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Parameter estimation of atmospheric continuous-variable quantum key distribution
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Atmospheric effects are the chief threats to the quantum properties of propagating quantum signals and may
degrade the performance of quantum key distribution seriously. As one of the most important parts of continuous-
variable quantum key distribution (CVQKD), a parameter estimation method has not been specially proposed in
an atmospheric channel, and usually the security analysis is based on the assumption that the relevant parameters,
especially the excess noise, have been previously obtained. Here we propose a parameter estimation method for
Gaussian modulated coherent state continuous-variable quantum key distribution over the atmospheric link, and
we investigate the impact of the atmospheric channel on the estimated values of the parameters. Based on this
method, we study theoretically the effect of link fluctuations on the achievable secret key rate of CVQKD under
different practical transmitted conditions. The results show that this method is unified with the physical model
and can effectively resist entanglement-distillation attack. The proposed method fills in the blank of parameter
estimation for implementation of practical atmospheric CVQKD.

DOI: 10.1103/PhysRevA.99.032326

I. INTRODUCTION

Discrete-variable quantum key distribution (DVQKD) [1]
and continuous-variable quantum key distribution (CVQKD)
[2,3] are two important technologies to realize quantum key
distribution (QKD), and optical fiber and free space are com-
mon channel implementations for QKD. Compared with opti-
cal fiber, free space provides more flexibility in infrastructure
construction and easier links to moving objects. Currently,
free-space QKD has become a hot research issue and has
been developing rapidly with propagation distance ranging
from short-distance intracity [4,5] to long-distance ground-
based [6–8], and satellite-mediated [9–13]. Even though QKD
between satellite and ground has been initially achieved, these
experiments based on discrete quantum variables and single-
photon threshold detectors involve spatial, spectral, and/or
temporal filtering in order to reduce background noise [14].

As is known, CVQKD under optical fiber can be compati-
ble with fully developed optical telecommunication technolo-
gies, which have been extensively studied recently [15–17].
Moreover, CVQKD has the ability to resist disturbance of
background noise and has higher channel capacity, and some
progress [18–22] has already been achieved in free space,
but more needs to be done. What is strikingly noticeable
is that the elliptical beam model established for transmitted
quantum light through the atmospheric channel [20,21] and
the study of the entanglement of Gaussian states and its
applicability to quantum key distribution over fading channels
[23] verify the feasibility of realizing CVQKD in free space.
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The atmospheric effects on continuous-variable quantum key
distribution has been subsequently investigated [22], which
lays the foundation for the further study and implementation
of this topic. These experiments and theoretical investiga-
tions have shown that the free space is a reliable medium
for continuous-variable quantum communication even if the
quantum signal is affected by atmospheric effects.

However, the performance analysis of a free-space channel
is based on the condition that the relevant parameters are
known. It is obvious that these assumptions about the proof
of the security analysis cannot be justified in practical im-
plementations. Actually, parameter estimation is a vital step
in CVQKD, which helps us to evaluate the practical security
of the key distribution and obtain relevant parameters for
further postprocessing the procedure [24,25]. The principles
of quantum mechanics impose an upper bound on the infor-
mation that has possibly leaked to a potential eavesdropper in
the case that the quantum channel is estimated by legitimate
communication parties [24–26]. The study of parameter esti-
mation method for practical CVQKD over free-space channel
is almost nonexistent at the moment. Compared with a fiber
channel, the transmittance of a free-space channel fluctuates
randomly in time [20,27], therefore, the parameter estimation
method under fiber cannot be directly applied to free space.

The purpose of this paper is to study the parame-
ter estimation for free-space Gaussian modulated coherent
state continuous-variable quantum key distribution (GMCS
CVQKD) and verify its feasibility and availability. In this
paper, we first propose a parameter estimation method for
GMCS CVQKD over an atmospheric link based on the theory
of a maximum-likelihood estimate. Our deduction shows that
the proposed method coincides well with a physical model.
Then we observe that the estimated values of parameters
which have an appreciable impact on the secret key rate are
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affected by various atmospheric effects, which mainly include
atmospheric attenuation, turbulence, and other constraints,
and simulation conclusions indicate that the proposed method
from the data level tallies with the consequence of previous
theoretical analysis of atmospheric effects on CVQKD from
a physical level. This proves the feasibility and rationality of
the proposed method. Moreover, we discover that phase vari-
ations caused by atmospheric turbulence is another important
factor affecting the performance of CVQKD besides beam
wandering and beam scintillation. Furthermore, the analysis
demonstrates that the proposed method can effectively resist
the previously proposed entanglement-distillation attack.

The paper is organized as follows. In Sec. II we deduce
the parameter estimation method of GMCS CVQKD over the
atmospheric channel. In Sec. III with the results of Sec. II, we
analyze how atmospheric effects affect the channel parameter
estimation of GMCS CVQKD. Then we perform achievable
secret key rate analysis based on parameter estimation under
different practical transmitted conditions and security analysis
of an entanglement-distillation attack in Sec. IV. A summary
and discussion are given in Sec. V.

II. PARAMETER ESTIMATION OF THE
ATMOSPHERIC GMCS CVQKD

For common GMCS CVQKD, the transmitter Alice usu-
ally modulates quadrature components of the light with Gaus-
sian modulation, and the receiver Bob measures a weak
quantum signal with the help of strong local oscillator (LO) in
a shot-noise-limited homodyne or heterodyne detector [2,3].
CVQKD generally consists of two segments, a quantum
information transmission phase, where quantum signals are
transmitted through a quantum channel and then measured by
a homodyne-heterodyne detector, and a classical information
postprocessing phase, where local data are applied for param-
eter estimation to evaluate system security, and the rest is used
to obtain the final secret key through reverse reconciliation
[28] and privacy amplification [29].

Following a brief review of the parameter estimation of
fiber-based GMCS CVQKD in Sec. II A, we move on to
describe in detail the proposed parameter estimation of an
atmospheric channel in Sec. II B.

A. Optical fiber GMCS CVQKD

In a fiber channel, parameters required to compute a secret
key rate are estimated through the sampling of m = N − n
pairs of correlated variables {(xi, yi )|i = 1, 2, . . . , m}, where
N is the total number of transmitted quantum signals and
variables of Alice and Bob are represented as {xi}i=1,2,...,N and
{yi}i=1,2,...,N , and n is the number of signals used for the key
establishment. Usually, some parameters are acquired ahead
of time, and others must be estimated in real time in the
process of parameter estimation. Since detector efficiency η

and electrical noise vel are calibrated in advance, Bob can
obtain {y0i}i=1,2,...,N ′ via forcing a quantum channel with zero
transmission. So the set of Bob’s variables {y0i}i=1,2,...,N ′ can
be used to measure the noise,

y0 = z0, (1)
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FIG. 1. The prepare-and-measure (P&M) description of
CVQKD over the atmospheric channel. RNG, random number
generator; PC, polarization controller; BS, beam splitter; HD,
homodyne detection or heterodyne detection; T , atmospheric
transmittance; ε, excess noise; the imperfection of the detector is
described by the detection efficiency η and the electronic noise vel

contained in variance v.

where z0 is a Gaussian noise with variance σ 2
0 = N0(1 + vel )

and mean zero. Thus, Alice’s and Bob’s correlated variables
{(xi, yi ) | i = 1, 2, . . . , m} are linked through the following
normal linear model [25]:

y = tx + z, (2)

where t = √
ηT ∈ R, and z is a Gaussian noise with variance

σ 2 = N0(1 + ηT ε + vel ) and mean zero, where N0 is the shot
noise variance. Furthermore, the random variable x is a normal
random variable with variance VA in the case of Gaussian
modulation. Similarly to the analysis in Ref. [24], maximum-
likelihood estimators V̂X , t̂, σ̂ 2, and σ̂ 2

0 are known for the
normal linear mode:

t̂ =
∑m

i=1 xiyi∑m
i=1 x2

i

, σ̂ 2 = 1

m

m∑
i=1

(yi − t̂ xi )
2, (3)

V̂X = 1

m

m∑
i=1

x2
i , σ̂ 2

0 = 1

N ′

N ′∑
i=1

y2
0i
. (4)

Consequently, through the above parameter estimation pro-
cess, modulation variance VA, channel transmittance T , excess
noise ε, and total noise χtot can be obtained as follows:

T̂ = t̂2

η
, ε̂ = σ̂ 2 − σ̂ 2

0

t̂2N0
, (5)

V̂A = V̂X

N0
, χ̂tot = σ̂ 2

t̂2
− 1. (6)

B. Atmospheric GMCS CVQKD

We first consider the propagation of quantum signals in
the atmosphere. The atmosphere channel model of GMCS
CVQKD over free space is illustrated in Fig. 1, and the
quantum transmission of the communication between Alice
and Bob is described as follows:

Alice prepares coherent state |XA + iPA〉 through modulating
XA and PA with Gaussian random numbers of zero mean and
variance VAN0, and transmits it to Bob through an atmosphere
channel which is characterized by a distribution of transmit-
tance {Ti} with probabilities {pTi

} and corresponding excess
noise {εi} with probabilities {p

εi
}, resulting in a noise variance

1 + 〈T 〉ε at the input of Bob. The total channel-added noise
that is expressed in shot noise units referred to as channel
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input is defined as χline = 1+〈T 〉ε
〈T 〉 − 1 = 1

〈T 〉 − 1 + ε, where

〈T 〉 = ∑M
i pTi

Ti and ε = ∑M
i p

εi
εi.

Bob employs a homodyne detector to measure either one of
the two quadratures randomly or adopts a heterodyne detector
to measure both quadratures simultaneously to obtain the
secret key. The detection-added noise referred to Bob’s input
can be defined as χh and is expressed by χhom = (1−η)+vel

η

and χhet = (1−η)+2vel
η

for homodyne and heterodyne detection,
respectively. Therefore, the total noise referred to the channel
input can then be expressed as χtot = χline + χh

〈T 〉 , so that Bob’s
measured variance VB = η〈T 〉(V + χtot ).

Then, with regard to parameter estimation in classical
information postprocessing under an atmosphere channel, it is
sufficient to estimate the covariance matrix of the state shared
by Alice and Bob, including the variance for Alice and Bob,
respectively, 〈x2〉 and 〈y2〉 and 〈y2

0〉, and the covariance 〈xy〉
between Alice and Bob:

〈x2〉 = VA, 〈y2〉 = VB,

〈xy〉 =
√

η〈T 〉VA,〈
y2

0

〉 = VB0 = N0(1 + vel ). (7)

Unlike a fiber channel, the transmittance of free space varies
randomly due to the random characteristics of an atmospheric
channel. Thus, parameter V̂A can be derived from Eq. (6),
but, on the other hand, parameters χ̂tot, ε̂, and ˆ〈T 〉 cannot be
directly calculated by Eqs. (5) and (6). The parameters χ̂tot, ε̂

are all related to ˆ〈T 〉, so next we focus on the estimation
method of parameter ˆ〈T 〉.

1. Bayesian parameter estimation

Influenced by atmospheric effects, channel transmittance
varies randomly, that is to say, it can be regarded as a random
variable satisfying a certain distribution. The purpose of pa-
rameter estimation is to obtain the variation of transmittance
and other parameters in a quantum channel. The idea of
Bayesian parameter estimation accords with this process, that
is, the prior distribution of parameters is constructed by histor-
ical empirical data, and then the prior distribution is adjusted
by sampling information to obtain the posterior distribution of
parameters. In the posterior distribution, the estimated values
of parameters are obtained according to some principle.

In Bayesian estimation, all uncertainty about parame-
ter 〈T 〉 is quantified by probability distributions. Prior pa-
rameter distribution p(T ) is updated by incoming variables
{yi}i=1,2,...,m to yield posterior distributions p(T |y). The pos-
terior distributions p(T |y) quantify our uncertainty about the
parameter 〈T 〉 after having seen the variables {yi}i=1,2,...,N :

p(T |y) = p(y|T )p(T )

p(y)

= p(y|T )p(T )∫
p(y|T )p(T ) dT

. (8)

The same as for the quantum signal, LO is also inevitably
affected by an atmospheric effect, resulting in fluctuation
of variance of shot noise at the receiver Bob. Similarly,
the posterior probability of shot noise under an atmospheric

effect is

p(N0|y) = p(y|N0)p(N0)

p(y)
= p(y|N0)p(N0)∫

p(y|N0)p(N0) dN0
. (9)

Therefore, the Bayesian estimated values of parameters
〈T̂ 〉 and N̂ are given by

ˆ〈T 〉 =
∫ 1

0
p(T |y)T dT,

N̂ ′
0 =

∫ N0

0
p(N0|y)N0 dN0. (10)

Furthermore, we can obtain the estimated values of other
parameters:

ε̂ = V̂B − V̂B0

η ˆ〈T 〉 − V̂A

=
N0
m

∑m
i=1 y2

i − N ′
0

N ′
∑N ′

i=1 y2
0i

η ˆ〈T 〉N̂ ′
0N0

− V̂A,

χ̂tot = V̂B

η ˆ〈T 〉 − V̂ =
1
m

∑m
i=1 y2

i

η ˆ〈T 〉 − (V̂A + 1). (11)

It is noteworthy that when using the Bayesian method,
we must know the prior probability distribution of channel
transmittance p(T ) before the information is transmitted to an
atmospheric channel and the conditional probability p(y|T )
after information is transmitted to Bob through atmospheric
channel. Then, when Bob completes the measurement of
quadratures, he can obtain the transmittance through Eqs. (8)
and (10). Therefore, the acquisition of prior probability of
the channel transmittance p(T ) and conditional probability
p(y|T ) in an atmospheric channel is a major obstacle to
the practical application of Bayesian parameter estimation
method. Moreover, this method inevitably increases experi-
mental complexity and affects the data postprocessing process
thereafter.

Compared with the Bayesian method, the maximum-
likelihood method does not need to know the prior probability
of relevant parameters, and the latter has lower implementa-
tion complexity than the former. On the other hand, the typical
rate of atmospheric channel fluctuations is of the order of kHz,
while the modulation and detection rate is typically of the
order of several MHz, i.e., at least thousands of signal or probe
states can be transmitted during the stability time of the fading
atmospheric channel [23]. In addition, the Fried parameter,
which is employed for describing the quality of the optical
wavefront through the atmosphere, and the isoplanatic angle,
which is the maximum angle that light can enter the receiving
aperture, imply that the quantum signal has passed through
the same turbulence [30]. Therefore, we delineate a relatively
stable transmittance as a subchannel of free space, and we
next consider the maximum-likelihood parameter estimation
under the standard CVQKD assumption [23] that the trusted
parties are able to estimate the sub-channel transmittance Ti

and check its stability during the transmission of quantum
signals, which contributes to the secure key.
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2. Maximum-likelihood parameter estimation

We estimate the transmission Ti and excess noise εi of the
ith subchannel (i ∈ {1, 2, . . . , M}, and M is the number of
subchannels) from the Gaussian variables that Alice modu-
lates X and Bob measures Y . Here we take into account that

yi = tixi + zi, (12)

where ti = √
ηTi ∈ R, and zi is a Gaussian noise with variance

σ 2
i = N0i(1 + η Tiεi + vel ) and mean zero, and N0i is the shot

noise of the ith subchannel obtained by real-time shot noise
measurement [31]:

X = A cos ϕ,

Y = √
ηAαA cos(ϕ + φ) + AN , (13)

where A and ϕ represent the amplitude and phase of the
modulation coherent state without the effect of an atmospheric
link, respectively, Aα and φ represent the amplitude fluctua-
tions and phase variations introduced by an atmospheric link,
respectively, and AN is the amplitude caused by the noise.
Without considering the finite-size effect of the parameter
estimation block size mi, we employ Eq. (13) to modify t̂i and
σ̂ 2

i in Eq. (12):

t̂i =
1

mi

∑mi
j=1 x jy j

1
mi

∑mi
j=1 x2

j

= E [XY ]

E [X 2]

= E [
√

ηAαA2 cos ϕ cos(ϕ + φ)] + E [AN A cos ϕ]

E [A2 cos2 ϕ]
, (14)

σ̂ 2
i = 1

mi

mi∑
j=1

(y j − t̂ix j )
2 = E [(Y − t̂iX )2]

= ηE
[
A2

αA2 cos2(ϕ + φ)
]

+ E
[
A2

N

] − 2t̂iE [XY ] + t̂2
i E [X 2]. (15)

In Eqs. (14) and (15), considering that the mean value
of amplitude AN caused by noise E [AN ] = 0, the mean
value E [AN A cos ϕ] = E [AN ]E [A cos ϕ] can be ignored, and
E [A2

N ] = D[AN ] = N0i(1 + vel + ε̂it̂2
i ). In addition, the mean

value E [X 2] = E [A2 cos2 ϕ] = V̂X . Substituting with these
equations, we can simplify Eqs. (14) and (15) to

t̂i = E [
√

ηAαA2 cos ϕ cos(ϕ + φ)]

V̂X

= √
ηE [Aα cos φ] −

√
ηA2 sin 2ϕE [Aα sin φ]

2V̂X
. (16)

σ̂ 2
i = η

{
V̂X E

[
A2

α cos2 φ
] + E [A2 sin2 ϕ]E

[
A2

α sin2 φ
]

− E [A2 sin 2ϕ]E [(Aα cos φ)(Aα sin φ)]
}

−√
ηt̂i{2V̂X E [Aα cos φ] − E [A2 sin 2ϕ]E [Aα sin φ]}

+ E
[
A2

N

] + t̂2
i V̂X . (17)

Finally, we can get the estimated values of parameters:

ˆ〈T 〉 =
M∑
i

pTi
T̂i = 1

η

M∑
i

pit̂
2
i ,

ε̂ =
M∑
i

p
εi

N0σ̂
2
i − N0iVB0

ηT̂iN0iN0
,

χ̂tot =
∑M

i p
εi
σ̂ 2

i

η ˆ〈T 〉 − 1. (18)

Generally, the covariance matrix of a coherent state based
on the estimated modulation variance V̂A

γ̂AB =
(

V̂ I
√

V̂ 2 − 1σz√
V̂ 2 − 1σz V̂ I

)
(19)

after a subchannel with the estimated transmittance T̂i and
excess noise εi based on maximum-likelihood parameter es-
timation is given by

γ̂ i
AB1

=
(

V̂ I
√

T̂i

√
V̂ 2 − 1σz√

T̂i

√
V̂ 2 − 1σz (V̂ T̂i + 1 − T̂i + ε̂iT̂i )I

)
. (20)

So the overall state after an atmospheric channel is the mixture
of states after individual sub-channels, and the covariance ma-
trix of the resulting mixed state after an atmospheric channel
with the estimated transmittance {T̂i} and excess noise {ε̂i}
based on maximum-likelihood parameter estimation is given
by

γ̂AB1
=

(
V̂ I 〈

√
T̂ 〉

√
V̂ 2 − 1σz

〈
√

T̂ 〉
√

V̂ 2 − 1σz [ ˆ〈T 〉(V̂ + ε̂) + 1]I

)
, (21)

where V̂ = V̂A + 1, I = diag(1, 1) is the unity matrix and
σz = diag(1,−1) is the Pauli matrix.

We can derive the practical covariance matrix by introduc-
ing the estimated values 〈

√
T̂ 〉, ˆ〈T 〉 and ε̂ from Eq. (18) into

Eq. (21). It is simpler than the previous method of calculating
transmittance with the help of elliptic beam model [20]. In
addition, when deducing covariance matrix, it is generally
considered that excess noise is constant [23]. However, the
proposed method can get the corresponding excess noise εi of
each subchannel and then obtain the general excess noise dy-
namically over the whole channel, which is more systematic,
extensive, and comprehensive than the elliptic beam model.
Through the above analysis, the estimation results are very
consistent with the physical model [23] of CVQKD in an at-
mospheric channel. Therefore, this method provides a feasible
parameter estimation method for atmospheric CVQKD.

III. THE ATMOSPHERIC EFFECTS ON
PARAMETER ESTIMATION

Considering the influence of the atmosphere on the trans-
mission of an optical signal, the feasibility and availability
of the proposed method in practical implementations for
further experiments and applications of the free-space-based
CVQKD system need further investigation and demonstra-
tion. From the analysis of Sec. II B 2, the parameters t̂i
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and σ̂ 2
i depend on the amplitude fluctuations Aα and phase

variations φ introduced by an atmospheric link and other
relevant parameters. in this case, we analyze the atmospheric
effects on the estimated values of the parameters in detail.

A. Atmospheric attenuation channel

Absorption and scattering that are strongly wavelength
dependent mainly cause attenuation of the intensity of an
optical beam. The attenuation coefficient of atmosphere α(λ)
is defined as the sum of the absorption coefficient αabs(λ) and
scattering coefficient αsca (λ). The attenuation Aα (L) of the
intensity for horizontal path obeys the Lambert-Beer law [32],

Aα (L) =
√

e−α(λ)L, (22)

where the attenuation coefficient α(λ) consists of aerosol
absorption αaer

abs, molecular absorption αmol
abs , aerosol scattering

αaer
sca, and molecular scattering αmol

sca : α(λ) = αaer
abs + αmol

abs +
αaer

sca + αmol
sca . Here λ is the wavelength of optical beam, and

L is the horizontal propagation distance. For the slant path,
the attenuation Aα (H, θz ) of the intensity is given by

Aα (H, θz ) =
√

e[− ∫ H
0 sec θzα(λ,h) dh], (23)

where H is the height from the ground, and θz is the zenith an-
gle. The parameter ˆ〈T 〉 is determined by substituting Eqs. (22)
and (23) into Eqs. (16) and (5) for a horizontal path ˆ〈T 〉h and
slant path ˆ〈T 〉s, respectively, and reads

ˆ〈T 〉h =
M∑
i

piT̂i = 1

η

M∑
i

pti t̂
2
i = E2[Aα (L)] = e−α(λ)L,

ˆ〈T 〉s =
M∑
i

piT̂i = 1

η

M∑
i

pti t̂
2
i = E2[Aα (H, θz )]

= e[− ∫ H
0 sec θzα(λ,h) dh]. (24)

In addition, the expression of parameter σ̂ 2
a under an atmo-

spheric attenuation channel is given correspondingly by

σ̂ 2
a =

M∑
i

pεi

(
εit̂

2
i N0i + N0iσ̂

2
0

N0

)
. (25)

Since we consider the case of horizontal link propagation,
Eqs. (24) and (25) will be applied to conduct the analysis of
the achievable secret key rate based on parameter estimation
in Sec. IV.

B. Atmospheric turbulence channel

The most important factor limiting the performance of
free-space optical communication is atmospheric turbulence;
in general, large scales produce refractive effects and mostly
distort the phase of the propagating beam, whereas small
scales are mostly diffractive in nature and therefore distort the
amplitude of the beam [33,34], and the main effects resulting
from the atmospheric turbulent eddies are beam spreading,
beam wandering, and beam scintillation:

The beam wandering is caused by large-scale turbulent eddies
whose size is large compared with the beam width, which

a x

y
y

x
W

r

x

y

FIG. 2. Received beam profile through atmospheric channel
where the beam radius is W relative to the aperture radius a. The
beam centroid is displaced relative to the aperture center due to beam
wandering, and its position is given by r0. The beam cross section
of spatial distribution of the light intensity is introduced by the
scintillation effect, and the intensity from weak to strong corresponds
to the color from wathet blue to bright yellow.

means that the random deviation of the beam from its original
path causes time-varying power fades.

The beam scintillation is mainly caused by small-scale tur-
bulent eddies and is defined by fluctuations in the received
irradiance (intensity) within the beam cross section.

The influence of beam spreading is actually negligible
in the regime of weak turbulence and that in the region of
strong turbulence does not have an analytical formula [35].
Therefore, the fluctuation caused by beam spreading will not
be considered in the following analysis. Now we analyze the
joint impact of beam wandering and beam scintillation on the
parameter estimation of CVQKD.

1. The amplitude fluctuations

The propagation of a laser beam in atmospheric turbulence
is followed by a decrease of coherence, wavefront distortion,
and fluctuations of beam amplitude and phase. The inten-
sity profile of a transmitted beam which randomly displaces
from the receiver aperture due to beam wandering has an
irregular form (see Fig. 2). The fluctuations of the received
irradiance evidently depend on the instantaneous beam profile
and position of its centroid relative to the aperture center, and
the intensity fluctuations due to turbulent atmosphere can be
assumed to be a log-normal distribution in the regime of weak
fluctuations and gamma-gamma distribution in the regime of
medium-to-strong losses.

Under weak turbulence, the log-normal probability dis-
tribution of irradiance of a Gaussian-beam wave takes the
following form:

ρ(I (r, L))
LN

= 1√
2π I (r, L)σI (r, L)

× exp

{
−
[

ln(I (r, L)) + σ 2
I (r,L)

2

]2

2σ 2
I (r, L)

}
, (26)

On the other hand, the gamma-gamma probability dis-
tribution of irradiance of a Gaussian-beam wave under
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medium-to-strong turbulence is described by

ρ(I (r, L))
GG

= 2(αβ )
α+β

2

�(α)�(β )
I (r, L)

α+β

2 −1Kα−β [2
√

αβI (r, L)],

(27)

where r is a transverse vector, which describes the position
of the deflected beam centroid relative to the aperture center,
σ 2

I (r, L) is the scintillation index, �(·) is the gamma function,
Kα−β is the modified Bessel function of the second kind, α

is the effective number of large-scale cells of the scattering
process, and β is the effective number of small-scale cells.
Both α and β are related to the scintillation index (see the
Appendix for details).

2. The phase variations

With regard to phase variations, φ after modal compen-
sation introduced by atmospheric turbulence is generally
considered to obey the Gaussian phase variation with vari-
ance σ 2

φ :

ρφ (φ) = 1√
2πσφ

exp

(
− φ2

2σ 2
φ

)
. (28)

In this case, the characteristic function Mφ (ω) with the Fourier
transform of its probability density function ρφ (φ) of phase
φ is

Mφ (ω) = exp

(
−ω2σ 2

φ

2

)
. (29)

The statistics of phase variations caused by atmospheric tur-
bulence were characterized in Ref. [36], considering a Kol-
mogorov spectrum of turbulence. It is known that the residual
phase variance after modal compensation of J Zernike terms
is given by

σ 2
φ = CJ

(
2a

d0

) 5
3

, (30)

where a is the receiving aperture radius, d0 represents the
wavefront coherence diameter, which describes the spatial
correlation of phase fluctuations in the receiver plane [37],
and coefficient CJ is determined by the number (J ) of Zernike
terms, which are corrected by the active modal compensation
of the receiver [38,39]. Ideally, it is desirable to choose J large
enough so that the residual variance (30) becomes negligible.

Furthermore, in conjunction with Secs. III B 1 and III B 2,
the mean value of Aα cos φ, Aα sin φ, A2

α cos2 φ, and A2
α sin2 φ

in both Eqs. (16) and (17) can be obtained:

E [Aα cos φ] = [Mφ (1) + Mφ (−1)]

2

×
∫
A

√
I (r, L)ρ(I (r, L)) dr

= exp

(
−σ 2

φ

2

)∫
A

√
I (r, L)ρ(I (r, L)) dr,

E [Aα sin φ] = − j[Mφ (1) − Mφ (−1)]

2

×
∫
A

√
I (r, L)ρ(I (r, L)) dr = 0,

A B B
T

elv

VEPR

EPR

B

Alice BobF

F G
Eve

Hom Hom

FIG. 3. The equivalent theoretical model of the atmospheric
CVQKD with Gaussian-modulated states. T , atmospheric transmit-
tance; ε, excess noise; Hom, homodyne detector; η and vel, the
efficiency and electrical noise of the homodyne detector, respectively.

E
[
A2

α cos2 φ
] = 2 + [Mφ (2) + Mφ (−2)]

4

×
∫
A

I (r, L)ρ(I (r, L)) dr,

= 1 + exp
(−σ 2

φ

)
2

∫
A

I (r, L)ρ(I (r, L)) dr,

E
[
A2

α sin2 φ
] = 2 − [Mφ (2) − Mφ (−2)]

4

×
∫
A

I (r, L)ρ(I (r, L)) dr,

= 1 − exp(−σ 2
φ )

2

∫
A

I (r, L)ρ(I (r, L)) dr.

In addition, parameters ˆ〈T 〉 and ε̂ under atmospheric tur-
bulence channel ˆ〈T 〉t and ε̂t will be obtained:

ˆ〈T 〉t =
M∑
i

pit̂
2
i =

M∑
i

piE
2
[
Aαi cos φi

]

=
M∑
i

pi

[
exp

(
−σ 2

φi

2

)∫
A

√
Ii(r, L)ρ(I (r, L)) dr

]2

,

(31)

ε̂t =
M∑
i

pεi

σ 2
i − N0i(1 + vel )

t̂2
i N0i

, (32)

where I (r, L) represents the normalization irradiance at a
distance of L away from transmitting plane, where the offset
of a beam centroid relative to the aperture center is r = |r|,
and A is the plane of the receiver aperture.

IV. PERFORMANCE ANALYSIS BASED ON
PARAMETER ESTIMATION

The analysis of the achievable secret key rate of atmo-
spheric GMCS CVQKD will be introduced in this section
based on the results of Secs. II and III. An equivalent theo-
retical model of the atmospheric CVQKD with modulated en-
tangled states is presented in Fig. 3. Alice modulates the initial
entanglement state with a variance of VA and measures half of
the state (mode A), and the other half (mode B) is transmitted
through the atmosphere to Bob. Bob measures the amplitude
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or phase quadrature of the state (mode B1) transmitted through
an atmospheric channel using a homodyne or heterodyne
detector. In the asymptotic regime, the achievable secret key
rate K under reconciliation efficiency βR is given as [22]

K = (1 − P)(βR IAB − χBE ), (33)

where IAB is the Shannon mutual information of Alice and
Bob, and χBE is the Holevo quantity of Bob and Eve. P stands
for interruption probability due to the angle of arrival fluctu-
ations. According to previous works [23,40], the covariance
matrix of the mode AB1 is expressed by

γAB1
=

(
V I 〈√T 〉√V 2 − 1σz

〈√T 〉√V 2 − 1σz 〈T 〉(V + χline )I

)
. (34)

Thus, considering detection efficiency η and electronic
noise vel, the mutual information of Alice and Bob can be
obtained:

IAB = 1

2
log2

〈T 〉(V + χtot )

〈T 〉(V + χtot ) − 〈√T 〉2
VA

. (35)

The Holevo quantity χBE can also be obtained based on
Eq. (34) and simplified to [41]

χBE =
2∑

i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (36)

where G(x) = (x + 1) log2(x + 1) − x log2 x. The symplectic
eigenvalues λ1,2 can be calculated for both homodyne and
heterodyne detection by

λ1,2 =
√

1

2
[A ±

√
A2 − 4B],

with

A = V 2(1 − 2〈
√

T 〉2
) + 2〈

√
T 〉2 + [〈T 〉VA + 1 + ε〈T 〉]2,

B = [V 2(〈T 〉 − 〈
√

T 〉2
) + 〈

√
T 〉2 + 〈T 〉V χline]2.

The symplectic eigenvalues λ3,4 can take the same form as
λ1,2 for both the homodyne and heterodyne cases, while λ5 is
found to be 1; that is,

λ3,4 =
√

1

2
[C ±

√
C2 − 4D], λ5 = 1.

Specifically, C and D for the homodyne and heterodyne cases
can be expressed as

Chom = Aχhom + V
√

B + c1

c1 + χhom
,

Dhom =
√

B
V + √

Bχhom

c1 + χhom
,

Chete = Aχhet
2 + 2χhet (V

√
B + c1) + B + 2c2

2 + 1

(c1 + χhet )2
,

Dhete =
(

V + √
Bχhet

c1 + χhet

)2

,

TABLE I. Parameter settings of parameter estimation, all vari-
ances and noises in SNUs.

Variable Value Description

W0 30 mm Transmitting aperture radius
a 1 mm Receiving aperture radius
λ 1550 nm Laser wavelength
L 0–100 km Propagation distance
βR 90% Reconciliation efficiency
η 60% Detection efficiency
VA 8 Modulation variance
vel 0.01 Electronic noise
W W0

√
1 + (λL/πW 2

0 )2 Receiving beam radius
|r| [0, a + W ] Offset of beam wandering
αaer

sca 3.28 × 10−2 km−1 Aerosol scattering coefficient
αmol

sca 1.72 × 10−4 km−1 Molecule scattering coefficient
αaer

abs 6.25 × 10−3 km−1 Aerosol absorption coefficient
αmol

abs 4.08 × 10−3 km−1 Molecule absorption coefficient

where c1 = 〈T 〉(V + χline ), c2 = 〈√T 〉√V 2 − 1, and noise
χline, χhom, χhet, and χtot involved in the above analysis have
been explained in Sec. II B.

A. The achievable secret key rate

Therefore, the achievable secret key rate K̄ ( ˆ〈T 〉, ε̂) based
on parameter estimation under the reconciliation efficiency βR

can be expressed as

K̄ ( ˆ〈T 〉, ε̂) = (1 − P)[βR ĪAB ( ˆ〈T 〉, ε̂) − χ̄BE ( ˆ〈T 〉, ε̂)], (37)

where ˆ〈T 〉, ε̂, χ̂tot, and V̂A are the estimated parameters,
which can be calculated using Eq. (18). The mutual infor-
mation ĪAB ( ˆ〈T 〉, ε̂) and χ̄BE ( ˆ〈T 〉, ε̂) can be calculated using
Eq. (35) and Eq. (36), respectively. In order to simulate the
achievable secret key rate, we need to obtain the estimated
value of ˆ〈T 〉, ε̂, χ̂tot, and V̂A by employing t̂, σ̂ 2, σ̂ 2

0 , and V̂X ,
which has been already analyzed in Secs. II and III.

Since it is quite difficult to directly calculate I (r, L), which
is a random variable, here we assume that the received beam
radius is much larger than the receiving aperture radius, that
is, the receiver is approximately a point receiver. The inter-
ruption probability P due to the angle of arrival fluctuations
is not considered. All variables needed in the secret key rate
analysis are presented in Table I. The parameter estimation-
based achievable secret key rate K̄A under an atmospheric
attenuation channel is depicted in Fig. 4. In addition, under
an atmospheric turbulence channel, the parameter estimation-
based achievable secret key rate K̄T without considering beam
wandering and that with considering beam wandering are
depicted in Figs. 5 and 6, respectively.

Whether fiber or free space, homodyne detection is pro-
pitious to achieve distant propagation, while heterodyne de-
tection performs better in short-range propagation. On the
other hand, the parameter estimation-based achieve secret key
rate of an atmospheric attenuation channel is superior to that
of a fiber channel, and the former two are better than an
atmospheric turbulence channel, as shown in Figs. 4 and 5.
Therefore, an atmospheric channel has the potential to break
the distance constraints of fiber channel due to attenuation
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FIG. 4. The parameter estimation-based achievable secret key
rate K̄A under an atmospheric attenuation channel.

and polarization preservation to establish global quantum
communications; nevertheless, beam scintillation and beam
wandering caused by atmospheric turbulence have a signifi-
cant impact on CVQKD, as shown in Figs. 5 and 6; that is,
Figs. 5 and 6 describe the impact of beam scintillation and
beam wandering on K̄T , respectively.

In addition, simulation results based on parameter estima-
tion show that the secret key rate and propagation distance
of CVQKD in a medium-to-strong turbulent channel are less
than those in a weak turbulent channel in the case of the same
beam wandering and phase variations, and phase variations
can further reduce the secret key rate and propagation distance
of CVQKD, whether medium-to-strong turbulent or weak
turbulence, so phase variations caused by atmospheric turbu-
lence is another important factor affecting the performance of

FIG. 5. The parameter estimation-based achievable secret key
rate K̄T without considering beam wandering under an atmospheric
turbulence channel. W indicates the weak turbulence channel, and M
indicates the medium-to-strong turbulence channel.

r
r
r
r
r
r

FIG. 6. The parameter estimation-based achievable secret key
rate K̄T considering beam wandering under an atmospheric weak
turbulence channel.

CVQKD besides beam wandering and beam scintillation, and
this reflects the importance of phase compensation technol-
ogy in CVQKD. Furthermore, taking the influence of beam
wandering on CVQKD in a weak turbulent channel as an
example, the influence of beam wandering on the secret key
rate and propagation distance as shown in Fig. 6 is no less
than that of phase variations as shown in Fig. 5. Accordingly,
the main effort in practice should be devoted to inhibiting
the effects of beam wandering and scintillation as well as
phase variations. The development and application of related
technology such as compensation technology under beam
scintillation and acquisition tracking pointing (ATP) technol-
ogy under beam wandering based on parameter estimation of
atmospheric GMCS CVQKD can directly or indirectly fade
down the atmospheric effect and improve the performance of
CVQKD.

In summary, the simulation results based on this parameter
estimation method coincide with previous theoretical analysis
of atmospheric effects on CVQKD [22], which proves the
availability and rationality of this method and provides a fea-
sible method for parameter estimation of free-space CVQKD.

B. The security analysis

The entanglement-distillation attack against CVQKD sys-
tems whose channels are affected by non-Gaussian noise in
a turbulent atmospheric environment is proposed in Ref. [42]
on the assumption that quantum repeaters can be employed
in long-distance links, such as satellite-to-ground channels
and ground-to-ground networks, where Alice and Bob may
not be able to discover Eve by simple monitoring of light.
According to Ref. [42], in a such case that security bounds can
be overestimated if the fluctuating transmittance is regarded
as a constant, Alice and Bob may not be able to discover the
eavesdropper’s interference under general parameter estima-
tion, which created a potential loophole.

We can employ the parameter estimation described in
Sec. II B 2 to obtain transmission Ti and excess noise εi of
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FIG. 7. Secret key rate with a distribution of transmittance {T̂i}.
C indicates the constant transmittance T , F indicates the fluctuating
transmittance {Ti}, E indicates the estimated value ε̂, and A indicates
the actual value ε.

each subchannel during the stability time of the atmospheric
turbulence channel that is described in Fig. 1, that is, a distri-
bution of transmittance {T̂i} with probabilities approximated
to frequency { p̂Ti

} and a corresponding distribution of excess
noise {ε̂i} with probabilities approximated to frequency { p̂

εi
}.

The covariance matrix of the resulting mixed state after the
ith subchannel is given by Eq. (20). Therefore, the secret key
rate of ith subchannel K̄ i

T
(Ti, εi ) can be calculated through the

analysis of Sec. IV A. So we can get a real-time transmission
key rate dynamically in a relatively stable subchannel interval
to effectively resist an entanglement-distillation attack.

Furthermore, we can see that there is a deviation between
the estimated value ε̂ and the actual value ε by Eqs. (32)
and (17):

ε̂ − ε = V̂A

{
E
[
A2

α cos2 φ
]

E2[Aα cos φ]
− 1

}

+ (E [A2] − V̂X )
E
[
A2

α sin2 φ
]

E2[Aα cos φ]
, (38)

where Var[Aα cos φ] = E [A2
α cos2 φ] − E2[Aα cos φ] � 0,

and E [A2 cos2 φ] � E [A2]; hence, we can obtain the result
ε̂ − ε � 0. The estimation method leads to a conservative
lower bound of the secret key rate, which guarantees the
security of the communication to effectively resist an
entanglement-distillation attack.

As noted in Fig. 7, the achievable secret key rate estimated
by fluctuating transmittance {Ti} and excess noise ε̂ is lower
than the real secret key rate calculated by fluctuating trans-
mittance {Ti} and excess noise ε. Meanwhile, the achievable
secret key rate estimated by fluctuating transmittance {Ti}
is lower than the achievable secret key rate estimated by
the constant transmittance T . This indicates that parameter
estimation underestimates the secure propagation distance in
the case of effectively resisting an entanglement-distillation
attack and guaranteeing security.

From the above analysis, it can be seen that the secure
propagation distance of GMCS CVQKD under an atmo-
spheric effect is very limited. Currently, it is known that
discrete modulation can achieve a longer propagation distance
in fiber channel [43], but the secret key rate is lower than that
of Gaussian modulation. Naturally, different coding schemes
under different modulations and other related research work
to enhance secure propagation distance and the secret key rate
of CVQKD under free space will be the next direction for
research.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have employed free-space-based Gaus-
sian modulated coherent state continuous-variable quantum
key distribution (GMCS CVQKD) to study the parameter es-
timation method of an atmospheric channel and analyzed the
achievable secret key rate. The proposed parameter estimation
method coincides well with a physical model, which is more
systematic, extensive, and comprehensive and has certain
reference value and guidance significance to the classical
information postprocessing part of CVQKD. With the help
of the parameter estimation in CVQKD and the analysis of
beam propagation in an atmospheric channel, we have studied
the link fluctuations on free-space CVQKD and found that the
atmospheric attenuation channel delivers a better advantage
than the fiber channel in terms of the secret key rate and propa-
gation distance, while beam scintillation and beam wandering
caused by the atmospheric turbulence channel bring a serious
impact to CVQKD. Moreover, phase variations caused by
atmospheric turbulence are another important factor affecting
the performance of CVQKD besides beam wandering and
beam scintillation.

Consequently, the simulation results based on this param-
eter estimation method coincide with the atmospheric effects
on CVQKD, which proves the availability and rationality of
this method and provides a feasible method for parameter
estimation of free-space CVQKD. Further, the results show
that the parameter estimation method provides a practical
and available parameter evaluation method for CVQKD in
a practical free-space channel. Finally, based on the analy-
sis mentioned above, we obtain that the proposed method
can effectively resist the previously proposed entanglement-
distillation attack.

As illustrated in this paper, we can obtain a distribution
of transmittance with its probabilities and a corresponding
distribution of excess noise with its probabilities through
the proposed method as well as a conservative lower bound
of the secret key rate which guarantees the security of the
communication results from the estimated parameters. But
there still exist some problems, such as it is difficult to extract
a secret key under poor parameters and so on. Therefore, post-
selection of subchannels, which is achieved by filtering out
the low contribution region of transmittance and excess noise,
provides an effective way to improve the secret key rate. There
is a distinct improvement in the entanglement and security
properties of the state via postselection of subchannels with
higher transmittance. However, the secret key rate eventually
is up to the overall success probability of the postselection,
that is, the optimal postselection region, and the choice of the
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optimal postselection region of free-space CVQKD is still an
open-ended question.
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APPENDIX: THE SCINTILLATION INDEX

The scintillation index can be expressed as [33]

σ 2
I (r, L) = σ 2

I,r (r, L) + σ 2
I (0, L), (A1)

where σ 2
I,r (r, L) and σ 2

I (0, L) are radial component and lon-
gitudinal components, respectively. The radial component can
be expressed as Eq. (A2), when the outer scale is not very
large,

σ 2
I,r (r, L) = 4.42σ 2

l �5/6
e

r2

W 2
e

, r < We, (A2)

where r is the distance from the beam center line in the
transverse direction, �e = 2L/kW 2

e represents the effective
beam parameter, and We is a measure of the effective beam
spot size given by Eq. (A3) with � = 2L/kW 2, which de-
scribes Gaussian-beam amplitude change due to diffraction,
and W = W0

√
1 + (λL/πW 2

0 )2 is the free-space beam radius
at the receiver:

We =

⎧⎪⎨
⎪⎩

W
√

1 + 1.33σ 2
l �

5
6 weak turbulence

W
√

1 + 1.63σ
12
5

l � strong turbulence.

(A3)

In addition, the Rytov variance is expressed as σ 2
l =

1.23C2
n k7/6L11/6 with the optical wave number k = 2π/λ,

where λ is the wavelength of beam, the horizontal propagation
distance L, and the index of refraction structure parameter C2

n .
The Hufnagel-Valley (H-V) model [33] for C2

n is given by

C2
n (h) = 0.00594

( v

27

)2
(10−5h)10 exp

(
− h

1000

)

+ 2.7 × 10−16 exp

(
− h

1500

)
+ A exp

(
− h

100

)
,

(A4)

with the root-mean-square wind speed (pseudowind) v and
the nominal value of C2

n (0) at the ground, A = 1.7 ×
10−14 m−2/3, is widely used and commonly called the H-V5/7

model. However, the radial component in Eq. (A2) is quite
sensitive to outer-scale effects when the outer scale is large
enough, and it is given as

σ 2
I,r (r, L) = 4.42σ 2

l �5/6
e

[
1 − 1.55

(
�eL

kL2
0

) 1
6

]
r2

W 2
e

, (A5)

where L0 is the outer scale. L0(h) models based on exper-
imental data are expressed as below. However, the radial

component approaches zero in strong fluctuations:

L0(h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.4, h � 1 m,

0.4h, 1 < h � 25 m,

2
√

h, 25 < h � 1 km,

2
√

1000, 1 km < h � 2 km,

5
[
1 + (

h−7500
2000

)2
]−1

, 2 km < h � 17 km.

The longitudinal component is given by

σ 2
I (0, L) = exp

[
σ 2

ln x + σ 2
ln y

] − 1, (A6)

where σ 2
ln x and σ 2

ln y are large- and small-scale log-irradiance
variances, respectively. Here we find the relations

α = [
exp

(
σ 2

ln x

) − 1
]−1

,

β = [
exp

(
σ 2

ln y

) − 1
]−1

, (A7)

where α and β are the effective number of large- and
small-scale cells in the gamma-gamma distribution (27), re-
spectively. When effects of inner scale l0 and outer scale
L0 are both involved, the longitudinal component can be
expressed as

σ 2
I (0, L) = exp

[
σ 2

ln x(l0) − σ 2
ln x(L0)

+ σ 2
ln y(l0)

] − 1, (A8)

where σ 2
ln x(l0) with inner scale l0 is given by

σ 2
ln x(l0) = 0.49σ 2

l

(
1

3
− �̄

2
+ �̄

5

)(
ηxQl

ηx + Ql

) 7
6

×
[

1 + 1.75
√

ηx

ηx + Ql
− 0.25

(
ηx

ηx + Ql

) 7
12

]
,

(A9)

where Ql = 10.89L/kl2
0 , and �̄ = −L/F with the phase front

radius of curvature F = L[1 + (πW 2
0 )/(λL)] in free space at

the receiver, and

1

ηx
= 0.38

1 − 3.21�̄ + 5.29�̄2

+ 0.47σ 2
l Q

1
6
l

(
1
3 − �̄

2 + �̄
5

1 + 2.2�̄

) 6
7

. (A10)

Similar to σ 2
ln x(l0), the σ 2

ln x(L0) is given as

σ 2
ln x(L0) = 0.49σ 2

l

(
1

3
− �̄

2
+ �̄

5

)(
ηx0Ql

ηx0 + Ql

) 7
6

×
[

1 + 1.75
√

ηx0

ηx0 + Ql
− 0.25

(
ηx0

ηx0 + Ql

) 7
12

]
,

(A11)
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where ηx0 = ηxQ0/(ηx + Q0), and Q0 = 64π2L/(kL2
0 ) is a nondimensional outer-scale parameter. The small-scale log-irradiance

variance σ 2
ln y(l0) can be written as

σ 2
ln y(l0) = 0.51σ 2

G(
1 + 0.69σ

12/5
G

)5/6 , (A12)

where σ 2
G

is the weak fluctuation scintillation index and can be written as

σ 2
G

= 3.86σ 2
l

(
0.4

[(1 + 2�)2 + (2� + 3/Ql )2]11/12√
(1 + 2�)2 + 2�2

{
2.61

[(1 + 2�)2Q2
l + (3 + 2�Ql )2]1/4

sin

(
4ϕ2

3
+ ϕ1

)

− 0.52

[(1 + 2�)2Q2
l + (3 + 2�Ql )2]7/24

sin

(
5ϕ2

4
+ ϕ1

)
+ sin

(
11ϕ2

6
+ ϕ1

)}
− 13.4�

[(1 + 2�)2 + 4�2]Q11/6
l

− 11

6

[(
1 + 0.31�Ql

Ql

)5/6

+ 1.1(1 + 0.27�Ql )1/3

Q5/6
l

− 0.19(1 + 0.24�Ql )1/4

Q5/6
l

])
(A13)

and

ϕ1 = tan−1

(
2�

1 + 2�

)
,

ϕ2 = tan−1

[
(1 + 2�)Ql

3 + 2�Ql

]
,

(A14)

with � = 1 − �̄.
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