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The non-Gaussian operation can be used not only to enhance and distill the entanglement between Gaussian
entangled states, but also to improve the performance of quantum communications. In this paper, we propose
a non-Gaussian continuous-variable quantum key distribution (CVQKD) by using quantum catalysis (QC),
which is an intriguing non-Gaussian operation in essence that can be implemented with current technologies.
We perform quantum catalysis on both ends of the Einstein-Podolsky-Rosen pair prepared by a sender, Alice,
and find that for the single-photon QC-CVQKD, the bilateral symmetrical quantum catalysis performs better
than the single-side quantum catalysis. Attributing to characteristics of an integral within an ordered product
of operators, we find that the quantum-catalysis operation can improve the entanglement property of Gaussian
entangled states by enhancing the success probability of non-Gaussian operation, leading to the improvement of
the QC-CVQKD system. As a comparison, the QC-CVQKD system involving zero-photon and single-photon
quantum catalysis outperforms the previous non-Gaussian CVQKD scheme via photon subtraction in terms of a
secret key rate, maximal transmission distance, and tolerable excess noise.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–5], as one of the ma-
ture practical applications in quantum information processing,
allows two distant legitimate parties (normally say a sender
Alice and a receiver Bob) to establish a set of secure keys
even in the presence of the untrusted environment controlled
by an eavesdropper (Eve), and its unconditional security can
be guaranteed by the laws of quantum physics, e.g., the
uncertainty principle [6] and the noncloning theorem [7]. In
general, QKD mainly includes two families, namely, discrete-
variable quantum key distribution (DVQKD) and continuous-
variable quantum key distribution (CVQKD) [2,8–15]. In the
CVQKD system, the sender Alice encodes information on
the quadratures of the optical field with Gaussian modula-
tion, and the receiver Bob decodes the secret information
with high-speed and high-efficiency homodyne or heterodyne
detection so that this system promises a more higher secret
key rate than its DVQKD and, thus, has been a subject of
increasing interest in recent years [16,17]. In addition, since
the security proofs of the Gaussian-modulated CVQKD pro-
tocols against collective attacks [16,18] and coherent attacks
[19,20] have been proven theoretically [21–23], the Gaussian-
modulated CVQKD protocols take on the potential appli-
cation prospects of long-distance communication. Among
them, the Grosshans-Grangier 2002 protocol [17] performs
outstandingly over short distances but seems unfortunately to
be facing the problem of long-secure distances compared with
its DVQKD counterpart.

Untill now, many remarkable theoretical and experimen-
tal efforts have been devoted to extending the maximal
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transmission distance with high rates in CVQKD systems
[23–28]. By the use of multidimensional reconciliation pro-
tocols in the regime of low signal-to-noise ratio (SNR) [23],
it was demonstrated experimentally that CVQKD over an
80-km transmission distance can be realized. The reason is
that the multidimensional reconciliation is, in a sense, to
design a suitable reconciliation code with high efficiency even
at low SNR, which can increase the secure distance [28].
Alternatively, the discrete modulation protocols, such as the
four-state protocol [13,27,29,30] and the eight-state protocol
[31] were shown to improve the secure distance as there does
exist suitable error-correlation codes with high efficiency for
discrete possible values at low SNR. Especially for the eight-
state protocol, not only can the secret key rate be improved,
but also a transmission distance of more than 100 km can be
achieved [31,32]. From a practical point of view, the maximal
transmission distance and the unconditional security of the
secret key are usually disturbed by the environmental noise
and dissipation. To solve these problems, the methods of
source monitoring [33] and a linear optics cloning machine
[34] have been proposed subsequently.

Thanks to the development of experimental techniques, on
the other hand, some quantum operations have been used to
improve the performance of the CVQKD in terms of the secret
key rate and tolerable excess noise. For example, a heralded
noiseless amplifier [26,27,35] was proposed to improve the
maximal transmission distance roughly by the equivalent of
20 log10 g-dB losses resulting from the compensation of the
losses [27]. Recently, due to the fact that the non-Gaussian
operation can be used for improving the entanglement
[36–38] and quantum teleportation in the CV system
[39,40], the photon-subtraction operation, which is one of the
non-Gaussian operations, has been proposed to improve the
secret key rate, the maximal tolerable excess noise, and

2469-9926/2019/99(3)/032327(12) 032327-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.032327&domain=pdf&date_stamp=2019-03-18
https://doi.org/10.1103/PhysRevA.99.032327


YING GUO, WEI YE, HAI ZHONG, AND QIN LIAO PHYSICAL REVIEW A 99, 032327 (2019)

the transmission distance of the CVQKD protocol
[11,14,15,29]. In particular, the single-photon-subtraction
(SPS) operation in the enhanced CVQKD protocol outper-
forms other numbers of photon subtraction. Unfortunately,
the success probability for implementing this single-photon
subtraction operation at the variance of two-mode squeezed
vacuum (TMSV) state V = 20 is limited to below 0.25, which
may lead to loss more information between Alice and Bob in
the process of extracting the secret key. In order to overcome
the limitation, in this paper, we propose an improved
performance scheme for CVQKD by using another non-
Gaussian operation, the quantum catalysis (QC) [41], which
can be implemented with current experimental technologies.
Attractively, the quantum-catalysis operation is a feasible way
to enhance the nonclassicality [42], and the entanglement
property of Gaussian entangled states [43] thereby has
become one of the research hot spots in quantum physics.
Different from the previous studied photon-subtraction
operations, although no photon is subtracted and added in the
quantum-catalysis process, quantum catalysis can be applied
to facilitate the conversion of the target ensemble, which
could prevent the loss of information effectively. Besides, due
to the problem of noncommutativity in quantum operators,
the integral of a classical function cannot be applied directly
to the quantum operator integral. In order to deal with the
above problem, the technique of an integral within an ordered
product (IWOP) of operators including the normal ordering,
antinormal ordering, and Weyl ordering was introduced in
Refs. [44–47]. With the help of this technique, we can easily
obtain the analytical expression for the equivalent operator
of quantum catalysis. Numerical simulation shows that the
entanglement and the success probability for implementing
quantum catalysis can be improved efficiently. Specifically,
the success probability for implementing zero-photon
quantum catalysis can be dramatically enhanced when
compared with the previous CVQKD with single-photon
subtraction. In addition, we illustrate the performance of
QC-CVQKD with different photon-catalyzed numbers and
find that zero-photon and single-photon catalysis presents the
best performance when optimized over the transmittance T
of the untrusted party’s beam splitter (BS).

This paper is organized as follows. In Sec. II, we sug-
gest a quantum-catalysis operator and detail the process of
QC-CVQKD. In Sec. III, the success probability and the
entanglement property for implementing quantum catalysis
are analyzed, and the security analysis for the QC-CVQKD
system is subsequently discussed. Finally, conclusions are
drawn in Sec. IV.

II. QUANTUM-CATALYSIS-BASED CVQKD

To make the derivation self-contained, we suggest a
quantum-catalysis operator by means of the IWOP technique
and then detail the QC-CVQKD.

A. Quantum-catalysis operation

As shown in Fig. 1(a), an n-photon Fock state |n〉 in
auxiliary mode C is injected at one of the input ports of
the BS with transmittance T2, and simultaneously detected

FIG. 1. Schematic of the non-Gaussian operations. (a) The QC.
An n-photon Fock state |n〉 in auxiliary mode C is split on the
asymmetrical BS with transmittance T2. Subsequently, n photons
at the auxiliary mode are registered by an ideal photon number
resolving detector (PNRD), which is the so-called n-photon quantum
catalysis represented by an equivalent operator Ôn. (b) The n-photon-
subtraction operation. Vacuum state |0〉 in auxiliary mode C is
injected into the asymmetrical BS with transmittance T2. Likewise,
n photons at the auxiliary mode are detected by the ideal PNRD.

by the PNRD at the corresponding output port of the BS,
which is the so-called n-photon catalysis because the auxiliary
n-photon Fock state remains unaffected by this interaction. It
is worth noting that the number of detected photons by the
PNRD is consistent with the number of input photons, which
can facilitate the conversion of the target ensemble in mode
B. In principle, it is reasonable and correct not to change
the effect of modifying the photon number population in the
catalytic process. Besides, this process is often regarded as an
equivalent operator Ôn given by

Ôn ≡ C〈n|B(T2)|n〉C, (1)

where B(T2) is the BS operator with transmittance T2.
To obtain the specific expression of the equivalent
operator Ôn, we employ the normally ordering form of
B(T2) by the IWOP technique and the coherent-state
representation of Fock state |n〉, which are expressed as
B(T ) = : exp[(

√
T2 − 1)(b†b + c†c) + (c†b − cb†)

√
1 − T2]:

and |n〉 = 1/
√

n! ∂n

∂βn ‖β〉|β=0, respectively, where the

notations : · : and ‖β〉 = exp(βc†)|0〉 represent the normal
ordering of an operator and an un-normalized coherent state,
respectively. As a result, Eq. (1) can be described as

Ôn = :Ln

(
1 − T2

T2
b†b

)
:(
√

T2)b†b+n, (2)

where Ln(·) denotes the Laguerre polynomials (see
Refs. [42,43] for the detailed calculation). By using the
generating function of the Laguerre polynomials, i.e.,

Ln(x) = ∂n

n! ∂γ n

{
e(−xγ )/(1−γ )

1 − γ

}
γ=0

, (3)

and the operator relation eλb†b = : exp{(eλ − 1)b†b}:, Eq. (2)
can be further rewritten as

Ôn = GT2 (b†b)(
√

T2)b†b+n, (4)

where

GT2 (b†b) = ∂n

n! ∂γ n

{
1

1 − γ

(
1 − γ /T2

1 − γ

)b†b
}

γ=0

. (5)
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FIG. 2. Schematic of QC-CVQKD. Einstein-Podolsky-Rosen (EPR): two-mode squeezed vacuum state. |m〉 and |n〉: m-photon and n-
photon Fock states. PDI and PDII: photon detector by conditional measurement of |m〉 and |n〉. B(T1) and B(T2): BSI operator with transmittance
T1 and the BSII operator with transmittance T2. Tc and ε: quantum channel parameters.

From Eq. (4), we find that the quantum-catalysis opera-
tion belongs to a kind of non-Gaussian operation. Moreover,
as shown in Fig. 1(a), for an arbitrary input state |ϕ〉in in
mode B, the output state |ψ〉out can be expressed as |ψ〉out =
Ôn/

√
p|ϕ〉in with the success probability p for implementing

the n-photon catalysis Ôn, which is beneficial for calculating
the analytical expressions of the Alice output state and the
covariance matrix between Alice and Bob in the following.
In addition, different from the n-photon-subtraction operation
shown in Fig. 1(b), the auxiliary n-photon Fock state will not
be destroyed at all in the n-photon catalysis operation. Such
an operation facilitates the transformation between input and
output states thereby effectively preventing useful information
from being lost. However, no matter how many photons
are catalyzed or subtracted, there is no quantum-catalysis or
photon-subtraction effect when T2 = 1.

B. The CVQKD protocol with quantum catalysis

In what follows, we elaborate the schematic of the QC-
CVQKD protocol as shown in Fig. 2. The sender Alice
generates a TMSV state (which is also called an EPR pair)
involving two modes A and B with a modulation variance V ,
which is usually expressed as the two-mode squeezed operator
S2(r) = exp{r(a†b† − ab)} on the two-mode vacuum state
|0, 0〉AB, i.e.,

|TMSV〉AB = S2(r)|0, 0〉AB =
√

1 − λ2
∞∑

l=0

λl |l, l〉AB, (6)

where λ = tanh r = √
(V − 1)/(V + 1) for V = 2α2 + 1 and

|l, l〉AB = |l〉A ⊗ |l〉B denotes the two-mode Fock state of both
modes A and B. After that, she performs m-photon and n-
photon catalysis operations in modes A and B, respectively,
giving birth to state |ψ〉A1B1 . Note that, before Alice performs
heterodyne detection, inserting another quantum-catalysis op-
eration Ôm is designed to figure out what effect quantum
catalysis has on the information between Alice and Bob when
comparing with the single-side quantum-catalysis Ôn case.
Besides, to lower requirements for the apparatus perfection
of the quantum catalysis and assume that the eavesdropper
Eve is more powerful, the quantum catalysis of both Ôm

and Ôn, respectively, should be held by the untrusted

parties David and Charlie controlled by Eve. According to the
aforementioned method of the quantum-catalysis operation,
likewise in Eq. (4), we obtain the m-photon quantum-catalysis
operation, i.e.,

Ôm = GT1 (a†a)(
√

T1)a†a+m, (7)

with the notation GT1 (a†a) given by

GT1 (a†a) = ∂m

m! ∂τm

{
1

1 − τ

(
1 − τ/T1

1 − τ

)a†a
}

τ=0

. (8)

Then, the yielded state |ψ〉A1B1 turns out to be

|ψ〉A1B1 = ÔmÔn√
Pd

|TMSV〉

=
∞∑

l=0

W0√
Pd

∂m

∂τm

∂n

∂γ n

W l

(1 − τ )(1 − γ )
|l, l〉AB, (9)

where Pd denotes the success probability of implementing
quantum catalysis, which is an important indicator that affects
the mutual information in the process of distilling a common
secret key between Alice and Bob and can be calculated as

Pd = W 2
0 	m,n

{
�

1 − W1W

}
, (10)

with 	m,n, �, W0, W , and W1 defined in Eq. (A2). Detailed
calculations of the success probability Pd can be shown in
Appendix A. From Eq. (9), state |ψ〉A1B1 becomes a non-
Gaussian entangled state.

At Alice’s station, the quadratures of both xA and pA are
measured via heterodyne detection on the incoming one-half
of state |ψ〉A1B1 , and the other half of |ψ〉A1B1 is sent to Bob
through an insecure quantum channel that can be controlled
by Eve with the transmission efficiency Tc and the excess
noise ε. After receiving the state, Bob randomly chooses to
measure either xB or pB via homodyne detection and informs
Alice about the measured observable. Finally, Alice and Bob
can share a string of secret keys by data postprocessing.

Before deriving the performance of the QC-CVQKD pro-
tocol, we demonstrate the entanglement of both the Gaussian
entangled state |TMSV〉AB and the transformed state |ψ〉A1B1 .
As a computable measurement of entanglement and an upper
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bound on the distillable entanglement, the logarithmic nega-
tivity is usually used to quantify the degree of entanglement,
which is given by

EN = log2 ‖ρPT‖, (11)

in which ρPT is the partial transpose of density operator ρ

about the arbitrary subsystem, and the symbol ‖ · ‖ is the trace
norm. By using the Schmidt decomposition, if an arbitrary
state |〉 can be decomposed as |〉 = ∑∞

n=0 wn|n〉A|n′〉B with
the positive real number wn and the orthonormal states |n〉A

and |n′〉B, its logarithmic negativity can be calculated as

EN = 2 log2

∣∣∣∣∣
∞∑

n=0

wn

∣∣∣∣∣. (12)

According to Eqs. (6), (9), and (C2), the logarithmic neg-
ativity of both the TMSV state [14,15] and the resulted
state |ψ〉A1B1 as well as the photon-subtraction state |〉AB1 ,
respectively [see Appendix C] can be calculated as

EN (|TMSV〉AB) = − log2(1 + α2)−2 log2(
√

1 + α2−α),

EN (|ψ〉A1B1 ) = 2 log2

∣∣∣∣∣
∞∑

l=0

W0√
Pd

∂m

∂τm

∂n

∂γ n

W l

(1 − τ )(1 − γ )

∣∣∣∣∣,
EN (|〉AB1 ) = 2 log2

∣∣∣∣∣
∞∑

l=0

ÃB̃l+1

√
l + 1

P1

∣∣∣∣∣, (13)

where Ã, B̃, and P1 have been defined in Eqs. (C3) and (C4),
respectively.

III. PERFORMANCE ANALYSIS

In this section, we demonstrate the success probability
regarding the quantum catalysis operation and derive the per-
formance of the QC-CVQKD system in terms of the secret key
rate and tolerable excess noise. A performance comparison
between the QC-CVQKD and the photon-subtracted CVQKD
is made to highlight the merits of the QC-based system. Note
that, for a simple and convenient discussion, we consider two
special cases, i.e., the bilateral symmetrical quantum catalysis
[(BSQC) in which T1 = T2 = T and m = n] and the single-
side quantum catalysis [(SSQC) in which T1 = 1, T2 = T ,
and n].

A. Success probability for quantum catalysis

The explicit form of the success probability for implement-
ing quantum catalysis operations has been given in Eq. (9). In
particular, for the zero-photon BSQC (T1 = T2 = T and m =
n = 0) and SSQC (T1 = 1, T2 = T , and n = 0), the success
probabilities for implementing such zero-photon quantum-
catalysis operations can be given by 1/[1 − (T 2 − 1)α2] and
1/[1 − (T − 1)α2], respectively. Given a high transmittance
T = 0.95, the success probabilities Pd can be plotted as a
function of α with several different photon-catalysis numbers,
such as m, n ∈ {0–2}. Figure 3 shows that the overall trend of
success probability Pd decreases as α increases. It indicates
that, for the increased modulation variance V = 2α2 + 1, the
success probability Pd for implementing quantum-catalysis
decreases. Meanwhile, the success probabilities decrease with

FIG. 3. The success probability Pd of quantum catalysis as a
function of α for BSQC (T1 = T2 = T and m = n ∈ {0–2}) (dashed-
dotted line) and SSQC (T1 = 1, T2 = T , and n ∈ {0–2}) (dotted line)
for T = 0.95.

the increased number of photon catalyses for both SSQC
and SBQC. The above-mentioned phenomenon explains that
the implementation of multiphoton catalysis (m = n > 1 and
n > 1) may be relatively difficult to achieve. Whereas, the
success probability Pd of SSQC provides better performance
than that of BSQC when one considers same photon-catalyzed
numbers. For the zero-photon SSQC (n = 0) and BSQC
(m = n = 0), the success probabilities Pd for the given large
α (α = 3) are approximately 0.68 and 0.53, respectively. It is
worth noting that, for the two-photon BSQC (m = n = 2), the
success probability Pd for the given large α (α = 3) is below
0.2, which may leak much information in the CVQKD system.

Now, we consider the effect of entanglement variation on
the QC-CVQKD system, which can be evaluated by the loga-
rithmic negativity in Eq. (14). For arbitrary photon-catalyzed
numbers m and n, we can obtain the logarithmic negativity of
state |ψ〉A1B1 . Given a high transmittance T = 0.95, we plot
the logarithmic negativity among EN (|ψ〉A1B1 ), EN (|〉AB1 ),
and EN (|TMSV〉AB) as a function of α involving different
photon-catalyzed numbers as shown in Fig. 4. For the zero-
photon and single-photon quantum catalyses, the entangle-
ment property can be improved for α = 3, which may have
an important impact on the correlation strength of mutual
information between Alice and Bob. However, for α = 3, the
gap of the enhanced entanglement in BSQC decreases with the
increase in m, n ∈ {0–2}. A similar trend occurs for SSQC,
and there is no improvement of the entanglement for n = 2.
Although the entanglement for m = n = 2 can be improved
at a large region of α, there does exist the limitation of its
success probability. These results show that the zero-photon
and single-photon quantum catalyses (i.e., m = n ∈ {0, 1} and
n ∈ {0, 1}) perform well in terms of the success probability
and the entanglement property when comparing with the two-
photon cases (i.e, m = n = 2 and n = 2). On the other hand,
for the optimized T , we give the optimal logarithmic nega-
tivity EN as a function of α for m = n ∈ {0, 1} and n ∈ {0, 1}
as shown in Fig. 5. We find that the optimal entanglements
of different zero-photon and single-photon quantum-catalysis
cases overlap together, and then the gap of the improved
entanglement increases with the increasing α.
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FIG. 4. The logarithmic negativity of EN (|ψ〉A1B1 ) as a function
of α for BSQC (T1 = T2 = T and m = n ∈ {0–2}) (dashed-dotted
line) and SSQC (T1 = 1, T2 = T , and n ∈ {0, 1, 2}) (dotted line) for
T = 0.95.

To highlight the contribution of the quantum-catalysis op-
eration, compared with single-photon subtraction, we illus-
trate the success probability and the entanglement property
in Fig. 6. For T → 1, although the improvement of the entan-
glement for the single-photon subtraction (magenta surface)
performs better than that for the quantum-catalysis operation,
the success probability for the former is worse than that
for the latter. As a result, the quantum-catalysis operation
is superior to the single-photon subtraction in terms of the
success probability. These results indicate that the quantum
catalysis as a novel non-Gaussian operation can be used to
improve the entanglement property of Gaussian entangled
states and has an advantage of the success probability over the
photon-subtraction operation. Consequently, in what follows,
we focus on quantum catalysis to enhance the performance of
the CVQKD system.

FIG. 5. The optimal logarithmic negativity of EN (|ψ〉A1B1 ) as a
function of α for BSQC (T1 = T2 = T and m = n ∈ {0, 1}) (dashed-
dotted line) and SSQC (T1 = 1, T2 = T , and n ∈ {0, 1}) (dotted line)
for the optimal choice of T .

FIG. 6. (a) The success probability of implementing between
QC and single-photon subtraction in the (T, α) space with different
photon-catalyzed numbers. (b) The logarithmic negativity for the
resulted state |ψ〉A1B1 using QC and the single-photon-subtraction-
state |〉AB1 as well as the TMSV state |TMSV〉AB in the (T, α) space
with different photon-catalyzed numbers. In (a) and (b), the magenta
surface stands for the single-photon-subtraction case. Other surfaces
denote m = n = 0 (blue surface), m = n = 1 (green surface), n = 0
(red surface), and n = 1 (yellow surface).

B. Security analysis

To evaluate the performance of the QC-CVQKD system,
according to the detailed calculations of the asymptotic secret
key rate [see Appendix B], we demonstrate the numerical
simulations of the secret key rate and tolerable excess noise.

Figure 7 shows that, for a given transmittance T = 0.95,
the asymptotic secret key rate K̃R as a function of transmis-
sion distance can be plotted with different photon-catalyzed
numbers m = n ∈ {0–2} and n ∈ {0–2}. The black solid line
denotes the secret key rate of the original protocol, which
is exceeded by the QC-CVQKD system with zero-photon
and single-photon quantum catalyses within the long-distance

FIG. 7. The asymptotic secret key rates of the QC-CVQKD
system (dashed-dotted lines and dotted lines) as a function of the
transmission distance for BSQC cases (T1 = T2 = T and m = n ∈
{0–2}) (dashed-dotted line) and SSQC cases (T1 = 1, T2 = T , and
n ∈ {0–2}) (dotted line) with T = 0.95. The variance of the EPR
state is V = 20, the excess noise is ε = 0.01, and the reconciliation
efficiency is β = 0.95.
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FIG. 8. (a) The secret key rates of the QC-CVQKD system
(dashed-dotted lines and dotted lines) as a function of the transmis-
sion distance for the BSQC cases (T1 = T2 = T and m = n ∈ {0, 1})
(dashed-dotted line) and the SSQC cases (T1 = 1, T2 = T , and n ∈
{0, 1}) (dotted line) for the optimal choice of T . (b) The secret key
rates of the QC-CVQKD system with the optimal T . The variance
of the EPR state is V = 20, the excess noise is ε = 0.01, and the
reconciliation efficiency is β = 0.95.

range. To be specific, the proposed system of using the
zero-photon BSQC (blue dashed-dotted line) has the longer
transmission distance when compared with the zero-photon
SSQC case (red dotted line). Whereas for the single-photon
QC-CVQKD system, the BSQC (green dashed-dotted line) in
terms of the maximum transmission distance is better than the
SSQC case (yellow dotted line). The reason may be that, for
the single-photon BSQC, adding the extra model of quantum
catalysis Ôm before Alice takes heterodyne detection can be
regarded as the generation of trusted noise thereby resulting
in the diminution of the Holevo bound SG(B:E ). However,
for the two-photon QC-CVQKD system, the BSQC (cyan
dashed-dotted line) and SSQC (orange dotted line) are worse
than the original one, resulted from the fact that the more
photons are catalyzed, the higher the non-Gaussianity thereby
making the more noise for the covariance matrix [42,43]. In
addition, within the shortening distance, the secret key of

FIG. 9. The maximal tolerable excess noise of the QC-CVQKD
system (dashed-dotted lines and dotted lines) as a function of the
transmission distance for BSQC cases (T1 = T2 = T and m = n ∈
{0, 1}) (dashed-dotted line) and SSQC cases (T1 = 1, T2 = T , and
n ∈ {0, 1}) (dotted line) for the optimal choice of T . The variance
of the EPR state is V = 20, and the reconciliation efficiency is
β = 0.95.

the QC-CVQKD system is worse than that of the original
system because of the limitation of the success probability of
quantum catalysis. As a result, for a given large transmittance
T = 0.95, the QC-CVQKD system of using the zero-photon
and single-photon quantum catalyses can lengthen the max-
imal transmission distance apart from the two-photon QC-
CVQKD system.

Since it is so, for the optimal choice of T , we obtain the
maximal secret key rate of the proposed system with the zero-
photon and single-photon quantum catalyses. In Fig. 8, we
show the maximal secret key rate as a function of transmission
distance for m = n ∈ {0, 1} and n ∈ {0, 1} when compared
with the original protocol (black solid line). In Fig. 8(b),
it is a case of the optimal T that achieves the maximal
secret key rate. We find that, for the long-distance range, the
zero-photon and single-photon QC-CVQKD systems at the
optimal transmittance range (0.86 � T � 1) perform better
than the original system in terms of both secret key rate and
transmission distance. It indicates that the quantum catalysis
can be used for improving the performance of CVQKD. For
the single-photon QC-CVQKD system (green dashed-dotted
line and yellow dotted line) at the long transmission distance,
the range of the optimal T is approximately 0.978 � T � 1 in
which there does exist a high success probability for single-
photon quantum catalysis [see Fig. 6(a)]. However, for the
short-distance range, even if for the optimal choice of T , the
secret key rate of the QC-CVQKD system is similar to that of
the original system because for T1 = T2 = 1 of the untrusted
party’s BSI and BSII, there is no quantum catalysis effect
resulting from the CVQKD system.

Additionally, the other factor that has an effect on the QC-
CVQKD system is the tolerable excess noise. In Fig. 9, we
illustrate the tolerable excess noise as a function of transmis-
sion distance for the optimal choice of T . Analogous to Fig. 8,
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FIG. 10. (a) The maximal secret key rate for ε = 0.01 and
(b) the maximal tolerable excess noise of the QC-CVQKD system
(dashed-dotted lines and dotted lines) and the CVQKD with the
single-photon subtraction (magenta solid line) as a function of the
transmission distance for the BSQC cases (T1 = T2 = T and m =
n = 0, 1) (dashed-dotted line) and SSQC cases (T1 = 1, T2 = T , and
n = 0, 1) (dotted line) for the optimal choice of T . The variance
of the EPR state is V = 20, and the reconciliation efficiency is
β = 0.95.

at the long-distance range, the QC-CVQKD system with the
zero-photon and single-photon quantum catalyses exceed the
original system with respect to the maximal tolerable excess
noise for remote users. More specifically, the zero-photon QC-
CVQKD system (blue dashed-dotted line and red dotted line)
presents the best performance since the maximal tolerable
excess noise approaches about 0.0292 at the transmission
distance of 300 km. Besides, at the transmission distance
of 300 km, for the single-photon BSQC (i.e., m = n = 1)
(green dashed-dotted line) and SSQC (i.e., n = 1) (yellow
dotted line), the maximal tolerable excess noises can approach
about 0.0261 and 0.0185, respectively. There, results indicate
that, when the quantum channel has less noise (ε ∼ 0.0185),
the zero-photon and single-photon quantum catalyses can be
applied to lengthen the maximal transmission distance up to

FIG. 11. The schematic of the Gaussian modulation CVQKD
scheme with single-photon subtraction.

hundreds of kilometers. In addition, we find that, from
Figs. 8(a) and 9, at the long-distance range, for the single-
photon QC-CVQKD schemes, the BSQC case (green dashed-
dotted line) performs better than the SSQC case (yellow
dotted line). It indicates that the single-photon QC-CVQKD
system by adding the extra model of quantum catalysis Ôm

in mode A may be useful for improving the performance of
the CVQKD protocol when compared with the SSQC Ôn in
mode B.

Interestingly, in Ref. [11], it was pointed out that, for
the photon-subtraction-involved CVQKD system, the single-
photon-subtraction operation can usually improve the perfor-
mance of the related system. Therefore, in order to make
comparisons of the QC-CVQKD and the SPS-CVQKD, here
we give the schematic of the SPS-CVQKD system in Fig. 11.
We consider the asymptotic secret key rate Kasy of reverse
reconciliation under collective attack with the assistant of the
IWOP technique [the more detailed calculations can be seen in
Appendix C]. To display the effect of quantum catalysis on the
performance of CVQKD, we plot the secret key rate and the
tolerable excess noise of the CVQKD system involving quan-
tum catalysis and single-photon subtraction as a function of
transmission distance for photon-catalyzed numbers m = n ∈
{0, 1} and n ∈ {0, 1} as shown in Figs. 10(a) and 10(b), respec-
tively. It is found that the performance of the SPS-CVQKD
system (magenta solid line) in terms of the maximal secret
key rate and the maximal tolerable excess noise is outper-
formed by the QC-CVQKD system at the long transmission
distance range. The reason may be that the success probability
for single-photon subtraction is lower than that for quantum
catalysis at the optimal transmittance T range [see Fig. 8(b)].
It implies that the former loses more information than the
latter in the process of distilling a common secret key. Without
loss of generality, we assume that the minimal secret key rate
is confined to above 10−6 bits per pulse. For the single-photon
QC-CVQKD system (green dashed-dotted line and yellow
dotted line), for the optimal choice of the transmittance T of
the untrusted party’s beam splitters, the maximal transmission
distances is more than 240 km. Whereas for the SPS-CVQKD
system, the maximal transmission distance is approximately
218 km because its success probability is limited to below
0.25 [magenta surface in Fig. 6(a)]. These comparison results
show that the performance of the QC-CVQKD system using
zero-photon and single-photon quantum catalyses performs
better than the SPS-CVQKD system when optimized over the
transmittance T .

Attractively, from Figs. 7, 8(a), and 10(a), we also consider
the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound that
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stands for the fundamental rate-loss scaling (secret key capac-
ity) [48]. By comparison, it is found that, for a given transmit-
tance T = 0.95, the performance of the QC-CVQKD system
using the zero-photon BSQC (i.e., m = n = 0) is closer to
the PLOB bound than that of the original protocol when
the transmission distance reaches longer than 57.6851 km.
Whereas for the optimal choice of the transmittance T , we can
easily see that our proposed QC-CVQKD system involving
the zero-photon and single-photon quantum catalyses is closer
to the PLOB bound when comparing with the SPS-CVQKD.
However, both of them are unable to exceed the PLOB bound
at any transmission distance. Therefore, in order to beat the
PLOB bound that is the ultimate limit of repeaterless point-to-
point communication, we can design the one-way continuous-
variable measurement-device-independent system acting as
an active repeater.

IV. CONCLUSION

We have suggested the effect of quantum catalysis on
the performance of the CVQKD system by using the IWOP
technique. From the equivalent operator of quantum catalysis,
the quantum catalysis that is a non-Gaussian operation, in
essence, can be used for improving the CVQKD system.
Different from the traditional TMSV, the entanglement of the
resulting state using quantum catalysis can be improved sig-
nificantly after optimizing the transmittance T of the untrusted
party’s beam splitters, and the success probability for quantum
catalysis in high transmittance T performs better than the
single-photon-subtraction case especially for the zero-photon
quantum catalysis. Taking into account the Gaussian opti-
mality, we derive the lower bound of the asymptotic secret
key rate of the QC-CVQKD for reverse reconciliation against
the collective attack. Numerical simulations show that, when
comparing with the SPS-CVQKD system, the QC-CVQKD
system has the advantage of lengthening the maximal trans-
mission distance with the raised secret key rates. For all the
QC-CVQKD systems, the zero-photon quantum catalysis has
the best performance. Whereas for the QC-CVQKD system
using single-photon quantum catalysis, the BSQC performs
better than the SSQC due to the fact that adding the extra
model of quantum catalysis Ôm is useful for improving the
performance of the CVQKD system. We make a comparison
of the CVQKD systems involving quantum catalysis and
single-photon subtraction. It is found that the QC-CVQKD
system using the zero-photon and single-photon quantum
catalyses is superior to the single-photon-subtraction case in
terms of the maximal transmission distance.

ACKNOWLEDGMENTS

We would like to thank Professor S. Pirandola for his
helpful suggestion. This work was supported by the National
Natural Science Foundation of China (Grants No. 61572529
and No. 61871407).

APPENDIX A: DERIVATION OF THE
SUCCESS PROBABILITY Pd

In order to derive the analytical expression of the success
probability Pd shown in Eq. (10), we rewrite the state in

Eq. (9) as the density operator ρ = |ψ〉〈ψ |, i.e.,

ρA1B1 = 1

Pd
ÔmÔn|TMSV〉〈TMSV|Ô†

nÔ†
m

= W 2
0

Pd
	m,n� exp[a†b†W ]00〉〈00| exp[abW1], (A1)

where we have used the equivalent operators of the photon-
catalysis operations in Eq. (4), eζa†aa†e−ζa†a = a†eζ and set

W = λ(T2 − γ )(T1 − τ )√
T1T2(1 − γ )(1 − τ )

,

W0 =
√

T m
1 T n

2 (1 − λ2)

n!m!
,

W1 = λ(T2 − γ1)(T1 − τ1)√
T1T2(1 − γ1)(1 − τ1)

,

� = 1

1 − τ

1

1 − γ

1

1 − τ1

1

1 − γ1
,

	m,n = ∂m

∂τm

∂n

∂γ n

∂m

∂τm
1

∂n

∂γ n
1

{· · · }
∣∣∣∣
τ=γ=τ1=γ1=0

. (A2)

Then, according to the completeness relation of coherent-state
representation

∫
d2z|z〉〈z|/π = 1, the integrational formula,∫

d2z

π
exp(ζ |z|2 + ξz + ηz∗ + f z2 + gz∗2)

= 1√
ζ 2 − 4 f g

exp

[−ζ ξη + ξ 2g + η2 f

ζ 2 − 4 f g

]
, (A3)

and the completeness of the resulted state Tr(ρA1B1 ) = 1, we
can obtain the success probability Pd given by

Pd = W 2
0 	m,n�〈00| exp[abW1] exp[a†b†W ]00〉

= W 2
0 	m,n�

∫
d2z

π2

∫
d2β

π2
exp[−|z|2 − |β|2 + zβW1

+ z∗β∗W ]

= W 2
0 	m,n

{
�

1 − W1W

}
. (A4)

APPENDIX B: CALCULATION OF THE ASYMPTOTIC
SECRET KEY RATE

Here, we present the calculation of the asymptotic secret
key rates of the QC-CVQKD system where Alice performs
heterodyne detection and Bob performs homodyne detection.
As mentioned above, state |ψ〉A1B1 belongs to a new kind of
non-Gaussian state, thus we cannot directly use the results
of the conventional Gaussian CVQKD to calculate its secret
key rate. Fortunately, thanks to the extremity of the Gaussian
quantum states that the rendering secret key rate of the non-
Gaussian state |ψ〉A1B1 is no less than that of a Gaussian state
|ψ〉G

A1B1
with the same covariance matrix �A1B1 = �G

A1B1
, we

obtain K (|ψ〉A1B1 ) � K (|ψ〉G
A1B1

) [16,18]. For reverse recon-
ciliation, therefore, the lower bound of the asymptotic secret
key rate under optimal collective attack can be given by

K̃R = Pd{βIG(A:B) − SG(B:E )}, (B1)
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where β denotes the reconciliation efficiency, IG(A:B) denotes
Alice and Bob’s mutual information, and SG(B:E ) denotes the
Holevo bound, which is defined as the maximum information
on Bob’s final key available to Eve.

In order to derive the analytical expression of the asymp-
totic secret key rate K (|ψ〉G

A1B1
), we consider the covariance

matrix �A1B1 of the resulted state |ψ〉A1B1 given by

�A1B1 =
(

XAII ZABσz

ZABσz YBII

)
, (B2)

where II = diag(1, 1), σz = diag(1,−1), and XA, YB, and
ZAB can be derived by using the IWOP technique as follows:
It is first required to derive the average values, such as
〈a†a〉, 〈b†b〉, and 〈ab〉. According to Eqs. (A1) and (A3), thus,
it is straightforward to get

〈a†a〉 = Tr[ρA1B1 (aa† − 1)]

= W 2
0

Pd
	m,n�

∫
d2α

π2

∫
d2β

π2
αα∗ exp[−|α|2 − |β|2

+αβW1 + α∗β∗W ] − 1

= W 2
0

Pd
	m,n

{
�

(1 − W1W )2

}
− 1, (B3)

〈b†b〉 = Tr[ρA1B1 (bb† − 1)]

= W 2
0

Pd
	m,n�

∫
d2α

π2

∫
d2β

π2
ββ∗ exp[−|α|2 − |β|2

+αβW1 + α∗β∗W ] − 1

= W 2
0

Pd
	m,n

{
�

(1 − W1W )2

}
− 1,

= 〈a†a〉, (B4)

〈ab〉 = Tr[ρA1B1 ab]

= W 2
0

Pd
	m,n�

∫
d2α

π2

∫
d2β

π2
αβ exp[−|α|2 − |β|2

+αβW1 + α∗β∗W ]

= W 2
0

Pd
	m,n

{
�W

(1 − W1W )2

}
. (B5)

Note that 〈ab〉 = 〈a†b†〉†. By combining Eqs. (B3)– (B5),
therefore, we can directly obtain the elements of covariance
matrix �N

A1B1
as the following form:

XA = Tr[ρA1B1 (1 + 2a†a)]

= 2W 2
0

Pd
	m,n

{
�

(1 − W1W )2

}
− 1,

YB = Tr[ρA1B1 (1 + 2b†b)]

= XA,

ZAB = Tr[ρA1B1 (ab + a†b†)]

= 2W 2
0

Pd
	m,n

{
�W

(1 − W1W )2

}
. (B6)

After passing the untrusted quantum channel, which is
characterized by the transmission efficiency Tc and the excess
noise ε, the covariance matrix �G

A1B2
reads

�G
A1B2

=
(

XAII
√

TcZABσz√
TcZABσz Tc(XA + ξ )II

)
, (B7)

where ξ = (1 − Tc)/Tc + ε denotes the channel-added noise
referred to as the input of the Gaussian channel. The mutual
information between Alice and Bob now can be expressed as

IG(A:B) = 1

2
log2

VA1

VA1|B2

= log2

{√
(XA + 1)(XA + ξ )

(XA + 1)(XA + ξ ) − Z2
AB

}
. (B8)

Furthermore, Eve’s accessible quantum information on Bob’s
measurement can be calculated by assuming Eve can pu-
rify the whole system SG(B:E ) = S(E ) − S(E |B) = S(AB) −
S(A|B). For the Gaussian modulation, the first term S(AB) is
a function of the symplectic eigenvalues λ1,2 of �G

A1B2
, which

is given by

S(AB) = G[(λ1 − 1)/2] + G[(λ2 − 1)/2], (B9)

where the Von Neumann entropy G[x] is

G[x] = (x + 1) log2(x + 1) − x log2 x, (B10)

and

λ2
1,2 = 1

2 [� ±
√

�2 − 4D2], (B11)

with the notation,

� = X 2
A + T 2

c (XA + ξ )2 − 2TcZ2
AB,

D = XATc(XA + ξ ) − TcZ2
AB. (B12)

Moreover, the second term S(A|B) = G[(λ3 − 1)/2] is a
function of the symplectic eigenvalue λ3 of the covariance
matrix �b

A of Alice’s mode after Bob performs homodyne
detection where the square of the symplectic eigenvalue
λ3 is

λ2
3 = XA

[
XA − Z2

AB

XA + ξ

]
. (B13)

As a result, the asymptotic secret key rate can be written as

K̃R = Pd{βIG(A:B) − S(AB) + S(A|B)}. (B14)

APPENDIX C: THE SECRET KEY RATE OF THE
SINGLE-PHOTON-SUBTRACTION EB-CVQKD
PROTOCOL UNDER COLLECTIVE ATTACK

In order to make a comparison of the proposed long-
distance CVQKD scheme via quantum catalysis, here, we
review the CVQKD protocol of applying single-photon sub-
traction controlled by an untrusted party Charlie and then as-
sume that these two schemes have the same quantum channel
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controlled by Eve. As can be seen from Fig. 11, Alice gener-
ates a two-mode squeezed vacuum state |TMSV〉AB (EPR) and
performs heterodyne detection of one-half of |TMSV〉AB. The
other half of |TMSV〉AB after operating single-photon subtrac-
tion is sent to Bob through the same quantum channel marked
by transmission efficiency Tc and excess noise ε. Afterwards,
Bob performs homodyne detection of the received state and
then informs Alice about which observable he measured so
that two correlated variables, which are shared by both Alice
and Bob, can be used to exact a common secret key.

Indeed, starting from the concept of quantum operators,
the single-photon-subtraction operation can be seen as an
equivalent operator � which is given by

� = C〈1|B(T )|0〉C = 1 − T

T
b exp[b†b ln

√
T ]. (C1)

Thus, the photon-subtraction state |〉AB1 after operating
single-photon subtraction is expressed as

|〉AB1 = 1√
P1

�|TMSV〉AB = ÃB̃√
P1

exp[̃Ba†b†]a†|00〉AB,

(C2)

where

Ã =
√

(1 − λ2)(1 − T )

T
,

B̃ = λ
√

T , (C3)

and

P1 = Ã2B̃2

(1 − B̃2)2
(C4)

is the success probability of implementing the single-photon-
subtraction operation. After the photon-subtraction state
|〉AB1 goes through the quantum channel, similar to Eq. (B7),
we also can obtain the covariance matrix �1 as the following
form:

�1 =
(

X II
√

TcZσz√
TcZσz Tc(Y + ξ )II

)
, (C5)

where ξ = (1 − Tc)/Tc + ε and

X = 4Ã2B̃2

P1(1 − B̃2)3
− 1,

Y = 2Ã2B̃2(1 + B̃2)

P1(1 − B̃2)3
− 1,

Z = 4Ã2B̃3

P1(1 − B̃2)3
. (C6)

Now, let us consider the calculation of the asymptotic
secret key rate of the single-photon-subtraction EB-CVQKD
protocol in the context of the Gaussian optimality theorem.
Thus, the lower bound of the asymptotic secret key rate Kasy

of reverse reconciliation under collective attack is

Kasy = P1{βIHom(A:B) − SHom(B:E )}, (C7)

where P1 has been derived in Eq. (C4), β is the efficiency
for reverse reconciliation, and the superscript Hom represents
Bob taking homodyne detection. Additionally, the mutual
information between Alice and Bob is given by

IHom(A:B) = log2

{√
(X + 1)(Y + ξ )

(X + 1)(Y + ξ ) − Z2

}
. (C8)

Under the assumption that Eve is able to purify the whole
system SG(B:E ) = S(E ) − S(E |B) = S(AB) − S(A|B), we
can directly obtain the symplectic eigenvalues λ̃1,2 of covari-
ance matrix �1 as the following form:

λ̃2
1,2 = 1

2 [C̃ ±
√

C̃2 − 4D̃2], (C9)

with

C̃ = X 2 + T 2
c (Y + ξ )2 − 2TcZ2,

D̃ = XTc(Y + ξ ) − TcZ2, (C10)

and

λ̃2
3 = X

[
X − Z2

Y + ξ

]
. (C11)

Furthermore, S(AB) = G[(̃λ1 − 1)/2] + G[(̃λ2 − 1)/2] and
S(A|B) = G[(̃λ3 − 1)/2] where the Von Neumann entropy
G[x] is defined in Eq. (B10).
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