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An important application for near-term quantum computing lies in optimization tasks, with applications
ranging from quantum chemistry and drug discovery to machine learning. In many settings, most prominently
in so-called parametrized or variational algorithms, the objective function is a result of hybrid quantum-classical
processing. To optimize the objective, it is useful to have access to exact gradients of quantum circuits with
respect to gate parameters. This paper shows how gradients of expectation values of quantum measurements can
be estimated using the same, or almost the same, architecture that executes the original circuit. It generalizes
previous results for qubit-based platforms, and proposes recipes for the computation of gradients of continuous-
variable circuits. Interestingly, in many important instances it is sufficient to run the original quantum circuit
twice while shifting a single gate parameter to obtain the corresponding component of the gradient. More general
cases can be solved by conditioning a single gate on an ancilla.
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I. INTRODUCTION

Hybrid optimization algorithms have become a central
quantum software design paradigm for current-day quantum
technologies, since they outsource parts of the computation
to classical computers. Examples of such algorithms are vari-
ational quantum eigensolvers [1], quantum approximate op-
timization [2], variational autoencoders [3], quantum feature
embeddings [4,5], variational classifiers [6,7], and quantum
compilers [8], but also more general hybrid optimization
frameworks [9]. In such applications, the objective or cost
function is a combination of both classical and quantum
information processing modules, or nodes (see Fig. 1). The
quantum nodes execute parametrized quantum circuits, also
called variational circuits, in which gates have adjustable
continuous parameters such as rotations by an angle.

To unlock the potential of gradient-descent-based opti-
mization strategies it is essential to have access to the gra-
dients of quantum computations. While individual quantum
measurements produce probabilistic results, the expectation
value of a quantum observable—which can be estimated by
taking the average over measurement results—is a determin-
istic quantity that varies smoothly with the gate parameters.
It is therefore possible to formally define the gradient of a
quantum computation via derivatives of expectations.

The challenge however is to compute such gradients on
quantum hardware. As we will lay out below, the derivative
of a quantum expectation with respect to a parameter p used
in gate G involves the “derivative of the gate” 9, G, which is
not necessarily a quantum gate itself. Hence the derivative of
an expectation is not a valid quantum expectation. Since in
interesting cases the gradient, just as the objective function
itself, tends to be classically intractable, we need to express
such derivatives as a combination of quantum operations
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that can be implemented in hardware. Even more, in the
case of special-purpose quantum hardware it is desirable that
gradients can be evaluated by the same device that is used for
the original computation.

This paper derives rules to compute the partial derivatives
of quantum expectation values with respect to gate param-
eters on quantum hardware. A number of results in this
direction have been recently proposed in the quantum com-
puting and quantum machine learning literature [6,7,10—12].
References [6,7,10] note that if the derivative 9,G as well
as the observable whose expectation we are interested in can
be decomposed into a sum of unitaries, we can evaluate the
derivative of an expectation by measuring an overlap of two
quantum states. Mitarai et al. [11], leveraging a technique
from quantum control, propose an elegant method for gates
of the form G = e~*° where o is a tensor product of the
Pauli operators {0y, 0y, 0;}. In this case, the derivative can
be computed by what we will call the “parameter shift rule,”
which requires us to evaluate the original expectation twice,
but with one circuit parameter shifted by a fixed value.

In this work, we make several contributions to the literature
on quantum gradients. First, we expand the parameter shift
rule by noting that it holds for any gate of the form G =
e~™MG where the Hermitian generator G has at most two
distinct eigenvalues. We mention important examples of this
class. Secondly, we show that any other gate can be handled
by a method that involves a coherent linear combination of
unitaries routine [13]. This requires adding a single ancilla
qubit and conditioning the gate and its “derivative” on the
ancilla while running the circuit. Thirdly, we derive parameter
shift rules for Gaussian gates in continuous-variable quantum
computing. These rules can be efficiently implemented if all
gates following the differentiated gate are Gaussian and the
final observable is a low-degree polynomial of the creation
and annihilation operators. In fact, the method still works
efficiently for some non-Gaussian gates, such as the cubic
phase gate, as long as there is at most a logarithmically
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FIG. 1. “Parameter shift rule” in the larger context of hybrid optimization. A quantum node, in which a variational quantum algorithm is
executed, can compute derivatives of its outputs with respect to gate parameters by running the original circuit twice, but with a shift in the

parameter in question.

large number of these non-Gaussian gates. The results of
this paper are implemented in the software framework Pen-
nyLane [9], which facilitates hybrid quantum-classical op-
timization across various quantum hardwares and simulator
platforms [9].

II. COMPUTING QUANTUM GRADIENTS

Consider a quantum algorithm that is possibly part of a
larger hybrid computation, as shown in Fig. 1. The quantum
algorithm or circuit consists of a gate sequence U (6) that
depends on a set 6 of m real gate parameters, followed by
the measurement of an observable B [14]. An example is
the Pauli-Z observable B = o, and the result of this single
measurement is £1 for a qubit found in the state |0) or |1),
respectively. The gate sequence U () usually consists of an
ansatz or architecture that is repeated K times, where K is a
hyperparameter of the computation.

We refer to the combined procedure of applying the gate
sequence U (0) and finding the expectation value of the mea-
surement B as a variational circuit. In the overall hybrid
computation one can therefore understand a variational circuit
as a function f : R™ — R”, mapping the gate parameters to
an expectation,

f(0):= (B) = (0U"(6)BU (6))0). 6]

While this abstract definition of a variational circuit is exact,
its physical implementation on a quantum device runs the
quantum algorithm several times and averages measurement
samples to get an estimate of f(0). If the circuit is executed
on a classical simulator, f(6) can be computed exactly up to
numerical precision.

In the following, we are concerned with the partial deriva-
tive 9, f(0) where € 0 is one of the gate parameters. The
partial derivatives with respect to all gate parameters form
the gradient V f. The differentiation rules we derive consider
the expectation value in Eq. (1) and are therefore exact. Just
like the variational circuit itself has an “analytic” definition

and a “stochastic” implementation, the evaluation of these
rules with finite runs on noisy hardware return estimates of
the gradient [15].

There are three main approaches to evaluate the gradients
of a numerical computation, i.e., a computer program that
executes a mathematical function g(x), as follows.

(1) Numerical differentiation. The gradient is approximated
by blackbox evaluations of g, e.g.,

V() ~ [g(x + Ax/2) — g(x — Ax/2)]/Ax,  (2)
where Ax is a small shift.

(2) Automatic differentiation. The gradient is efficiently
computed through the accumulation of intermediate deriva-
tives corresponding to different subfunctions used to build g,
following the chain rule [16].

(3) Symbolic differentiation. Using manual calculations or
a symbolic computer algebra package, the function Vg is
constructed and evaluated.

Until recently, numerical differentiation (or altogether
gradient-free methods) have been the method of choice in
the quantum variational circuits literature. However, the high
errors of near-term quantum devices can make it unfeasible
to use finite difference formulas to approximate the gradient
of a circuit. Furthermore, there is a first theoretical study that
derives worst-case bounds for the number of times a quantum
device has to be queried to converge to a minimum [17], which
shows that, under some conditions [18], analytic gradient
strategies can take significantly fewer queries than numeric
ones.

Several modern numerical programming frameworks, es-
pecially in machine learning, successfully employ automatic
differentiation [19] instead, a famous example being the ubig-
uitous backpropagation algorithm for the training of neural
networks. Unfortunately, it is not clear how intermediate
derivatives could be stored and reused inside of a quantum
computation, since the intermediate quantum states cannot be
measured without impacting the overall computation.
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TABLE I. Summary of results. G refers to the gate with parameter p for which we compute the partial derivative. 3, G refers to the partial

derivative of the operator G.

Architecture Condition Technique
Qubit G generated by a Hermitian operator with two unique Parameter shift rule
eigenvalues
Qubit No special condition Derivative gate decomposition + linear combination of

Continuous-variable
non-Gaussian operations

Continuous-variable ~ No special condition

G Gaussian, followed by at most logarithmically many

unitaries
Continuous-variable parameter shift rules

Unknown

To compute gradients of quantum expectation values, we
therefore use the following strategy: derive an equation for
0,.f(09), n € 0, whose constituent parts can be evaluated on a
quantum computer and subsequently combined on a classical
coprocessor. It turns out that this strategy has a number of
favorable properties: it follows similar rules for a range of
different circuits, evaluating 9, f(0) can often be done on a
circuit architecture that is very similar or even identical to
that for evaluating f(6), and evaluating 9, f(6) requires the
evaluation of only two expectation values.

We emphasize that automatic differentiation techniques
such as backpropagation can still be used within a larger
overall hybrid computation, but we will not get any efficiency
gains for this technique on the intermediate steps of the
quantum circuit.

The remainder of the paper will present the recipes for
how to evaluate the derivatives of expectation values, first
for qubit-based, and then for continuous-variable quantum
computing. The results are summarized in Table L.

III. GRADIENTS OF DISCRETE-VARIABLE CIRCUITS

As a first step, the overall unitary U(6) of the varia-
tional circuit can be decomposed into a sequence of single-
parameter gates, which can be differentiated using the product
rule. For simplicity, let us assume that the parameter p € 6
only affects a single gate G(u) in the sequence, U(0) =
VG(u)W. The partial derivative d,, f then looks like

Ouf = 3.¥IG'OGIY) = (WIG' 03, DY) + He.,  (3)

where we have absorbed V into the Hermitian observable O =
VBV and W into the state |y) = W|0).
For any two operators B, C we have

(WIB'OCIy) +He. = H(y|(B+C)' QB+ O)|y)
—(WIB-C)QB-OW)]. @

Hence, whenever we can implement G + 9,G as part of an
overall unitary evolution, we can evaluate Eq. (3) directly.
Section III A identifies a class of gates for which G +9,,G is
already unitary, while Sec. III B shows that an ancilla can help
to evaluate the terms in Eq. (3) with minimal overhead and
guaranteed success.

A. Parameter-shift rule for gates with generators
with two distinct eigenvalues

Consider a gate G(j1) = e "*C generated by a Hermitian
operator G. Its derivative is given by

3,G = —iGe O, 5)
Substituting into Eq. (3), we get
duf = (W0 (—iG)ly') + He., (6)

where |¢') = G|¢). If G has just two distinct eigenvalues
(which can be repeated) [20] we can, without loss of gen-
erality, shift the eigenvalues to +r, as the global phase is
unobservable. Note that any single qubit gate is of this form.
Using Eq. (4) for B = 1 and C = —ir~'G we can write

8. f = g[w(ﬂ —ir’' G0 —ir 'G)y")

— (WA +ir ' 0A +ir "GO (D

We now show that for gates with eigenvalues £ there exist
values for u for which G() becomes equal to \/LE 1 +ir 'G).

Theorem 1. 1If the Hermitian generator G of the unitary
operator G(iu) = e"*C has at most two unique eigenvalues
=7, the following identity holds:

T 1
—)=—0-ir'G. 8
g ( 4r) ﬁ( ir—G) (®)

Proof. The fact that G has the spectrum {#£r} implies G> =
r*1. Therefore, the sine and cosine parts of the Taylor series
of G(u) take the following simple form:

. ka
G(u) = exp(—ipG) = % ©
k=0 :

X i)k G2k
+Z( in) (10)
k=0

=2k 2k + 1)!
PR N G () R G D ()
_ﬂg oo G}; axkrnr - Ub

=1 cos(rp) — ir ' G sin(rp). (12)

Hence we get G() = %@(1 —ir~1G). [ ]

We conclude that in this case 9, f can be estimated using
two additional evaluations of the quantum device; for these
evaluations, we place either the gate G (f—r) or the gate G(— %)
in the original circuit next to the gate we are differentiating.
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Since for unitarily generated one-parameter gates G(a)G(b) =
G(a + b), this is equivalent to shifting the gate parameter, and
we get the “parameter shift rule” with the shift s = *:

4r
duf = rl¥1GT (1 + )06 (1 + )W) — (¥IGT (1 — 5)
x OG (1 — 9)|¥)] (13)
=rlf(n+s)— f(u—s)] (14)

If the parameter p appears in more than a single gate in
the circuit, the derivative is obtained using the product rule by
shifting the parameter in each gate separately and summing
the results. It is interesting to note that Eq. (14) looks similar
to the finite difference rule in Eq. (2), but uses a macroscopic
shift and is in fact exact.

The parameter shift rule applies to a number of special
cases. As remarked in Mitarai et al. [11], if G is a one-qubit
rotation generator in %{ox, oy, 0;} then r = 1/2 and s = 7.
If G = rn - o is a linear combination of Pauli operators with
the three-dimensional normal vector 7, it still has two unique
eigenvalues and Eq. (8) can also be derived from what is
known as the generalized Euler rule.

Also gates from a “hardware-efficient” variational circuit
ansatz may fall within the scope of the parameter shift rule.
For example, according to the documentation of Google’s
Cirg programming language [21], their Xmon qubits naturally
implement the three gates

ExpW(u, 8) = exp{—iu[cos(8)o, + sin(8)o,]},
ExpZ(p) = exp(—ipoy),
Expll(p) = exp(—ipn|11)(11]),

which all have generators with at most two eigenvalues.

Pauli-based multiqubit gates however in general do not
fall in this category. A hardware-efficient example here is
the microwave-controlled transmon gate for superconducting
architectures [22,23],

g(:u) = eXP{M[Ux &® 1-— b(az &® Gx) + C(]l ® 0x)]}9

which has four eigenvalues. In these cases, other strategies
have to be found to compute exact gradients of variational
circuits.

B. Differentiation of general gates via linear
combination of unitaries

In case the parameter-shift differentiation strategy does not
apply, we may always evaluate Eq. (3) by introducing an
ancilla qubit. Since for finite-dimensional systems 9,G can
be expressed as a complex square matrix, we can always
decompose it into a linear combination of unitary matrices A;
and A,

9,6 = %[(Al +AD) + (A + AD)] (15)

with real o [24]. A; and A, in turn can be implemented as
quantum circuits. To be more general, for example, when
another decomposition suits the hardware better, we can write

K
8ﬂg = Z()lkAk, (16)
k=1

0)
¥)

FIG. 2. Quantum circuit illustrating the “linear combination of
unitaries” technique [13]. Between interfering Hadamards, two uni-
tary circuits or gates A and G are applied conditioned on an ancilla.
Depending on the state of the ancilla qubit, the effect is equivalent to
applying a sum or difference of A and G.

for real o4 and unitary A;. The derivative becomes

K
uf =Y a((Y|GTQAlY) + Hee). (17)

k=1

With Eq. (4) we may compute the value of each term in the
sum using a coherent linear combination of the unitaries G and
Ay = A, implemented by the quantum circuit in Fig. 2 (here
and in the following we drop the subscript k for readability).

First, we append an ancilla in state |0) and apply a
Hadamard gate to it to obtain the bipartite state

1
V2
Next, we apply G conditioned on the ancilla being in state
zero, and A conditioned on the ancilla being in state 1 (re-

member that both G and A are unitary). This results in the
state

(10) + 1)) ® [¥). (18)

L
V2

Applying a second Hadamard on the ancilla we can prepare
the final state

510)(G + A)ly) + [1)(G — A)lY)]. (20)

A measurement of the ancilla selects one of the two branches
and results in either the state |y) = (G + A)|y) with

(10)G1¥) + [DAIY)). 19)

2(/po
probability
Po = HWIG +A) (G +A)ly), 1)
or the state |/]) = #ﬂ(g — A)|¥) with probability
p1=1¥1(G —A G —Aly). (22)

We then measure the observable O for the final state W), i=
0, 1. Repeating this process several times allows us to estimate
Po, p1 and the expected values of O conditioned on the value
of the ancilla,

_ N 1 N

Eo = (Y,|0l¥) = a(l/fl(g + A QG+ Ay  (23)
and

N B 1 ‘A

Ey = (Y1101¥)) = HWKQ —-A)'0G -Ay). (24

Comparing with Eq. (4), we find that we can compute the
desired left-hand side and thus the individual terms in Eq. (17)
from these quantities, since

(VIG'0AIY) + Hee. = 2(poEo — piEy). (25)
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Note that the measurement on the ancilla is not a typical
conditional measurement with limited success probability:
either result contributes to the final estimate.

Overall, this approach requires that we can apply the gate
G, as well the unitaries A; from the derivative decomposition
in Eq. (16), controlled by an ancilla. Altogether, we need to
estimate 2K expectation values and 2K probabilities, and with
Eq. (15) K can always be chosen as 2. The decomposition
of 9,G into a linear combination of unitaries A; needs to be
found, but this is easy for few qubit gates and has to be done
only once.

Note that the idea of decomposing gates into “classical
linear combinations of unitaries” has been brought forward
in Ref. [6], where O had the special form of a o, observ-
able, which allowed the authors to evaluate expectations via
overlaps of quantum states. Here we added the well-known
strategy of coherent linear combinations of unitaries [13] to
generalize the idea to any observable.

IV. GRADIENTS OF CONTINUOUS-VARIABLE CIRCUITS

We now turn to continuous-variable (CV) quantum com-
puting architectures. Continuous-variable systems [25] differ
from discrete systems in that the generators of the gates
typically have infinitely many unique eigenvalues, or even a
continuum of them. Despite this, we can still find a version
of the parameter-shift differentiation recipe which works for
Gaussian gates in CV variational circuits if the gate is only
followed by Gaussian operations, and if the observable is a
low-degree polynomial in the quadratures. The derivation is
based on the fact that in this case the effect of a Gaussian
gate, albeit commonly represented by an infinite-dimensional
matrix in the Schrodinger picture, can be captured by a finite-
dimensional matrix in the Heisenberg picture.

As in Sec. III, the task is to compute d,, /. In the Heisenberg
picture, instead of evolving the state forward in time with
the gates in the circuit, the final observable is evolved “back-
wards” in time with the adjoint gates. We consider observables
B that are polynomials of the quadrature operators %, p
(such as %1% or &} + 2%). By linearity, it is sufficient
to understand differentiation of the individual monomials.

For an n-mode system, we introduce the infinite-
dimensional vector of quadrature monomials,

é = (]17 )?l? pAlv -5(\:21 1527 e )%n’ ﬁn? )%%’ )elﬁlv . -)s (26)
sorted by their degree, in terms of which we will expand the
observables.

A. CV gates in the Heisenberg picture

Let us consider the Heisenberg-picture action eite G ofa
gate G on a monomial C € C. This conjugation acts as a linear
transformation 29 on C, ie.,

QIC;1:=G'C;G = ZM,%G, @27)

where Mg = Mg(u) are the elements of a real matrix MY
that depends on the gate parameter. Subsequent conjugations

correspond to multiplying the matrices together:

QUIQVIC = QUIVIGV] =) MiMC. (28)
t
Suppose now that the gate G is Gaussian. Conjugation
by a Gaussian gate does not increase the degree of a
polynomial. This means that G will map the subspace of
the zeroth- and first-degree monomials spanned by D :=
(1, %1, p1, X2, P2, - .., Xn, Pp) into itself,

2n
Q9D;) = ZMgDi. (29)
i=0

For observables that are higher-degree polynomials of the
quadratures, we can use the fact that QY is a unitary conjuga-
tion and that the higher-degree monomials can be expressed
as products of the lower-degree ones in D:

QYD) =G'D:D;G, (30)
=G'DiGG'D;¢, 31)
= Q9[D199D;]. (32)

Hence we may represent any n-mode Gaussian gate G as a
(2n+ 1) x (2n + 1) matrix in the Heisenberg picture.

We can now compute the derivatives 9, f using the deriva-
tives of the matrix MY( ). It turns out that, like the derivatives
of the finite-dimensional gates in Sec. III, 9, M 9 can be often
decomposed into a finite linear combination of matrices from
the same class as MY. In fact, the derivatives of all gates from
a universal Gaussian gate set can be decomposed to just two
terms, so derivative computations in this setting have the same
complexity as in the qubit case. We summarize the derivatives
of important Gaussian gates in Table II.

As an example, we consider the single-mode squeezing
gate with zero phase S(r, ¢ = 0), which is represented by

1 0 O
M5(r)y=10 e 0]. (33)
0 0 ¢
Its derivative is given by
0 0 0
Mr)=|0 — 0 (34)
0 0 e’

The derivative itself is not a Heisenberg representation of
a squeezing gate, but we can decompose it into a linear
combination of such representations, namely

3, M5(r) = IMS(r+s5)=M5(r—s)], (35)

2 sinh(s)

where s is a fixed but arbitrary nonzero real number. Hence

3, [S(r)'B;S(r)] = [S(r+ $)'B;S(r +5)

1
2 sinh(s)
—S(r—5)'B;S(r — s)] (36)
for j € {0, 1, 2}.
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TABLE II. Parameter shift rules for the partial derivatives of important Gaussian gates. Every Gaussian gate can be decomposed into
this universal gate set. We use the gate definitions laid out in the Strawberry Fields documentation [26] with i = 2. All parameters are real
valued. Single-mode gates have been expanded using the set (1, X, p), whereas the two-mode beam splitter has been expanded using the set
(1, %4, Pa, X», D). More derivative rules can be found in the PennyLane [9] documentation.

Gate G Heisenberg representation MY Partial derivatives of MY
1 0 0
Phase rotation R(¢) MR(@)=|0 cos¢p —sing 9y MR(¢p) = %[MR(qb +%)- MR(¢p — DI
0 sing cos ¢
Lo 0MP(r, ) = LIMP(r +5,6) — MP(r — 5,$)], s € R
Displacement D(r, ¢) MP@r,¢)=|2rcos¢p 1 0 R x . , :
2rsing 0 1 M"(r,¢) =3IM"(r,¢+ 7)) =M (¢ — )]
! 0 0 AM(r) = s~ [MS(r+5)—M5(r —s)], seR
Squeezing S(r)* MS(r)=|0 e’ 0 r 2 sinh(s) )
0O 0 ¢
(1) co(;e 8 _Oa _Olg WMP(O,¢) = 3[MPO + 5. ¢) — MP(©6 — 7, $)]
— 1 bid s
Beam splitter B0, ¢)  MB(6,¢)= [0 0  cos6 B —a 0MP (O, ¢) = 3[M°(0, ¢+ 5) = M*(0, ¢ — 3)]
0 o -pB cosf 0 . . .
0 B a 0 cos 6 a =cos¢ sinf, B =sin¢ sind

A more general version of the squeezing gate S(r, ¢) also contains a parameter ¢ which defines the angle of the squeezing, and S(r) = 3(r, 0).
This two-parameter gate can be broken down into a product of single-parameter gates: S(r, ¢) = R(%)S(r)R(—%).

B. Differentiating CV circuits

Again we split the gate sequence into three pieces, U (0) =
VG (n)W. For simplicity, let us at first assume that our observ-
able is a first-degree polynomial in the quadrature operators,
and thus can be expanded as B = > b;:D;. As shown in the
previous section, for Gaussian gates the Heisenberg-picture
matrix M is block diagonal, and maps from the space spanned
by D onto itself. Thus, if G is Gaussian and V consists of
Gaussian gates only, we may write

f©) = (0lUT(0)BU(6)]0), (37)
= (OW DWIO)M{ (Mbi,  (38)
ijk

where |0) denotes the vacuum state. Now the derivative is
simply

0,/0) = (OIWBWI[0)@, MM b (39)
ijk

If o.M 9 can be expressed as a linear combination
¥ )/,'Mg(/L + s;) with y;, s; € R, by linearity we may express
9,.f using the same linear combination, 9, f =, ¥ f(n +
s;). This is the parameter shift rule for CV quantum comput-
ing.

What about the subcircuit W that appears before the gate
that we differentiate? For the purposes of differentiating the
gate G, this subcircuit can be arbitrary, since the above
differentiation recipe does not depend on the properties of
the matrix M". The above recipe works as long as no non-
Gaussian gates are between G and the observable B.

With observables B that are higher-degree polynomials
of the quadratures, we can use the property in Eq. (30) to

compute the derivative using the product rule:

3, (Q9[B:B;1) = 8,(QI[B1Q[B;)) = 8,Q9(B,] Q9[B;)
+ Q91B;1 9,99(B;). (40)

C. Non-Gaussian transformations

For the above decomposition strategy to work efficiently,
the subcircuit V must be Gaussian. In the case that V is
non-Gaussian, it will generally increase the degree of the
final observable, i.e., VBV will be higher degree than B. For
example, the cubic phase gate V(y) = e"*’ carries out the
transformations

Viiv(y) =4, (41)
VIpV (y) =p+ yx*. (42)

In this case, we will have to consider a higher-dimensional
subspace (tracking both the linear and the quadratic terms). If
the subcircuit V' contains multiple non-Gaussian gates, each
one can raise the degree of the observable. Thus the matrices
considered in the Heisenberg representation can become large
depending on both the quantity and the character of non-
Gaussian gates in the subcircuit V. Finding analytic derivative
decompositions of circuits containing non-Gaussian gates is
more challenging, but not strictly ruled out by complexity
arguments. Specifically, in the case where there are only log-
arithmically few non-Gaussian gates, and each of those gates
only raises the degree of quadrature polynomials by a bounded
amount, there is still the possibility to efficiently decompose a
gradient of an expectation value into a polynomial number of
component expectation values.
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V. CONCLUSION

We present several hardware-compatible strategies to
evaluate the derivatives of quantum expectation values from
the output of variational quantum circuits. In many cases
of qubit-based quantum computing the derivatives can be
computed with a simple parameter shift rule, using the
variational architecture of the original quantum circuit. In all

other cases it is possible to do the same by using an ancilla and
a decomposition of the “derivative of a gate.” For continuous-
variable architectures we show that, as long as the parameter
we differentiate with respect to feeds into a Gaussian gate
that is only followed by Gaussian operations, a close relative
to the parameter shift rule can be applied. We leave the
case of non-Gaussian circuits as an open direction for future
research.
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