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Quantum simulation is a promising field where a controllable system is used to mimic another system of
interest, whose properties one wants to investigate. One of the key issues for such simulation is the ability to
control the environment the system couples to, be it to isolate the system or to engineer a tailored environment
of interest. One strategy recently put forward for environment engineering is the use of metamaterials with
negative indices of refraction. Here we build on this concept and propose a circuit-QED simulation of many-body
Hamiltonians using superlattice metamaterials. We give a detailed description of a superlattice transmission line
coupled to an embedded qubit, and show how this system can be used to simulate the spin-boson model in
regimes where analytical and numerical methods usually fail, e.g., the strong coupling regime.
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I. INTRODUCTION

One of the most promising applications of quantum tech-
nologies is the simulation of physical phenomena too com-
plex to be dealt with by other techniques. Among the many
possible physical implementations of such simulations, su-
perconducting circuits take a central role, with experiments
being able to engineer a large number of different many-body
Hamiltonians [1–6] and to reach regimes that are otherwise
challenging for other platforms, e.g., the strong and ultra-
strong coupling regime [7–14].

An important challenge for quantum simulations is the
ability to engineer an adequate environment with which the
simulated system interacts. While some environments may
have a simple, e.g., ohmic spectrum, some will have more
complex, structured spectral densities. Reservoir engineering
is a field that has found widespread applications, such as
quantum state preparation [15–17], steady-state entanglement
generation [18–20], and the study of light-matter interaction
in structured photonic environments [21,22]. These usually
rely on the creation of media with specific properties, control
of the coupling of the system of interest to its environment,
or manipulation of the properties of existing environments.
These approaches complement the use of lumped circuits to
engineer decoherence [23,24]. One avenue recently suggested
to devise media with a particular spectrum is the use of
metamaterials, more specifically left-handed metamaterials
[25]. Contrary to regular, right-handed (RH) materials, the
eigenfrequencies of left-handed (LH) materials increase with
wavelength [26]. Coupling RH and LH media one can thus
find materials with new, interesting spectral properties. Such
a hybrid material was shown to have a high density of modes

at low frequencies [27], which could in turn be used to couple
an embedded qubit to multiple environmental modes [25].

The ability to couple a system of interest in a controlled
way to an adjustable number of environmental modes opens
the path to the quantum simulation of a myriad of physical
phenomena. In this paper we build on these ideas and show
how left-handed superconducting superlattices can be used
to investigate the phase diagram of the spin-boson model
[28] with an unconventional structured environment. The
superlattice structure investigated here (for which [25] is a
special case) leads to a two-band spectrum, with the number
of modes in each band given by the array length. This is used
to control the number of modes with which an embedded
qubit interacts, allowing great flexibility in the design of
the qubit’s environment. As a test bed for our system, we
present a detailed investigation of the phase structure of the
spin-boson model and discover a rich phase diagram. Our
results pinpoint LH superlattice metamaterials as a tool with
interesting properties for microwave photonics.

This article is organized as follows. In Sec. II we describe
the coupled transmission line and determine its spectral prop-
erties. In Sec. III we investigate the interaction of the photonic
modes with an embedded qubit. Our results are obtained by
both an analytical and a numerical approach and we show
the phase diagram under weak coupling. We present our
concluding remarks in Sec. IV.

II. SYSTEM

In this work we will investigate a superlattice structure
consisting of resonant circuits in series and its interaction with
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FIG. 1. Composite left-handed superlattice and right-handed
transmission line coupled to a qubit. The superlattice unit cell is
formed by two cells, indicated by red (dark gray) and green (light
gray) backgrounds. The equivalent discrete circuit model for the
RHTL is illustrated.

the system of interest, a superconducting qubit. A standard
circuit transmission line (TL), e.g., a coaxial cable, can be
modeled by an LC array of series inductors (L) and grounded
capacitors (C) as shown in Fig. 1 (right side). In the continuum
limit, where the LC unit-cell size tends to zero while the
inductance and capacitance per unit length are kept constant,
this array presents the dispersion of the transverse electro-
magnetic (TEM) modes of the transmission line [29]. For
such a system, the group and phase velocities are oriented
parallel and both energy and wavefronts travel away from
the source. These are termed right-handed transmission lines
(RHTLs), as these parallel velocities stem from the electric
and magnetic field vectors and the wave vector forming a
right-handed set in three dimensions [30]. If we now invert
these unit cells, connecting the inductors to ground in parallel,
while placing the capacitors in series, the resulting waves
will have antiparallel group and phase velocities. Now the
electric and magnetic field vectors and the wave vector form
a left-handed set [31] and such metamaterials are called
left-handed transmission lines (LHTLs). The properties of
LHTLs include opposite group and phase velocities as well
as a falling dispersion relation [26,27] and applications of
left-handed materials range from cloaking [32,33] to a perfect
lens [34,35].

Recently it was shown that a composite transmission line
with left-handed and right-handed elements could be used
to engineer the electromagnetic environment experienced by
a superconducting qubit [25]. It is constructed on the fact
that a pure left-handed transmission line shows a cutoff in-
frared frequency. Close to that cutoff frequency, the LHTL
and therefore also the coupled transmission line have a high
mode density. The RHTL has a linear dispersion relation
and therefore does not support as many different modes as
the LHTL close to the cutoff frequency. Therefore, all these
modes share similar voltage profiles with only small variation
of wavelengths when entering the RH part of the transmis-
sion line. This permits multimode strong coupling of a qubit
embedded in the RH part of the line to the bosonic modes.
The study proposed this system as a test bed to simulate the
spin-boson model [36].

In this paper we build on these ideas and consider the next
step in this approach, namely, a superlattice LHTL consisting
of two alternating left-handed LC cells with different frequen-
cies 1√

LC
, where L = Lsl (L′

sl) and C = Csl (C′
sl) are the induc-

tance and capacitance of the first (second) cell (see Fig. 1).
To avoid unwanted reflections between cells the characteristic

FIG. 2. Incoming and outgoing voltage and current of a lattice
cell with impedances Z1 and Z2. The matrix describing the relations
between outgoing and incoming values in terms of Z1 and Z2 is the
ABCD matrix.

impedance Z =
√

L
C must match, Zsl = Z ′

sl [29]. This means
the inductance must change between the two cells in the
same way as the capacitance. We introduce the parameter
ε ∈ R to quantify this ratio and set L′

sl = εLsl and C′
sl = εCsl.

This superlattice LHTL will then couple directly to a RH
transmission line, impedance matched to the characteristic
impedance of the superlattice. In contrast to the metama-
terial LHTL which has to be created with discrete circuit
elements, the right-handed part can be a simple coplanar
waveguide.

The above composite transmission line is coupled to the
(high-temperature) control and measuring part of the experi-
ment trough coupling capacitors. Finally, a superconducting
qubit inside the RHTL can be designed to couple to the
bosonic modes. We shall now describe properties of the com-
posite transmission line and in the next section give details on
the qubit and its effective dynamics.

A. Dispersion relation

For the discrete RHTL, the dispersion relation can be found
to be

ω(kr ) = 2√
L̃rC̃r

sin

(
krdr

2nr

)
, (1)

kr,max = π
nr

dr
, (2)

where L̃r and C̃r are the corresponding cell inductance and
capacitance, dr is the total length of the line, and nr is the
number of cells. Taking the limit nr → ∞ while keeping the
inductance and capacitance per unit length constant, Eq. (1)
reduces to the usual linear dispersion

ω(kr ) ≈ krdr

nr

√
C̃rL̃r

= kr√
crlr

, (3)

with cr and lr being capacitance and inductance per unit
length.

The dispersion relation of the superlattice can be obtained
via its ABCD matrix, b, which connects incoming and out-
going voltages and currents of circuit elements as shown in
Fig. 2 [30]: (

Vout

Iout

)
= b ·

(
Vin

Iin

)
, (4)
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where Vin and Iin (Vout and Iout) are, respectively, the input
(output) voltage and current. For an arbitrary circuit consisting
of a series element with impedance Z1 connected in parallel to
an element with impedance Z2 shunted to ground, currents and
voltages are related as

Z1 = V1

I1
= Vout − Vin

Iin
, Z2 = V2

I2
= Vin

Iout − Iin
,

where the sub-indices 1 and 2 denote current or voltage across
the corresponding element. Since our lattice cells consist of a
series capacitance and an inductance to ground, we can write

Z1 = 1

iωCsl
, Z2 = iωLsl,

for the first lattice cell. The second cell is found by sub-
stituting the corresponding capacitance and inductance. The
resulting ABCD matrices are

bA =
(

1 − ω2
sl

ω2
1

iωCsl
1

iωLsl
1

)
, bB =

(
1 − ω2

sl
ω2ε2

1
iωεCsl

1
iωεLsl

1

)
,

where ωsl = 1√
LslCsl

is the resonance frequency of the first
cell. The matrix of a supercell, the most fundamental building
block of the superlattice, is given by the product of the two
single-cell matrices

b = bAbB

=
(

1 − ω2
sl

ω2

(
1 + 1

ε
+ 1

ε2 − ω2
sl

ω2ε2

)
1

iωCsl

(
1 + 1

ε
− ω2

sl
ω2ε

)
1

iωLsl

(
1 + 1

ε
− ω2

sl
ω2ε2

)
1 − ω2

sl
ω2ε

)
.

(5)

To find the dispersion relation for the superlattice array we
use a plane-wave ansatz

V (z, t ) = V0ei(kz−ωt ), (6)

I (z, t ) = I0ei(kz−ωt ). (7)

For a supercell of size �z, we see that at fixed times

Vout = e−ik�zVin, (8)

Iout = e−ik�zIin. (9)

Comparing Eqs. (8) and (9) with the ABCD matrix (4), we
obtain

e−ik�zVin = b11Vin + b12Iin,

e−ik�zIin = b21Vin + b22Iin.

Here bi j are the {i, j} elements of matrix b. This readily leads
to

(e−ik�z − b11)(e−ik�z − b22) = b12b21. (10)

All elements in the superlattice circuit behave independently
of the direction in which the current flows, therefore, from

FIG. 3. Mode number vs frequency of a left-handed superlattice
transmission line with ε = 2. The periodic structure gives rise to a
band gap with the high-frequency band revealing the left-handedness
of the system.

reciprocity arguments, it follows that b11b22 − b12b21 = 1
must be fulfilled [30]. Equation (10) now simplifies to

b11 + b22 = 2 cos(k�z), (11)

from which the dispersion relation is found to be

ω(ksl ) =
√√√√ ω2

sl

(1+ε)2

2 ±
√

ε2[2 cos(ksl�z) − 2] + (1+ε)4

4

. (12)

The Appendix describes an alternative formalism to obtain the
dispersion relation based on Euler-Lagrange equations.

Naturally, as shown in Fig. 3, the superlattice gives rise to
a frequency band gap, which can be found by looking at the
codomain of the cosine in the superlattice dispersion relation.
The two bands are limited to

ω(k) ∈ [ω1−, ω1+] ∪ [ω2,∞),

with

ω1− = ωsl

1 + ε
,

ω1+ = ωsl√
1
2 (1 + ε)2 +

√
1
4 (1 + ε)4 − 4ε2

,

ω2 = ωsl√
1
2 (1 + ε)2 −

√
1
4 (1 + ε)4 − 4ε2

.

This band gap can also be understood as a result of destructive
interference from Bragg reflection due to the two different
cells the superlattice consists of. Similar effects are known
from photonic crystals or phonons in diatomic lattices [37].
Moreover, a signature of the left-handedness of the coupled
line is present in the upper band, where the frequency decays
with growing wave number. Figure 4 shows the dependency
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FIG. 4. Width of the lower frequency band as a function of the
superlattice parameter ε.

of the bandwidth �ω = ω1+ − ω1− on the ratio ε of the
two superlattice resonance frequencies. One sees that already
moderate changes of ε are enough to decrease the bandwidth
and therefore increase the mode density by orders of magni-
tude.

B. Eigenmodes of the hybrid transmission line

Equations (3) and (12) relate the wave number and fre-
quency for a plane-wave solution inside the RHTLs and
LHTLs. Now let us see what happens when we couple both to
create a hybrid transmission line. In order to find the desired
eigenmodes, we use a plane-wave ansatz with waves traveling
in both directions, because we now consider a system of
finite length and reflections at the input and output ports. The
currents and voltages in each part of the transmission line are
thus

Isl(z, t ) = I0(eikslz + α1e−ikslz )e−iωt ,

Ir (z, t ) = I0(α2eikrz + α3e−ikrz )e−iωt ,

Vsl(z, t ) = V0(eikslz + β1e−ikslz )e−iωt ,

Vr (z, t ) = V0(β2eikrz + β3e−ikrz )e−iωt .

Naturally, the frequency ω must be the same in the RHTL
and the superlattice to fulfill energy conservation, whereas the
left- and right-handed wave numbers ksl and kr may differ, by
virtue of the different index of refraction of the two separate
TLs.

The unknown coefficients are found from the boundary
conditions Isl(0, t ) = Ir (dsl + dr, t ) = 0 (currents with nodes
at the input and output ports) and Isl(dsl, t ) = Ir (dsl, t ) and
Vsl(dsl, t ) = Vr (dsl, t ) (continuity of current and voltage at the
coupling between the lines). In addition, in the RHTL we use

the characteristic impedance Zr =
√

Lr
Cr

= V +
I+ = −V −

I− , which

relates the amplitudes V ± = V0β2/3 of right, (+), and left,
(−), traveling waves [29]. In the superlattice, we use the
ABCD matrix to relate voltage and current before and after a

supercell, similar to Sec. II A. This leads to an overdetermined
system of equations for αi, βi, and V0 (I0 is chosen as a free
parameter). Leaving out the voltage coupling condition, we
find the following wave equations:

Isl(z, t ) = I0(eikslz − e−ikslz )e−iωt ,

Ir (z, t ) = I0α(e−ikrd eikrz − eikrd e−ikrz )e−iωt ,

Vsl(z, t ) = ZslI0(eikslz + βe−ikslz )e−iωt ,

Vr (z, t ) = ZrI0α(e−ikrd eikrz + eikrd e−ikrz )e−iωt ,

with α = − sin(ksldsl )
sin(krdr ) , β = − e−iksl�z−b22

eiksl�z−b22
, Zsl = eiksl�z−b22

b21
, and

d = dr + dsl. From the last condition, we finally find the self-
consistency equation

2Zrα cos(krdr ) − Zsl(e
iksldsl + βe−iksldsl )

!= 0,

which can be solved numerically for the frequency ω by using
Eqs. (3) and (12).

C. Density of modes

The high density of modes (DOM) observed in the lower
band of the superlattice spectrum, Fig. 3, is the main ingredi-
ent required for the type of many-body quantum simulation
we wish to study. However, evaluation of the DOM of the
hybrid line is made difficult due to its discrete nature. In the
following we use both a numerical method and an analytical
approximation to find the DOM. All numerical calculations in
this work are performed with ωsl = 1/

√
2 × 6 × 10−23 Hz ≈

91.3 GHz, ωr = 1/
√

2.5 × 7.5 × 10−23 Hz ≈ 73.0 GHz, and
Z = √

3 × 103� ≈ 54.8�. For the numerical approximation,
as the modes are equally spaced in k space we can set the
DOM at a given frequency ωi by the frequency difference to
its neighboring modes

Dnum(ωi ) = 2

ωi+1 − ωi−1
, (13)

for i > 1. We thus set the density at frequency ωi to the
average density in the region between ωi−1 and ωi+1, which
contains exactly two modes. It is important to mention that
this calculation will fail not only at i = 0 but also for the
modes at the band edges, where the next or previous mode
is across the band gap. Therefore we shall not consider
these modes when determining the density of modes by this
method.

An analytical expression can be found by calculating the
individual DOM for the decoupled RH, Dr (ω), and superlat-
tice, Dsl(ω), transmission lines and approximating the DOM
for the coupled system by D(ω) ≈ Dr (ω) + Dsl(ω). For the
decoupled transmission lines, the DOM can be calculated
from

D(ω) = dn

dk

dk

dω
,

using the inverse of the dispersion relations (3) and (12) and
the fact that wave vectors in the decoupled systems are equally
spaced with kr/sl = nπ

lr/sl
and n ∈ N. The derivatives of the
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FIG. 5. Numerical (red dots) and theoretical (black line) approx-
imations to the mode density D(ω) of the coupled system for a
superlattice with 200 cells and ε = 2.

inverse dispersion relations are

dkr

dω
= 1

ωrlr
,

dksl

dω
=

ω2
sl

ω3

(
1 + 1

ε

)2 − ω4
sl

ω5
2
ε2

�z
√

1 − 1
4

[
2 + ω4

sl
ω4

1
ε2 − ω2

sl
ω2

(
1 + 1

ε

)2]2
.

With these we obtain the approximate DOM of the coupled
system D(ω) = lr

π
dkr
dω

+ lsl
π

dksl
dω

, with lsl
�z = nsl being the num-

ber of supercells in the superlattice.
Figure 5 shows the numerical and analytical approxima-

tion for the DOM with nsl = 200 supercells. The agreement
between these two independent approaches gives strong indi-
cation that both are valid approximations. The increased DOM
in the low-frequency region reflects the small width of the su-
perlattice energy band and can easily be increased further: As
the number of modes in each band is independent of the band
width, narrowing the band implies a higher density of modes.
As shown in Fig. 4, the width of the low-frequency band has
a maximum when the cells forming the supercell are identical
(the array is not a superlattice) and the band narrows as the
difference between the frequencies of these cells increases.
The Van Hove singularities will play an important role in the
phase diagram studied in Sec. III C.

D. Voltage profile

The high mode density observed above will be used in
the next section to allow a qubit to couple to multiple cavity
modes simultaneously. The qubit-cavity interaction depends
not only on their detuning, but also on their natural coupling
strength. For a flux qubit it will depend on each mode’s current
profile, which we will now analyze. For a qubit embedded in
a standard cavity, the mode density at high frequencies can
be increased simply by making the cavity longer [38], thus
allowing the qubit to couple to many modes. However, if the
qubit is positioned so as to maximize its coupling to a given

position x along the line (m)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

V/
I 0

(V
/A

)

-50
-40
-30
-20
-10

0
10
20
30
40
50

30.893 GHz
30.912 GHz
30.931 GHz
30.951 GHz

FIG. 6. Voltage profile for the modes with index 50 to 53 for
a transmission line with nsl = 200 and ε = 2. The superlattice is
positioned at the left side and the RHTL on the right side in the
plot with their coupling at 0.01 m. Due to the discreteness of the
superlattice, the lines do not represent the real voltage profile for
each position along the circuit but only at circuit nodes which are
represented by dots.

low-frequency mode, the coupling to the following mode will
have a stark decrease due to the different voltage profile along
the right-handed line.

The hybrid transmission line considered here gives rise
to an altogether different behavior. First, the high density
modes appear at low frequency. Second, as shown in Fig. 6,
low-frequency neighboring modes show sharp differences
in their voltage/current profiles inside the superlattice, but
remarkably similar profiles within the right-handed medium.
This feature suggests that neighboring modes can be made
to simultaneously have comparable coupling strengths and
detuning to the qubit. Put together, these tools allow us great
versatility in engineering distinct qubit environments.

III. SPIN-BOSON MODEL

To illustrate the use of the composite transmission line,
we will now use it to investigate the ground state of the
qubit interacting with the bosonic multimode environment
characterized above. The composite system is described by
the Hamiltonian

Ĥ = h̄

(
−�0

2
σ̂x +

∑
k

ωkâ†
k âk + σ̂z

∑
k

g(â†
k + âk )

)
, (14)

where the first two terms describe the qubit and environment
free Hamiltonians and the last term represents their coupling.
Here the qubit is taken to be degenerate and �0 is the tun-
neling rate between the bare qubit energy eigenstates |L〉 and
|R〉. This Hamiltonian describes the spin-boson model (SBM),
which is a standard model for dissipative two-level systems
[28]. In the usual SBM the energy eigenstates represent the
position of a particle in a double-well potential, i.e., |L〉 (|R〉)
being a qubit in the left (right) quantum well. This model
admits two qubit quantum phases, a localized phase (�0 = 0),
with the qubit having no intrinsic dynamics and localizing in
one of the two wells, and a delocalized phase, when �0 
= 0
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and the system displays Rabi oscillations between the two
wells [39]. As discussed above, the low-frequency mode pro-
files are very similar close to the qubit’s position. Therefore
we will take the qubit to have equal coupling constants to all
modes.

A. Adiabatic renormalization

The qubit multimode coupling renders Hamiltonian (14)
difficult to diagonalize. However, as some modes have fre-
quencies much larger than that of the qubit, they adiabatically
follow the qubit’s dynamics. Adiabatic renormalization tech-
niques can thus be used to transform the Hamiltonian and find
an effective tunneling element.

Let us first look at the �0 = 0 case. This Hamiltonian can
be fully diagonalized by the unitary transformation

Û = exp

(
−σ̂z

∑
k

g

ωk
(âk − â†

k )

)
, (15)

which leads to

Û Ĥ (�0 = 0)Û † =
∑

k

ωkâ†
k âk −

∑
k

g2

ωk
.

The adiabatic renormalization procedure consists of iterative
steps, where at each step we adiabatically eliminate modes
whose frequencies are higher than any qubit frequency, i.e.,
modes that adiabatically follow the qubit’s dynamics. To
begin, we transform Hamiltonian (14) using

Û1 = exp

(
−σ̂z

∑
ωk>�0

g

ωk
(âk − â†

k )

)
, (16)

where the summation is taken over high-frequency modes,
ωk > �0. By rewriting this operator as

Û1 = cos

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)

+ iσ̂z sin

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)
,

we find that σ̂x transforms as

Û1σ̂xU
†
1 = cos

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)
σ̂x

+ sin

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)
σ̂y.

Assuming weak coupling g/ωk � 1, the bosonic operators
for modes with frequency ωk > �0 can be replaced by their
expectation values〈

cos

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)〉
= exp

(
−1

2

∑
ωk>�0

g2

ω2
k

)
,

〈
sin

(
i

∑
ωk>�0

g

ωk
(âk − â†

k )

)〉
= 0.

We finally obtain for the renormalized Hamiltonian Ĥ1 =
Û1ĤÛ †

1

Ĥ1 = −�1

2
σ̂x+

∑
k

ωkâ†
k âk+σ̂z

∑
ωk��0

g(â†
k+âk ) −

∑
ωk>�0

g2

ωk
,

(17)

where the constant term can be neglected and the reduced
tunneling element reads

�1 = �0 exp

(
−2

∑
ωk>�0

g2

ω2
k

)
.

Comparing Eq. (17) to the original Hamiltonian we see
that these transformations have reduced the tunneling strength
and decreased the number of modes interacting with the qubit.
Therefore another transformation can be applied to eliminate
all modes with �0 > ωk > �1 and once again obtain a re-
duced tunneling element. The iterative transformation

Ûn = exp

⎛
⎝−σ̂z

∑
�n−2>ω>�n−1

g

ωk
(âk − â†

k )

⎞
⎠,

with

�n = �n−1 exp

⎛
⎝−2

∑
�n−2>ω>�n−1

g2

ω2
k

⎞
⎠

= �0 exp

⎛
⎝−2

∑
ω>�n−1

g2

ω2
k

⎞
⎠,

can be performed until �n = �n+1. The final renormalized
tunneling element �eff must fulfill the self-consistency equa-
tion

�eff = �0 exp

(
−2

∑
ω>�eff

g2

ω2
k

)
.

For a continuous spectrum, the renormalized tunneling ele-
ment reads

�eff = �0 exp

(
−2

∫ ∞

�eff

J (ω)

ω2
dω

)
, (18)

where J (ω) = ∑
k g2δ(ω − ωk ) is the environmental spectral

density. For the composite transmission line we use the DOM
obtained in Sec. II C and write J (ω) ≈ g2D(ω). Note that the
density of modes did not take into account the presence of
the qubit. A more detailed calculation has to incorporate its
effects.

B. Analytical approach

The self-consistency equation, Eq. (18), can be inverted
to give an expression for the coupling g as a function of the
effective tunneling, �eff. This requires an analytical solution
to the integral. To obtain such a solution, we approximate
the DOM obtained in Sec. (II C) using a piecewise function
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FIG. 7. Typical solution to Eq. (18) on inverted axes for 20
superlattice cells with ε = 2 and an initial energy splitting of the
qubit of �0 = 1.2ωsl. Blue (solid) line shows the coupling strength
g (horizontal axis) for a given renormalized tunnelling element
(vertical axis). Orange (dashed) line indicates the value to which �eff

converges.

describing the DOM in each of the bands,

D(ω) =

⎧⎪⎨
⎪⎩

α1√
ω−ω1-

4√ω1+−ω
, ω ∈ [ω1-, ω1+],

α2√
ω−ω2

, ω � ω2,

0, elsewhere.

(19)

Here ω1- and ω1+ are, respectively, the lower and upper band
edges of the low-frequency band and ω2 is the band edge of
the high-frequency band edge. These are found by examining
the limiting cases of the dispersion relation, Eq. (12), and α1

and α2 are fitting parameters. The coupling constant for the
first band can now be written as

g =
√

ω
3/2
2 ln

(
�eff
�0

)
−πα2

, (20)

and for the second band,

g =

√√√√√ ω
3/2
2 ln

(
�eff
�0

)
2α2

[
ω2
�eff

√
�eff
ω2

− 1 + arctan
(√

�eff
ω2

− 1
) − π

2

] .

Figure 7 shows an instance of this solution. The dashed line
shows the behavior of �eff with increasing coupling, where
we expect jumps when g reaches a local maximum.

C. Phase diagram

We now turn our attention to the phase diagram of our
model. The results in this section were obtained using the it-
erative procedure of Sec. III A. From our previous discussion,
we expect the existence of two phases, a localized one with
�eff = 0, and a delocalized one with �eff 
= 0. Figure 8 shows
the renormalized tunneling rate of the qubit as a function of
the coupling constants, g. Different lines represent different
bare tunneling rates, �0. As expected, for g/�0 sufficiently
large, the system reaches the localized phase, whereas for

1-
1+

2

FIG. 8. Effective tunneling rate of the qubit as a function of
the coupling constant (both in units of the superlattice resonance
frequency ωsl) for ε = 2 and 200 superlattice cells. Each color repre-
sents a different initial bare tunneling element, which coincides with
the effective tunneling element for zero coupling. Shaded regions
represent the two energy bands. Localized, weakly localized, and
delocalized phases are clearly visible.

g/�0 sufficiently small it remains in the delocalized phase,
characterized by small corrections to the tunneling rate.

Interestingly, two new phases appear for which �eff lies
within the band gap or inside the first band. We call these
partially localized phases. These are characterized by strong
renormalization of the tunneling rate, but not sufficient to
reach the fully localized phase. Different than the fully de-
localized phase, for the phase lying in the band gap, phase
transitions only occur as �eff reaches the band edge, entering
the low-frequency band. We note that because the superlattice
used for this simulation is finite (with nsl = 200 supercells),

localized

delocalized

FIG. 9. Phase diagram of the spin-boson model of a hybrid
transmission line environment with ε = 1.1 and 200 superlattice
cells. Four distinct phases are shown. The colored background shows
the energy region (separated by the band edges ω1-, ω1+, and ω2)
�eff is lying in as a contour plot, whereas black dots are actual jumps
found from numerics. For smaller coupling strengths jumps are less
likely to be found numerically due to the decreased jump strength
and the discrete nature of the superlattice.
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no genuinely localized phase is reached, as �eff → 0 only
in the infinite coupling limit. The qubit is thus in a quasilo-
calized phase. For an infinite superlattice the localized phase
can be recovered. Figure 9 shows the corresponding phase
diagram, suggesting that jumps occur whenever the value of
�eff crosses a band edge frequency.

Finally, we note that renormalization of the qubit energies
originates from off-resonant degrees of freedom including
those separated by a band gap. The band gap introduces a min-
imum detuning hence limiting the impact of each individual
mode. The large density of modes at the band gap—the van
Hove singularity—partially compensates for this suppression
hence leading to a significant contribution even for qubit
energies lying within the band gap. A more detailed model,
where the frequency-dependent qubit-mode coupling strength
is taken into account is the object of future work.

IV. CONCLUSIONS

Reservoir engineering is a cornerstone for many quantum
technologies and systematic methods for implementing it are
scarce. In this work we have thoroughly described how to
apply superlattice, left-handed metamaterials as a means to
manipulate a bosonic environment. The superlattice structure
gives rise to a dual band spectrum, with the frequencies of the
band edges controlled by the circuit parameters. This allows
one to engineer spectra with a controlled number of modes
in one band, while leaving the higher energy band isolated
from the system of interest, i.e., the quantum system under
investigation can be made to interact with a controlled number
of modes. Moreover, these modes can have approximately
the same coupling constant to the system, given the hybrid
left-right-handed nature of the transmission line. The system
proposed thus allows specialized environment designs.

We have discussed one specific quantum simulation im-
plementation, that of the phase diagram for the spin-boson
model, where apart from a localized and a delocalized phase,
we found two additional partially localized regions. The com-
posite superlattice-right-handed transmission line investigated
here opens the possibility of exploring many different sce-
narios experimentally, such as the strong coupling regime,
for which the adiabatic renormalization technique discussed
here should fail. Therefore experimental investigations would
allow the verification of the numerical methods and approxi-
mations.

The ideas presented in this work can straightforwardly
be adapted to other problems. Some possibilities include the
quantum-classical transition and a systematic experimental
study of the validity of some master equation approximations,
such as local vs global environments. Other applications can

also be foreseen, such as the use of hybrid, superlattice trans-
mission lines for filtering or to manipulate Purcell’s effect
on a qubit. Naturally, more general designs using left-handed
transmission lines could be used to create more elaborate
environmental spectra, suited for a number of different appli-
cations.
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APPENDIX: ALTERNATIVE METHOD TO FIND
THE SUPERLATTICE SPECTRUM

Another approach to determining the dispersion relation
is to use Euler-Lagrange formalism. The Lagrangian of the
superlattice in terms of the magnetic flux � reads

L = 1

2

∑
n

[Csl(�̇n − �̇n−1)2 + εCsl(�̇n − �̇n+1)2]

−
∑

n

[
1

2εLsl
�2

n + 1

2Lsl
�2

n−1

]
.

We use the Euler-Lagrange equation d
dt

∂L
∂�̇

− ∂L
∂�

= 0 to find
the differential equations

C(�̈2n − �̈2n−1) + εC(�̈2n − �̈2n+1) + 1

εL
�2n = 0,

C(�̈2n−1 − �̈2n) + εC(�̈2n−1 − �̈2n−2) + 1

L
�2n−1 = 0.

These equations can be combined, using �̈ = −ω2� by as-
suming two independent wave equations in the two lattice
elements and writing an equation for the even lattice cells

C2

(
�2 j + ε�2 j−2

C + εC − 1
ω2L

)
+ εC2

(
�2 j+2 + ε�2 j

C + εC − 1
ω2L

)

−
(

C + εC − 1

ω2εL

)
�2 j = 0. (A1)

A plane-wave ansatz valid only on even lattice sites

�2n(t ) = �0ei(kn�z−ωt )

can now be used to solve Eq. (A1) for ω which yields the same
result as Eq. (12).
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