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Schwinger effect of a relativistic boson entangled with a qubit
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We use the concept of quantum entanglement to analyze the Schwinger effect on an entangled state of a qubit
and a boson mode coupled with the electric field. As a consequence of the Schwinger production of particle-
antiparticle pairs, the electric field decreases both the correlation and the entanglement between the qubit and
the particle mode. This work exposes a profound difference between bosons and fermions. In the boson case,
entanglement between the qubit and the antiparticle mode cannot be caused by the Schwinger effect on the
preexisting entanglement between the qubit and the particle mode, though correlation can. In the fermion case,
both can.
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I. INTRODUCTION

In recent years we have witnessed the application of the
concepts and measures of quantum entanglement to various
areas of quantum sciences. The measures of quantum en-
tanglement can well characterize quantum correlations with-
out using any observable. Studies of quantum entanglement
have been mostly in the realm of nonrelativistic quantum
mechanics, in which the particles are eternal. New features
of quantum entanglement appear in relativistic quantum field
theory, in which a particle is not eternal. In field theory, one
method is to partition the system in terms of the modes [1].

Known as the Schwinger effect, in a strong electromagnetic
field, the vacuum decays into particle-antiparticle pairs [2],
and likewise, a particle becomes a superposition state involv-
ing both particles and antiparticles. Many experimental efforts
have been made to observe the Schwinger effect [3], but they
have not yet been successful, because the rate is very low.

In this paper, the question we address is how the correlation
and the entanglement between a qubit and a bosonic particle
are inherited by those between the qubit on one hand and the
particles and antiparticles generated by the Schwinger effect
on the other. Here the qubit is a simple representation of
another particle uncoupled with the electric field.

Quantum entanglement in the Schwinger effect of the
Dirac or Klein-Gordon field, between a subsystem and the rest
of the system, as measured by the von Neumann entropy of the
reduced density matrix, was calculated [4,5]. Pairwise corre-
lation and entanglement were also studied for the Dirac field
[6], by using mutual information and logarithmic negativity as
the measures.

Pairwise correlation and entanglement are between two
parts A and B, generically described in terms of the density
matrix ρAB, obtained by tracing out other parts sharing a pure
state. ρAB usually represents a mixed state, with the pure
state being a special case. The reduced density matrix of A is
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ρA ≡ TrB(ρAB); similarly, ρB ≡ TrA(ρAB). The mutual infor-
mation in ρAB is [7]

I (ρAB) = S(ρA) + S(ρB) − S(ρAB), (1)

where S(ρ) ≡ −Tr(ρ log2 ρ) is the von Neumann entropy
of ρ. I (ρAB) = 0 if ρAB is a product pure state. Hence
I (ρAB) measures a kind of distance from product pure
states, containing both quantum entanglement and classical
correlation. The logarithmic negativity N (ρAB), which is a
measure of the quantum entanglement between A and B in
ρAB, is defined as [8]

N (ρAB) ≡ log2

∥∥ρ
TA
AB

∥∥, (2)

where ‖ρTA
AB‖ is the sum of the absolute values of the

eigenvalues of the partial transpose ρTA of the original density
matrix ρAB with respect to subsystem A. The partial transpose
can also be made with respect to B, without changing the
result of N (ρAB).

In this paper, we consider an initial state of a boson
entangled with a qubit, which is then transformed, via the
Schwinger effect, to a superposition of different number states
of the particle and antiparticle modes. We study pairwise mu-
tual information and quantum entanglement in the final state,
between a qubit and the particle out-mode and those between
the qubit and the antiparticle out-mode. An introduction to
the Schwinger effect is made in Sec. II. The quantum state
is described in Sec. III. The correlation and the entanglement
between the qubit and the particle mode q are calculated in
Sec. IV. The correlation and the entanglement between the
qubit and the antiparticle mode −q are calculated in Sec. V.
Then the effect of a pulsed electric field is discussed in
Sec. VI. A summary is made in Sec. VII.

II. SCHWINGER EFFECT IN A CONSTANT
ELECTRIC FIELD

Consider a scalar field φ(t, x) describing the bosons of
mass m and charge q, coupled with a constant electric field
E0 along the z direction, satisfying the Klein-Gordon equation
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in the four-dimensional Minkowski space,

[(∂μ − ieAμ)(∂μ − ieAμ) + m2]φ(t, x) = 0, (3)

where Aμ = (0, 0, 0,−E0t ), and φ(t, x) is the scalar field
and can be expanded in terms of the mode functions as
φ(t, x) = ∑

k[akφk(t, x) + b†
kφ

∗
k (t, x)], where k denotes the

momentum, ak is the annihilation operator of the particle,
and b†

k is the creation operator of the antiparticle. Practically
the constant electric field can be regarded as the infinite-
duration limit of a pulsed electric field, which is discussed in
Sec. VI.

The Bogoliubov transformation between the in-modes and
the out-modes, for tin = −∞ and tout = +∞, respectively, is

φin
k = αkφ

out
k + βkφ

out∗
−k , (4)

where αk and βk are Bogoliubov coefficients [4,9,10],

αk =
√

2π

�(−ν)
e

−iπ (ν+1)
2 , βk = e−iπν, (5)

with ν = − 1
2 − i μ

2 , μ = k2
⊥+m2

eE0
, satisfying |αk|2 − |βk|2 = 1.

The corresponding annihilation and creation operators of the
in-modes and the out-modes are related as

ain
k = α∗

kaout
k − β∗

kbout†
−k , (6)

bin
k = α∗

kbout
k − β∗

kaout†
−k . (7)

Consequently the in-vacuum state for each mode becomes
a superposition state of the out-modes [4,9],

|0k, 0−k〉in = 1

αk

∞∑
n=0

(
β∗

k

α∗
k

)n

|nk, n−k〉out, (8)

where 0k represents that the particle number of mode k is 0,
0−k represents that the particle number of mode −k is 0, nk
represents that the number of particles occupying mode k is n,
and n−k represents that the number of antiparticles occupying
mode −k is n. Similar notations are used throughout the paper.
Equation (8) indicates the distribution of the created particles
and antiparticles due to the Schwinger effect when an electric
field is applied.

Similarly, from |1k, 0−k〉in = ain†
k |0k, 0−k〉in, one obtains

|1k, 0−k〉in = 1

|αk|2
∞∑

n=0

(
β∗

k

α∗
k

)n√
n + 1|(n + 1)k, n−k〉out,

(9)

which indicates the distribution of the created particles and
antiparticles resulting from the effect of the electric field on
the one-particle state. We refer to this also as the Schwinger
effect.

III. THE INITIAL ENTANGLED STATE

Now we investigate the influence of an electric field on the
state of a qubit σ entangled with a boson of momentum q,
which is an excitation of the scalar field discussed above,

|�σ,q〉 = ε|↑〉|0q〉in +
√

1 − ε2|↓〉|1q〉in, (10)

where ε is a coefficient and the basis states of the qubit
are denoted as |↑〉 and |↓〉. Obviously, the von Neumann
entropies of the reduced matrices ρσ and ρq are both equal to

S(ε) = −ε2 log2 ε2 − (1 − ε2) log2(1 − ε2). (11)

Being a pure state, the von Neumann entropy of |�σ,q〉 is 0;
therefore the mutual information is

I (�σ,q) = 2S(ε). (12)

The entanglement entropy, characterizing the entanglement
between the qubit σ and the in-mode q, is just S(ε).

With the mode −q also considered, in terms of the in-
modes, |�σ,q〉 can be rewritten as

|�σ,q,−q〉in = (ε|↑〉|0q〉in +
√

1 − ε2|↓〉|1q〉in )|0−q〉in.

(13)

Because of the Bogoliubov transformation given in Eqs. (8)
and (9), one obtains

|�σ,q,−q〉in = ε

αq

∞∑
n=0

β∗n
q

α∗n
q

|↑〉|nq, n−q〉out +
√

1 − ε2

|αq|2

×
∞∑

n=0

β∗n
q

α∗n
q

√
n + 1|↓〉|(n + 1)q, n−q〉out. (14)

The density matrix ρσ,q,−q = |�σ,q,−q〉inin〈�σ,q,−q| is thus

ρσ,q,−q = ε2

|αq|2
∞∑

n,m=0

β∗n
q βm

q

α∗n
q αm

q
|↑, nq, n−q〉〈↑, mq, m−q| + ε

√
1 − ε2

|αq|2αq

∞∑
n,m=0

β∗n
q βm

q

α∗n
q αm

q

√
m + 1|↑, nq, n−q〉〈↓, (m + 1)q, m−q|

+ ε
√

1 − ε2

|αq|2α∗
q

∞∑
n,m=0

β∗n
q βm

q

α∗n
q αm

q

√
n + 1|↓, (n + 1)q, n−q〉〈↑, mq, m−q| + 1 − ε2

|αq|4
∞∑

n,m=0

β∗n
q βm

q

α∗n
q αm

q

√
(n + 1)(m + 1)

× |↓, (n + 1)q, n−q〉〈↓, (m + 1)q, m−q|, (15)

which indicates that the Bogoliubov transformation causes
the in-mode q to be replaced by the out-modes q and
−q. How the original correlation and entanglement are in-

herited between the qubit and these out-modes is investi-
gated below. For brevity, we have omitted the superscript
“out.”
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IV. CORRELATION AND ENTANGLEMENT BETWEEN
THE QUBIT σ AND THE OUT-MODE q

We first study the correlation and the entanglement be-
tween the qubit σ and the out-mode q. Tracing out the out-
mode −q, we obtain the reduced density matrix of the qubit
σ and q, ρσ,q = Tr−q(ρσ,q,−q), as

ρσ,q = ε2

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

|↑, nq〉〈↑, nq| + ε
√

1 − ε2

|αq|2αq

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↑, nq〉〈↓, (n + 1)q|+ ε
√

1 − ε2

|αq|2α∗
q

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↓, (n + 1)q〉〈↑, nq| + 1 − ε2

|αq|4

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

(n + 1)|↓, (n + 1)q〉〈↓, (n + 1)q|. (16)

In the subspace of {|↑, nq〉, |↓, (n + 1)q〉} (n = 0, 1, 2, . . .),
ρσ,q is a block matrix, with nonzero eigenvalues:

1

|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + (n + 1)(1 − ε2)

|αq|2
]
. (17)

Tracing out the out-mode q in ρσ,q yields ρσ = Trq(ρσ,q),
which is

ρσ = ε2|↑〉〈↑| + (1 − ε2)|↓〉〈↓|, (18)

with eigenvalues ε2 and 1 − ε2. This remains unchanged from
the reduced density matrix of the qubit σ obtained from |�σ,q〉
in Eq. (10), as nothing is done on the qubit σ .

Tracing out the qubit σ in ρσ,q yields ρq = Trσ ρ(σ, q),
which is

ρq = 1

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + n(1 − ε2)

|βq|2
]
|nq〉〈nq|, (19)

with eigenvalues

1

|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + n(1 − ε2)

|βq|2
]

(n = 0, 1, 2, . . .). (20)

Then we obtain the mutual information I (ρσ,q) = S(ρσ ) +
S(ρq) − S(ρσ,q) as

I (ρσ,q) = −ε2 log2 ε2 − (1 − ε2) log2(1 − ε2) −
∞∑

n=0

|βq|2n

|αq|2(n+1)

[
ε2 + n(1 − ε2)

|βq|2
]

log2

[ |βq|2n

|αq|2(n+1)

(
ε2 + n(1 − ε2)

|βq|2
)]

+
∞∑

n=0

|βq|2n

|αq|2(n+1)

[
ε2 + (n + 1)(1 − ε2)

|αq|2
]

log2

[ |βq|2n

|αq|2(n+1)

(
ε2 + (n + 1)(1 − ε2)

|αq|2
)]

, (21)

which depends on the coefficient parameter ε and the strength
of the electric field E0. When E0 = 0, I (ρσ,q) reduces to S(ε).

The dependence of the mutual information I (ρσ,q) on the
electric field E0 and the parameter ε is shown in Fig. 1. For
a fixed value of ε, I (ρσ,q) monotonically decreases with the
increase of the electric field E0 and asymptotically approaches
a certain nonvanishing value independent of E0. The closer

FIG. 1. The mutual information I (ρσ,q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and ε, where E0 is the strength of

the constant electric field and ε is the coefficient parameter of the
initial entangled state.

to 1√
2

ε is, the quicker I (ρσ,q) decreases with the increase of
E0 when E0 is small, and the larger the asymptotic value of
I (ρσ,q) is. For any given value of E0, the farther to 1√

2
ε is, the

smaller I (ρσ,q) is. The mutual information I (ρσ,q) becomes
zero as ε = 0 or 1, in which case the mutual information
vanishes even in the absence of the electric field.

We use logarithmic negativity to measure the entangle-
ment. After making the partial transpose of the density matrix
ρσ,q with respect to σ , we obtain

ρTσ

σ,q = ε2

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

|↑, nq〉〈↑, nq| + ε
√

1 − ε2

|αq|2αq

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↓, nq〉〈↑, (n + 1)q|+ ε
√

1 − ε2

|αq|2α∗
q

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↑, (n + 1)q〉〈↓, nq| + 1 − ε2

|αq|4

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

(n + 1)|↓, (n + 1)q〉〈↓, (n + 1)q|, (22)

which is a block matrix in the subspace of {|↑, (n +
1)q〉, |↓, nq〉} (n = 0, 1, 2, . . .). Therefore the eigenvalues
of ρTσ

σ,q
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are

ε2

|αq|2 ,
1

2|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n

⎡
⎢⎣

∣∣∣∣βq

αq

∣∣∣∣
2

ε2 + n(1 − ε2)

|βq|2 ±

√√√√(∣∣∣∣βq

αq

∣∣∣∣
2

ε2 + n(1 − ε2)

|βq|2
)2

+ 4ε2(1 − ε2)

|αq|2

⎤
⎥⎦ (n = 0, 1, 2, . . .). (23)

Thus the logarithmic negativity is

N (ρσ,q) = log2

⎡
⎢⎣ ε2

|αq|2 +
∞∑

n=0

|βq|2n

|αq|2(n+1)

√√√√(∣∣∣∣βq

αq

∣∣∣∣
2

ε2 + n(1 − ε2)

|βq|2
)2

+ 4ε2(1 − ε2)

|αq|2

⎤
⎥⎦. (24)

When E0 = 0, N (ρσ,q) = log2[1 + 2ε
√

1 − ε2].
Figure 2 shows how the logarithmic negativity N (ρσ,q) de-

pends on the strength of the electric field E0 and the parameter
ε. The variation trend of N (ρσ,q) with respect to E0 and ε

is similar to that of I (ρσ,q). But when E0 is small, N (ρσ,q)
decreases more rapidly with the increase of E0 than I (ρσ,q)
does, indicating that the entanglement is more sensitive to
the coupling with the electric field. Like I (ρσ,q), N (ρσ,q)
monotonically decreases with the increase of the electric field
E0 and approaches a certain nonzero asymptotic value as
E0 → ∞.

What if the boson is replaced as a fermion? The fermion
counterpart of the present problem can be obtained from
the previously studied Schwinger effect of two entangled
fermions of momenta p and q [6], under the constraint that the
electric field does not couple the mode p, thus fixing the Bo-
goliubov coefficients of the p mode to be αp = 1 and βp = 0,
thereby reducing mode p to our qubit σ . Then from the analyt-
ical expressions, it can be seen that with the increase of E0 the
mutual information and the entanglement between the qubit
σ and the fermionic mode q both decrease towards 0, instead
of the nonvanishing asymptotic values for bosons. The boson-
fermion comparison is further discussed in the summary.

It is also interesting to make comparison with the bosons
in the Unruh effect [11–13] and near a dilaton black hole
[14], with the role of the electric field in our case replaced

FIG. 2. The logarithmic negativity N (ρσ,q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and ε, where E0 is the strength of

the constant electric field and ε is the coefficient parameter of the
initial entangled state.

as the acceleration, but the Bogoliubov coefficient that is
the counterpart of |βk|2 can be arbitrarily large, making the
entanglement disappear in the limiting cases. In contrast, in
our present case, |βk|2 < 1, consequently the entanglement in
ρσ,q persists as E0 → ∞. One could use the Schwinger effect
to design analog gravity experiments.

V. CORRELATION AND NONENTANGLEMENT
BETWEEN THE QUBIT σ AND THE OUT-MODE −q

Now we calculate the correlation and the entanglement
between σ and −q. Tracing out the out-mode q, we obtain the
reduced density matrix of σ and −q, ρσ,−q = Trq(ρσ,q,−q), as

ρσ,−q = ε2

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

|↑, n−q〉〈↑, n−q| + ε
√

1 − ε2β∗
q

|αq|4

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↑, (n + 1)−q〉〈↓, n−q|

+ ε
√

1 − ε2βq

|αq|4
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↓, n−q〉

× 〈↑, (n + 1)−q| + 1 − ε2

|αq|4
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

(n + 1)

× |↓, n−q〉〈↓, n−q|, (25)

which is a block matrix in the subspace of {|↑, n−q〉, |↓, (n −
1)q〉} (n = 1, 2, 3, . . .). Thus the nonzero eigenvalues of ρσ,−q
are

1

|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + n(1 − ε2)

|βq|2
]

(n = 0, 1, 2, . . .). (26)

Tracing out the out-mode −q in ρσ,−q yields ρσ =
Tr−q(ρσ,−q), which is

ρσ = ε2|↑σ 〉〈↑σ | + (↓ − ε2)|↓σ 〉〈↓σ |, (27)

with eigenvalues ε2 and 1 − ε2.
Tracing out σ in ρσ,−q yields ρ−q = Trσ (ρσ,−q), which is

ρ−q = 1

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + (n + 1)(1 − ε2)

|αq|2
]
|n−q〉〈n−q|,

(28)
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with eigenvalues

1

|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n[

ε2 + (n + 1)(1 − ε2)

|αq|2
]

(n = 0, 1, 2, . . .).

(29)

According to the definition of the mutual information, we have

I (ρσ,−q) = −ε2 log2 ε2 − (1 − ε2) log2(1 − ε2) +
∞∑

n=0

|βq|2n

|αq|2(n+1)

[
ε2 + n(1 − ε2)

|βq|2
]

log2

[ |βq|2n

|αq|2(n+1)

(
ε2 + n(1 − ε2)

|βq|2
)]

−
∞∑

n=0

|βq|2n

|αq|2(n+1)

[
ε2 + (n + 1)(1 − ε2)

|αq|2
]

log2

[ |βq|2n

|αq|2(n+1)

(
ε2 + (n + 1)(1 − ε2)

|αq|2
)]

. (30)

The dependence of the mutual information I (ρσ,−q) on
the electric field E0 and the parameter ε is shown in
Fig. 3. I (ρσ,−q) monotonically increases with the increase
of the electric field E0 and asymptotically approaches a
certain value independent of E0. The closer to 1√

2
ε is,

the larger the asymptotic value is. Moreover, when E0

is small, the closer to 1√
2

ε is, the quicker I (ρσ,−q) in-
creases with the increase of E0, and the larger the value of
I (ρσ,−q) is.

Now we calculate the logarithmic negativity of ρσ,−q. After
making the partial transpose of the density matrix ρσ,−q with
respect to the qubit σ , one obtains

ρ
Tσ

σ,−q = ε2

|αq|2
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

|↑, n−q〉〈↑, n−q| + ε
√

1 − ε2β∗
q

|αq|4
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↓, (n + 1)−q〉〈↑, n−q| + ε
√

1 − ε2βq

|αq|4

×
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n√

n + 1|↑, n−q〉〈↓, (n + 1)−q| + 1 − ε2

|αq|4
∞∑

n=0

∣∣∣∣βq

αq

∣∣∣∣
2n

(n + 1)|↓, n−q〉〈↓, n−q|, (31)

which is a block matrix in the subspace of {|↑, n−q〉, |↓, (n + 1)−q〉}, with eigenvalues

1 − ε2

|αq|4 ,
1

2|αq|2
∣∣∣∣βq

αq

∣∣∣∣
2n

⎡
⎣ ε2 + (n + 2)(1 − ε2)|βq|2

|αq|4 ±
√(

ε2 + (n + 2)(1 − ε2)|βq|2
|αq|4

)2

− 4ε2(1 − ε2)|βq|2
|αq|4

⎤
⎦

× (n = 0, 1, 2, . . .). (32)

Thus the logarithmic negativity of ρσ,−q is

N (ρσ,−q) = log2

[
1 − ε2

|αq|4 +
∞∑

n=0

|βq|2n

|αq|2(n+1)

(
ε2 + (n + 2)(1 − ε2)|βq|2

|αq|4
)]

= log2 1 = 0, (33)

which means that starting from the initial state (13) with any
value of the parameter ε, which is entangled between σ and in-
mode q, under the action of the electric field, the entanglement
between σ and out-mode −q is never generated.

From the expressions of the mutual information of ρσ,q and
ρσ,−q, we obtain

I (ρσ,q) + I (ρσ,−q) = 2S(ε), (34)

implying that the Schwinger effect redistributes the total
correlation in the initial entangled state into ρσ,q and ρσ,−q.
However, there is no such identity for the logarithmic negativ-
ity; hence the Schwinger effect does not redistribute quantum
entanglement.

In contrast, in the fermion model studied previously
[6], even when reduced to the problem of an uncoupled
qubit and the fermion mode coupled with the electric field,

redistribution exists in both mutual information and logarith-
mic negativity. See Eqs. (38) and (39) in Ref. [6], where the
fermion mode coupled with the electric field is denoted as p,
and the uncoupled mode q is equivalent to a qubit.

VI. EFFECT OF A PULSED ELECTRIC FIELD

Now we investigate the effect of a pulsed electric field.
Consider a Sauter-type electric field E (t ) = E0sech2(t/τ )
along the z direction, where τ is the width of the pulsed
electric field [15]. The gauge potential Aμ can be chosen
as

Aμ =
[

0, 0, 0,−E0τ tanh

(
t

τ

)]
, (35)
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FIG. 3. The mutual information I (ρσ,−q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and ε, where E0 is the strength of

the constant electric field and ε is the coefficient parameter of the
initial entangled state.

for which the Bogoliubov transformation is given as [4,10]

|αk|2 = cosh
[
πτ

(
ωout

k + ωin
k

)] + cosh(2πλ)

2 sinh
(
πτωin

k

)
sinh

(
πτωout

k

) , (36)

|βk|2 = cosh
[
πτ

(
ωout

k − ωin
k

)] + cosh(2πλ)

2 sinh
(
πτωin

k

)
sinh

(
πτωout

k

) , (37)

where

λ =
√

(eE0τ 2)2 − 1
4 , (38)

ωin
k =

√
(kz + eE0τ )2 + k2

⊥ + m2, (39)

ωout
k =

√
(kz − eE0τ )2 + k2

⊥ + m2. (40)

As τ → 0 and E (t ) → 0, then |αk|2 → 1 and |βk|2 → 0, and
the problem is reduced to the case without the electric field. As
τ → +∞, E (t ) → E0, which means |αk|2 and |βk|2 reduce to
the values in the case of the constant electric field.

The analyses and calculations for ρσ,q and ρσ,−q above
for the case of a constant electric field can be applied to
a pulsed electric field, but with |αk|2 and |βk|2 now given
in Eqs. (36) and (37). Hence the mutual information and
logarithmic negativity now depend on not only E0 but also
τ .

In parallel with the above study on a constant electric field,
we first investigate the influence of a pulsed electric field on
the entanglement and correlation between σ and mode q.

The influence of the pulsed electric field on the mutual
information I (ρσ,q) is shown in Fig. 4, which indicates its
dependence on the strength E0 and the width τ of the pulsed
electric field. For E0 smaller than a certain value, with the
increase of τ , I (ρσ,q) monotonically decreases and approaches
the asymptotic value dependent on E0. For E0 larger than a
certain value, with the increase of τ , I (ρσ,q) first decreases to
a minimum and then increases to a maximum before it finally
decreases and approaches asymptotically a value dependent
on E0. The larger E0 is, the smaller the values of τ corre-
sponding to the minimum and the maximum of I (ρσ,q) are.
When τ is small, with the increase of E0, I (ρσ,q) decreases to a

FIG. 4. The mutual information I (ρσ,q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and τ

√
q2

⊥ + m2. It is assumed that

qz = √
q2

⊥ + m2 and ε = 1/
√

2.

minimum, then increases to a maximum, and finally decreases
and approaches asymptotically a certain value independent of
E0. The variation trend of I (ρσ,q) with respect to E0 is opposite
to that of I (ρσ,q) with respect to τ . When τ is smaller than
a certain value, the smaller τ is, the larger the values of E0

corresponding to the minimum and the maximum of I (ρσ,q)
are. When τ is larger than a certain value, I (ρσ,q) decreases
monotonically with the increase of E0 and asymptotically
approaches a value independent of E0. For ε = 1/

√
2, as

τ → ∞, the dependence of I (ρσ,q) on E0 is the same as that
of the case of the constant electric field, as shown in Fig. 1.

As shown in Fig. 5, the dependence of N (ρσ,q) on E0 and
τ is entirely similar to that of I (ρσ,q), but the values of τ and
E0 corresponding to the minima and maxima of N (ρσ,q) are
different from those of I (ρσ,q). For ε = 1/

√
2, as τ → ∞, the

case of the constant electric field is also recovered, as shown
in Fig. 2.

The correlation between σ and −q is exactly a complement
of that between σ and q, as indicated in Eq. (34). Therefore the
dependence of I (ρσ,−q) on the pulsed electric field is exactly
opposite to that of I (ρσ,q), as shown in Fig. 6.

In the expressions of Bogoliubov coefficients in Eqs. (36)
and (37), when eE0τ dominates the momenta and mass, E0

FIG. 5. The logarithmic negativity N (ρσ,q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and τ

√
q2

⊥ + m2. It is assumed that

qz = √
q2

⊥ + m2 and ε = 1/
√

2.
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FIG. 6. The mutual information I (ρσ,−q ) as a function of the
dimensionless parameters eE0

q2
⊥+m2 and τ

√
q2

⊥ + m2. It is assumed that

qz = √
q2

⊥ + m2 and ε = 1/
√

2.

and τ appear only together as E0τ
2. Hence the maxima

and minima in Figs. 4, 5, and 6 form ridges and valleys
with E0τ

2 = constant. This explains some features discussed
above.

VII. SUMMARY AND DISCUSSION

In this paper, we have considered the Schwinger effect
on a state in which a qubit is entangled with a boson mode.
We have studied how the total correlation and the quantum
entanglement in ρσ,q and ρσ,−q depend on the electric field. In
the case of a constant electric field, the mutual information
I (ρσ,q) decreases with the increase of the strength of the
electric field and approaches a certain nonvanishing value.
Therefore the total correlation between qubit σ and the out-
mode q never vanishes. Similarly, the logarithmic negativity
N (ρσ,q) decreases with the increase of the strength of the
electric field and approaches a certain nonvanishing value,
implying that the entanglement in ρσ,q never vanishes even
if the strength of the electric field approaches infinity. For
ρσ,−q, the mutual information I (ρσ,−q) increases with the
increase of the strength of the electric field and asymptotically
approaches a certain value. In fact, the sum of I (ρσ,q) and
I (ρσ,−q) is a constant determined by the initial state, appearing
as a conservation law. However no matter how strong the
electric field is, the logarithmic negativity N (ρσ,−q) remains
zero, i.e., σ and the out-mode −q remain unentangled, though
the entanglement between σ and mode q decreases.

We have also studied the Schwinger effect of a pulsed
electric field, for which the pulse width plays a crucial role.
The minima in the correlation and the entanglement between

σ and q, as well as the maxima in the correlation and
the entanglement between σ and −q, nearly satisfy E0τ

2 =
constant. This is well consistent with the case of the constant
electric field, which is the limiting case of τ → ∞, in which
the correlation and the entanglement vary monotonically with
the electric field strength.

The correlation and the entanglement between a qubit and
boson modes in an electric field are different from those
between a qubit and fermion modes [6]. In the boson case,
with the increase of the electric field strength, the correlation
and the entanglement between the qubit and the original
particle mode decrease towards nonzero asymptotic values,
while the entanglement between the qubit and the antiparticle
mode remains zero, though the correlation increases towards
an asymptotic value. In the fermion case, with the increase of
the electric field strength, the correlation and the entanglement
between the qubit and the original particle mode both decrease
towards zero, while both the correlation and the entanglement
between the qubit and the antiparticle mode increases towards
the original values of those between the qubit and the particle
mode. In other words, in the fermion case, both correlation
and entanglement satisfy conservation laws. Consequently,
the electric field transforms the entanglement between the
qubit and the fermion mode into that between the qubit and
the antifermion mode. But there is no such transformation for
bosons. Note that the entanglement transformation here is not
entanglement swapping. In the initial state, the entanglement
is between the qubit and an in-mode, while in the final state
the entanglement is between this qubit and an out-mode. In-
modes and out-modes are different sets of basis states, though
they approach each other with the decrease of electric field
strength.

Qualitatively speaking, this fermion-boson difference orig-
inates from the difference in statistics, which leads to different
behaviors of Bogoliubov coefficients. In the fermion case,
|αk|2 + |βk|2 = 1, where αk is the amplitude of the out-
particle-mode k in the in-mode k, while βk is the amplitude
of the out-antiparticle-mode −k in the in-mode k. Therefore,
when |αk|2 decreases towards 0, |βk|2 is constrained to in-
crease towards 1. In the boson case, there is no such com-
plementary relation, instead |αk|2 − |βk|2 = 1. More detailed
investigation is needed to expose how the boson-fermion
difference emerges.
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