (34)

where ρL(t ) is the QSP logical state encoded by ρ(t ); the
initial logical state is

ρL(0) = 1
2 (ÎL + cos φ sin θ X̂L + sin φ sin θŶL + cos θ ẐL ).

(35)

To compare the dephasing tolerance of the encodings, we
consider the average logical fidelity over all qubit states:

F code ≡ 1

4π

∫ 2π

0

∫ π

0
Fcode(θ, φ) sin θ dθ dφ, (36)

where code ∈ {cs, QSP}. A typical result is shown in Fig. 3.
The average fidelity is generally preserved for a longer time if
the dephased state is considered as a QSP qubit.

The intuition behind the improved dephasing tolerance can
be analytically understood in the large displacement regime,

Cat

QSP

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Average fidelity of a cat-code qubit (α = 2) after dephas-
ing time t . (Blue) F cs, the dephased physical state ρ(t ) is considered
as a pure-state cat-code qubit. (Orange) FQSP, the same physical state
ρ(t ) is considered as a QSP qubit.

i.e., α � 1. For cat code, a rotation with angle ϕ will displace
each coherent state component by a magnitude α|1 − e−iϕ | ≈
α|ϕ|. When α|ϕ| � 1, the encoded qubit state will be trans-
formed outside the encoding subspace. Therefore, the physical
fidelity can only be preserved for a time tcs, when the angle
variance lies within

κtcs = ϕ2 � 1/α2. (37)

On the other hand, if the dephased state is considered as a
QSP qubit, we first recognize that the dephasing process does
not alter the logical Z information (computational value), i.e.,
Tr{ẐEρ(t )} = Tr{ẐEρ(0)}, because rotation commutes with
the parity operator, i.e., [e−iϕâ†â, P̂] = 0.

The logical X information (coherence) of a QSP qubit
is the probability to find the physical state at positive or
negative q quadrature (i.e., its Wigner function residing in
the left or right side of the phase space). Although rotation
does not commute with the quadrature-sign operator X̂E , a
rotated coherent state lies within the same side of the phase
space for a wide range of angle |ϕ| � π/2. An illustration is
shown in Fig. 4. Therefore, the logical X information of QSP
encoding is well preserved, i.e., Tr{X̂Eρ(tQSP)} ≈ Tr{X̂Eρ(0)},
for a time tQSP that the angle variance lies within

κtQSP = ϕ2 � π2/4. (38)

When comparing Eqs. (37) and (38), we can see that QSP
encoding could preserve logical X information for a longer
dephasing time when α � 2/π .

We note that, apart from dephasing, QSP encoding can
also improve the tolerance of other errors, such as a displace-
ment fluctuation along only one quadrature [67]. This is the
dominating error in some quantum transducer architectures,
when measures (e.g., measurement or injected squeezing) can
be introduced to suppress one but not both quadrature noises
[67,68].
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q

p

FIG. 4. Schematic explanation of dephasing tolerance of logical
X information. Upon random rotation caused by dephasing, the X
basis of cat code, |±cs〉 ≈ | ± α〉 (solid circles), is displaced outside
the computational subspace when |ϕ| � 1/α (dashed circles). On the
other hand, for |ϕ| � π/2 the coherent states remain in the same side
of the phase space (colored area).

VI. CONCLUSION

In this work, we propose a mixed-state encoding for quan-
tum computing with bosonic systems. We first provide a
formalism which defines a mixed-state encoding in terms of
the physical operators that represent logical Pauli operators.
This formalism allows efficient evaluation of logical informa-
tion encoded in a general physical state. We then introduce
our quadrature-sign parity encoding, which represents logical
computational values by the physical state parity, and logical
coherence by the sign of quadrature variable in the physical
wave function. We show that all logical operations required
for universal quantum computation, i.e., basis initialization,
logic gates, and information readout, can be implemented by
physically feasible processes.

When comparing with the only known CV mixed-state
encoding [38], QSP encoding provides three advantages: QSP
logical basis can be deterministically initialized from thermal
equilibrium, each logical qubit consists of only one qumode,
and the logical measurement can be implemented by CV
homodyne detection. These features enhance the prospect of
implementing quantum computers with physical platforms
on which ground-state cooling is challenging or resources
demanding. Furthermore, even for the systems that cooling
is efficient, QSP encoding can improve the noise tolerance of
the encoded information.

Generally, CV mixed-state encoding is an area that de-
serves further exploration. It is likely that new encodings
can be developed to tackle specific implementation limita-
tions, or improve tolerance against structured noise. Our work
provides techniques and formalism along this direction; the
development of hybrid DV-CV quantum computers can thus
be facilitated [69].
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APPENDIX A: PAULI OPERATORS

For a computational basis pair {|�0〉, |�1〉}, the pure-state
identity and Pauli operators are given by

Q̂0 ≡ Î ≡ |�0〉〈�0| + |�1〉〈�1|, (A1a)

Q̂1 ≡ X̂ ≡ |�0〉〈�1| + |�0〉〈�1|, (A1b)

Q̂2 ≡ Ŷ ≡ −i|�0〉〈�1| + i|�0〉〈�1|, (A1c)

Q̂3 ≡ Ẑ ≡ |�0〉〈�0| − |�1〉〈�1|. (A1d)

APPENDIX B: EQUIVALENCE OF APO DEFINITION

In Sec. II A, we suggest that APO can be defined by
Hermitian operators that obey Pauli algebra [cf. Eqs. (5a) and
(5b)], instead of by the decomposition in Eq. (2). We here
show that both definitions are equivalent. We first recall that
the Pauli algebra can be generated if the Hermitian operators
X̂E and ẐE obey Eq. (3). By the self-inverse relation, any
eigenstate of ẐE has eigenvalues ±1. A set of orthogonal +1
eigenstate can be defined as {|ψ (k)

0 〉}. We can then define the
other basis set as ∣∣ψ (k)

1

〉 ≡ X̂E

∣∣ψ (k)
0

〉
. (B1)

To verify that these states are −1 eigenstates of ẐE , we can
use the anticommutation relation, i.e.,

ẐE X̂E

∣∣ψ (k)
0

〉 = −X̂E ẐE

∣∣ψ (k)
0

〉 = −X̂E

∣∣ψ (k)
0

〉
. (B2)

It is also straightforward to check that the two subspaces
{|ψ (k)

0 〉} and {|ψ (k)
1 〉} are orthogonal, i.e., 〈ψ (l )

i |ψ (k)
j 〉 = δi jδkl .

By sandwiching X̂E and ẐE with the encoding space
identity,

ÎE =
∑

k

∣∣ψ (k)
0

〉〈
ψ

(k)
0

∣∣ + ∣∣ψ (k)
1

〉〈
ψ

(k)
1

∣∣, (B3a)

the definitive APO can be expressed in the decomposition
form of Eq. (2):

X̂E =
∑

k

∣∣ψ (k)
0

〉〈
ψ

(k)
1

∣∣ + ∣∣ψ (k)
0

〉〈
ψ

(k)
1

∣∣, (B3b)

ẐE =
∑

k

∣∣ψ (k)
0

〉〈
ψ

(k)
0

∣∣ − ∣∣ψ (k)
1

〉〈
ψ

(k)
1

∣∣. (B3c)

APPENDIX C: EXPONENTIAL-PARITY
GATE REALIZATION

All previous proposals of CV exponential-parity gate im-
plementation involve auxiliary qumode or qubit [47,48]. Here
we discuss an alternative implementation that is based on the
universal CV quantum computation approach [50,51], which
in principle could generate any Hamiltonian efficiently with-
out using ancilla. The main challenge is that this approach is
efficient only if the target Hamiltonian involves a finite order
of quadrature operator. For exponential-parity gate, however,
the effective Hamiltonian is an infinite series of quadrature
operators [cf. Eq. (22)].
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Our strategy is to truncate the infinite series at a finite
order while maintaining the gate accuracy. We first note that
if the exponential-parity gate is applied on a Fock state |r〉,
the infinite operator series in Eq. (22) will become an infinite
series of complex number. If the number series can be trun-
cated at a finite order k � K (r), but still well approximates
the value of the infinite sum, the infinite operator series
can then be truncated without significantly reducing the gate
accuracy. Such a truncation is possible for this series, which
is a sinusoidal function that has a radius of convergence at
infinity.

For a fixed level of accuracy, K (r) is a monotonic function
of the boson number r. If the physical state of a QSP qubit
involves mainly the Fock state components with r � rmax,
then the operator series could be truncated at kmax ≡ K (rmax).
Because each term in Eq. (22) is number preserving, the
population of Fock states would not change if the Hamiltonian
is engineered accurately. Therefore, rmax and kmax can be
determined by the initial state, which in our scheme is a
displaced thermal state with thermal excitation n̄.

To estimate rmax, we first estimate the magnitude of dis-
placement α. According to Eq. (20), if the logical infidelity
of a displaced thermal state to the QSP coherence basis is
negligible,1 the minimum displacement has to be

α �
√

3
√

n̄ + 1
2 . (C1)

Next, we recall that a thermal state can be considered as a
Gaussian ensemble of coherent state, i.e.,

ρth =
∫

1

π n̄
e− |β|2

n̄ |β〉〈β|d2β. (C2)

In this ensemble, negligible population of coherent state will
have displacement beyond

|β| �
√

3n̄. (C3)

Therefore, the state fidelity is not significantly affected if this
population is not considered.

Combining these arguments, in a displaced thermal state
ρ = D̂(α)ρthD̂†(α), the coherent state population would be
negligible if the displacement is above

|α + β| � 2
√

3
√

n̄ + 1
2 . (C4)

In other words, the majority of coherent state in a QSP qubit
would have mean boson number at most λ, where

|α + β|2 � λ ≡ 12
(
n̄ + 1

2

)
. (C5)

We now consider the boson number distribution of the
coherent state, |√λ〉, which has more bosons than the majority

1Here we assume the threshold of negligibility as 1%, but the
analysis is applicable to other thresholds upon simple changes of
numerical parameter.

of coherent state population in a displaced thermal state. Its
boson number population follows Poisson distribution. In our
case of interest, where λ � 6, the total population of Fock
states with boson number above some r > λ is upper bounded
by [70,71]

P√
λ(r) ≡

∑
s>r

|〈sF|
√

λ〉|2 � e−λ

(
eλ

r

)r

, (C6)

where the subscript F denotes Fock states. For other coherent
states |α + β|2 � λ, the Fock state population above r would
be even smaller, i.e.,

Pα+β (r) � P√
λ(r). (C7)

We are now in a position to estimate the maximum boson
number rmax, above which the Fock state population is negli-
gible in our encoding displaced thermal state, i.e.,

∑
s>rmax

〈sF|ρ|sF〉 < 1%. (C8)

From Eqs. (C5), (C6), and (C7), we get a pessimistic bound

rmax ≈ 2.5λ = 30
(
n̄ + 1

2

)
. (C9)

In the construction of an exponential-parity gate, the series in
Eq. (22) can then be truncated at an order kmax that satisfies

∣∣∣∣∣∣
∞∑

k=kmax

(iπrmax)k

k!

∣∣∣∣∣∣ � 1%. (C10)

We note that the purpose of this section is to demonstrate
the possibility of truncating Eq. (22) at a finite order kmax, so
that the exponential-parity gate could in principle be imple-
mented by the universal CV quantum computation approach
[50]. The truncation order kmax is nonetheless far from op-
timized. Obtaining a tighter bound by, e.g., considering the
full boson number distribution of a displaced thermal state,
or optimizing the concatenation sequence, is anticipated but
beyond the scope of this work.

We also note that the above method applies to other
physical states in which the Fock state population is negli-
gible above some boson number rmax. However, it remains
an open question if an exponential-parity gate for any state
can be engineered accurately by the CV quantum compu-
tation approach. This is unlike the ancilla-assisted approach
in Refs. [38,47,49] that the implemented gate is accurate for
every CV state.

APPENDIX D: CONTROLLED-PHASE GATE

In the interest of completeness, we present the logic table
for controlled-phase gate ĈL:

ĈL|0L0L〉 = |0L0L〉, ĈL|0L1L〉 = |0L1L〉,
ĈL|1L0L〉 = |1L0L〉, ĈL|1L1L〉 = −|1L1L〉. (D1)
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