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The creation of multipartite entangled states is a key task of quantum information processing. Among
the various implementations, shortcut to adiabaticity (STA) offers a fast and robust means for generating
entanglement. The traditional counterdiabatic driving, as a conventional and simple method for STA, suppresses
transitions with an auxiliary Hamiltonian, but its complex interactions in many-body systems may hamper the
feasibility of experimental implementation. To avoid this drawback, a flexible and efficient way was proposed
theoretically by Chen et al. [Phys. Rev. A 93, 052109 (2016)] by substituting the counterdiabatic terms. Inspired
by this work, we devise a practical protocol for preparing the Greenberger-Horne-Zeilinger state on the Ising
spin model via STA by partial suppression of the nonadiabatic transitions, which can obviously reduce the
complexity in experiments compared with the original method. We also experimentally demonstrate the viability
of our scheme with a nuclear magnetic resonance quantum simulator. This work provides an alternative method
to realize fast coherent quantum control for a multiqubit system in experiments.
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I. INTRODUCTION

Entanglement is one of the fundamental signatures of
quantum physics, which stays at the heart of diverse ap-
plications ranging from quantum computation to quantum
teleportation and quantum cryptography [1–4]. Besides, it
plays a crucial role in a broad range of phenomena encom-
passing many-body physics, e.g., the fractional quantum Hall
effect [5] and quantum phase transitions [6]. Recently, various
methods of preparing entangled states, such as global con-
trol method [7,8], quantum network method [9,10], adiabatic
method [11,12], and dissipative method [13,14], have been
proposed and demonstrated in theory and experiments. Due
to good robustness against weak variations of the system, the
adiabatic passage has been one of the mostly used methods in
experiments. However, a common shortcoming of this scheme
is that a high-fidelity target state is typically achieved at the
cost of time. This may lead to a conflict between the time
required by the adiabatic theorem and decoherence time.

To alleviate this disadvantage, Demirplack and Rice in
Ref. [15], and Berry in Ref. [16] proposed a novel method to
accelerate adiabatic protocols by supplementing the original
Hamiltonian with an auxiliary counterdiabatic driving (CD)
term Hcd , which can reach the same goal as adiabatic evolu-
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tions without constrains on the evolution time. After that, an
emergent field, namely shortcut to adiabaticity (STA), aiming
at speeding up the quantum adiabatic process has attracted
much interest and a variety of shortcut protocols have been
developed, to name a few, counterdiabatic driving [17] or
transitionless quantum driving, invariant-based inverse engi-
neering [18,19], and fast-forward methods [20,21]. By now,
the STA idea has been successfully extended to non-Hermitian
[22,23] and open quantum systems [24,25], and has found
applications in a wide range of fields such as many-body
physics and quantum science and technologies [26–38].

As one of the most successful strategies for STA, counter-
diabatic driving provides a quite simple way to precisely sup-
press nonadiabatic transitions between instantaneous eigen-
states. However, the time-dependent term Hcd typically suffers
from complex many-body interactions with the growth of the
system. This leads to the difficulty in ensuring transitionless
evolution with the available experimental controls [39–42],
and much effort has been devoted to address this issue
[43–45]. For example, in cavity QED systems a complicated
Hamiltonian can be simplified with the help of quantum Zeno
dynamics and then the STA for quantum state preparation was
constructed with an effective Hamiltonian [46].

Recently, Chen et al. presented an available method for
constructing STA in theory by a substitute of CD term [47],
which can achieve a precise and flexible control of speed-up
protocols in both Hermitian and non-Hermitian systems be-
cause of the multiple choices for designing additional terms.
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Motivated by this method, here we put forward a scheme on
the Ising system to prepare the Greenberger-Horne-Zeilinger
(GHZ) state |�〉 = (|0〉⊗N + |1〉⊗N )/

√
2, which is one of the

key resources in the field of quantum metrology for quantum-
mechanically enhanced sensors, with measurement precision
approaching the Heisenberg limit 1/N [48,49]. The GHZ
state is also at the core of Schrödinger’s cat paradox for its
novel nonlocal property. The rest of the paper is organized as
follows. In Sec. II we concisely review the theory of designing
transitionless evolutions without directly using the CD term.
In Sec. III, an application of this method to create GHZ state
is presented on a three-spin Ising system. Sec. IV provides
a proof-of-principle experiment using a three-qubit nuclear
magnetic resonance (NMR) quantum simulator. Finally, a
brief summary with a discussion is presented in Sec. V.

II. REVIEW OF THE METHOD TO CONSTRUCT STA
WITH SUBSTITUTIVE CD TERM

For an arbitrary time-dependent quantum Hamiltonian
H0(t ), the instantaneous eigenenergies En(t ) and eigenstates
|φn(t )〉 are given by

H0(t )|φn(t )〉 = En(t )|φn(t )〉, (1)

in which the instantaneous eigenstates satisfy the or-
thogonal completeness relation: 〈φn(t )|φm(t )〉 = δnm, and∑

n |φn(t )〉〈φn(t )| = I . If the variation of Hamiltonian H0

is slow enough to satisfy the adiabatic approximation
|〈φm(t )|∂t H0|φn(t )〉|/[En(t ) − Em(t )]2 � 1, the system will
stay at an instantaneous eigenstate, and the quantum tran-
sitions will be suppressed. Otherwise, undesirable quantum
transitions will take place due to nonadiabatic changes of the
Hamiltonian.

Berry [16] found a formula of the driving Hamiltonian
where no unwanted transitions occur if the system is subject
to a combined time-dependent Hamiltonian H (t ) = H0(t ) +
Hcd (t ), with

Hcd (t ) = ih̄
∑

n

|φ̇n(t )〉〈φn(t )|. (2)

The overdot here means time derivative. However, Hcd (t )
usually includes many-body interactions and the complexity
increases as system size grows. Consequently, one may be
unable to directly construct the required form of Hcd (t ) in
experiments. Reference [47] provides a simple method to
find a substitute Hamiltonian Hadd (t ) to avoid the mentioned
drawback. A brief explanation of the idea is as follows.

The dynamics of a system governed by Hamiltonian H0(t )
is described by the Shrödinger equation:

ih̄∂t |ψ (t )〉 = H0(t )|ψ (t )〉. (3)

The time-dependent |ψ (t )〉 can be expressed as |ψ (t )〉 =∑
n an(t )|μn〉 = [a1(t ), a2(t ), . . . , an(t )]t , with {an(t )} being

the probability amplitudes of all the bare states expanded
by a collective basis set {|μn〉}. This basis set also satisfies
the orthogonal completeness relation, i.e.,

∑
n |μn〉〈μn| = I ,

〈μm|μn〉 = δmn, and therefore |μm〉〈μn| = Mm,n denotes a ma-
trix whose elements are all zero except that the mth row and
the nth column are 1.

In the basis of instantaneous eigenstates of H0(t ), namely
in the eigenpicture, the system dynamics can be also described
by the Schrödinger equation

ih̄∂t |ψe(t )〉 = He
0 (t )|ψe(t )〉, (4)

where the superscript e indicates the wave function written
in the eigenpicture and |ψe(t )〉 = [c1(t ), c2(t ), . . . , cn(t )]t .
The transformation between the Schrödinger picture and
eigenpicture satisfies the formula |ψe(t )〉 = R†|ψ (t )〉 with
the operator R† = ∑

m,n Mm,n〈φm|μn〉 = ∑
m |μm〉〈φm|. Then,

according to Eq. (3) and Eq. (4), we obtain

He
0 (t ) = R†H0R − ih̄R†Ṙ, (5)

where R†H0R = ∑
n Mn,nEn is the diagonalization matrix for

H0(t ), and

ih̄R†Ṙ = ih̄
∑

n

Mn,n〈φn(t )|φ̇n(t )〉

+ ih̄
∑
n �=m

Mn,m〈φn(t )|φ̇m(t )〉. (6)

The integral of the first term in Eq. (6) is the adiabatic
phase, and the second term is the nonadiabatic coupling.
If we add the term He

1 (t ) = ih̄R†Ṙ to Eq. (5), i.e., just the
CD term in the Schrödinger picture, the undesired transitions
can be completely suppressed. This term typically requires
time-dependent control of complex interactions and the im-
plementation of Hcd is often a tough work. Provided that there
exists an available Hamiltonian Hadd (t ) = ∑

k,l Mk,l Akl with
Akl being the time-dependent coefficient, then by adding this
Hamiltonian into Eq. (5) we obtain

He(t ) = He
0 + R†Hadd R, (7)

where R†Hadd R = ∑
n,m,k,l Mn,mφ∗

nkφmlAkl , and φnm de-
notes the mth element of the column vector |φn(t )〉.
Once R†Hadd R nullifies the nonadiabatic coupling term
ih̄

∑
n �=m Mn,m〈φn(t )|φ̇m(t )〉, that is,

∑
k,l

φ∗
nkφmlAkl = ih̄〈φn(t )|φ̇m(t )〉, n �= m, (8)

the shortcuts can be constructed. Furthermore, even if part of
the transitions are suppressed, the shortcuts remain effective.
With the advantage of flexibility in constructing the available
STA in practice, an example application of this method to
produce the GHZ state is presented as follows.

III. APPLICATION IN GHZ STATE PREPARATION

The Ising model is ubiquitous in many physical systems
and plays an important role in both condensed-matter physics
and quantum computation [50–56]. Consider a three-spin
Ising model in an external magnetic field:

H0(t ) = −B(t )
N∑

i=1

σ i
x − J (t )

N∑
i=1

σ i
zσ

i+1
z (9)

with periodic boundary condition, i.e., σ N+1
v = σ 1

v and
N = 3. Here B(t ) and J (t ) denote time-dependent magnetic
field and spin-spin couplings strength respectively, and
σ i

v(v=x,y,z) denote the Pauli operators of the ith qubit.
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It turns out that we can adiabatically drive the system
from the product state [|0〉+|1〉]⊗3 to the GHZ state
by switching from B 	 J to B � J . For simplicity, we
set h̄ = 1, J (t ) = sin γ and B(t ) = cos γ with the time-
dependent parameter γ (t ) ∈ [0, π/2]. Thus the instantaneous
eigenvalues of H0(t ) are E1,2(t ) = sin γ − cos γ , E3,4(t ) =
sin γ + cos γ , E5,6(t ) = − cos γ − sin γ ∓ √

4 − 2 sin 2γ ,
and E7,8(t ) = cos γ − sin γ ∓ √

4 + 2 sin 2γ . The
corresponding first four time-independent eigenstates can
be given as |φ1,3〉=[∓|001〉 − |011〉 ± |100〉 + |110〉]/2,
|φ2,4〉=[∓|010〉 − |011〉 ± |100〉 + |101〉]/2, and the other
four time-dependent eigenvectors are

|φ5(t )〉 = cos η−√
2

[|000〉 + |111〉] + sin η−√
2

[|W 〉 + |W 〉],

|φ6(t )〉 = sin η−√
2

[|000〉 + |111〉] − cos η−√
2

[|W 〉 + |W 〉],

|φ7(t )〉 = cos η+√
2

[|111〉 − |000〉] − sin η+√
2

[|W 〉 − |W 〉],

|φ8(t )〉 = sin η+√
2

[|111〉 − |000〉] + cos η+√
2

[|W 〉 − |W 〉],

where |W 〉 = σx
⊗3|W 〉 = 1√

3
(|011〉+|110〉+|101〉), and

tan η± = (1 ± 2 tan γ ∓ 2
√

sec2γ ± tan γ )/
√

3. When γ (t )
adiabatically changes from 0 to π/2, the ground state |φ5(t )〉
can reach GHZ state. The time duration, to guarantee that no
excitation occurs, depends on the adiabatic condition.

To accelerate the adiabatic process, according to Eq. (2) the
exact CD term can be calculated as:

Hcd (t ) = − γ̇

7 + cos 4γ

∑
i �= j

p
(
σ i

zσ
j

y

)

− γ̇ sin 2γ

14 + 2 cos 4γ

∑
i �= j �=k

p
(
σ i

xσ
j

y σ k
z

)
, (10)

where p(·) denotes a permutation of the individual spin. In
theory, the adiabatic evolution can be realized in a finite
duration by directly adding the term Hcd (t ) to H0(t ). However,
such a complicated term involves six two-body interactions
and six three-body interactions. What’s more, inherent multi-
body interaction is absent in NMR, we have to simulate it
with many radio-frequency pulses and two-body interactions
[57]. Therefore, errors accumulated from the decoherence

effect and imperfect operations will increase the difficulties
in experiments.

As demonstrated in Ref. [47], once the nonadiabatic cou-
pling terms are nullified partially, the traditional CD term
Hcd (t ) can be replaced by Hamiltonian Hadd (t ) for speeding
up the adiabatic process. The transformation matrix between
the Schrödinger picture and eigenpicture is given as R(t ) =∑8

m=1 |φm(t )〉〈μm|. Then,

iR†Ṙ = iγ̇

(√
3(M6,5 − M5,6)

4 − 2sin2γ
+

√
3(M8,7 − M7,8)

4 + 2 sin 2γ

)
,

which represents the transitions |φ5(t )〉 ↔ |φ6(t )〉
and |φ7(t )〉 ↔ |φ8(t )〉. The designed term Hadd (t ) =∑

m,n Mm,nAmn(t ) can be employed to suppress these
transitions by solving Eq. (8) theoretically. But this is a
tough task because of a severe amount of computation needed
to do with the 8 × 8 parameters. To ensure the feasibility of
the subsequent experiment, we can adopt a set of controllable
operators hk in experiments. Here only two-body interactions
in this system, i.e., {h1 = σ 1

z σ 2
y , h2 = σ 1

y σ 2
z , h3 = σ 2

z σ 3
y ,

h4 = σ 2
y σ 3

z , h5 = σ 3
z σ 1

y , h6 = σ 3
y σ 1

z }, are used to design
shortcut to adiabatic passage. The additional Hamiltonian is
expressed as

Hadd (t ) = −
N∑

k=1

αk (t )hk, (11)

where αk (t ) denotes the coupling strength and N is the number
of the operators.

Let us take a look at some properties of this system
before we move on. The Hamiltonians H0(t ) and Hadd (t )
commute with the operator X = ∏3

i=1 σ i
x , so that these two

Hamiltonians can be simultaneously block diagonalized in the
two eigenspaces X±1 of X with eigenvalues ±1, and the eight
eigenstates of H0(t ) belong to different subspaces, i.e.,

{|φ3〉, |φ4〉, |φ5(t )〉, |φ6(t )〉} ∈ X+1,

and

{|φ1〉, |φ2〉, |φ7(t )〉, |φ8(t )〉} ∈ X−1.

Therefore any initial state in one of the two orthogonal in-
variant subspaces, driven by H0(t ) + Hadd (t ), would remain
in such a subspace. Here we only need to suppress the
transitions between the state |φ5(t )〉 and other excited states
in the subspace X+1, i.e., |φ5(t )〉 ↔ {|φ3(t )〉, |φ4(t )〉, |φ6(t )〉}.
According to Eq. (8), we obtained a set of homogeneous linear
equations as follows:

√
3(α2 − α3 + α5 − α6) cos η− + (2α1 + α2 − α3 − 2α4 − α5 + α6) sin η− = 0,

√
3(α1 − α2 + α4 − α5) cos η− + (α2 − α1 + 2α3 + α4 − α5 − 2α6) sin η− = 0,

α1 + α2 + α3 + α4 + α5 + α6 − 3γ̇ /(4 − 2 sin 2γ ) = 0,

(12)

where the time-dependent parameter η− has been defined
above. These equations are used to partially nullify the
nonadiabatic coupling terms and accelerate the adiabatic
protocol. Since the rank of the coefficient matrix of the

above equations is less than the number of variables,
the solution is not unique. But in practical situations, it
would be reasonable to set some of the parameters as
zero.
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TABLE I. Solutions to Eqs. (12) on the condition that any several variables are set to be zero. Here the time-dependent parameter η−(t ) =
arctan ([1 − 2 tan γ (t ) + 2

√
sec2γ (t ) − tan γ (t )]/

√
3).

1. α1 = α3 = α4 = 0 α2 = γ̇ (3 + √
3 cot η−)

8 − 4 sin 2γ
; α5 = 3γ̇ csc 2η−

(4 − 2 sin 2γ )(tan η− − √
3)

; α6 = 3γ̇

(2 − sin 2γ )(3 − √
3 tan η−)

2. α1 = α3 = α6 = 0 α2 = γ̇ (3 − √
3 cot η−)

8 − 4 sin 2γ
; α4 = 3γ̇

(2 − sin 2γ )(3 + √
3 tan η−)

; α5 = 3γ̇ csc 2η−
(4 − 2 sin 2γ )(

√
3 + tan η−)

3. α2 = α4 = α6 = 0 α1 = α3 = α5 = γ̇

4 − 2 sin 2γ

4. α1 = α3 = α5 = α6 = 0 α2 = γ̇ (3 + √
3 tan η−)

8 − 4 sin 2γ
; α4 = γ̇ (3 − √

3 tan η−)

8 − 4 sin 2γ
... ... ...

To get a unique solution of these equations, three out of the
six variables are chosen to be zero, and the rationality will be
subsequently proved. Although there are many groups under
such condition, the premise should be that the coefficients
αk (t ) are finite and smooth functions. A series of solutions
are shown in Table I and plotted in Fig. 1. Here a linear
evolution is given by γ (t ) = πt

2T , and the total duration T = 1
for simplicity. In Figs. 1(a) and 1(b), we can see that some
couplings tend to infinity near the boundary, which is not
available in experiment and these solutions have to be ruled
out.

A special case is obtained by imposing a constraint that
α2,4,6 = 0, and the other parameters α1,3,5(t ) = αadd (t ), and

αadd (t ) ≡ γ̇

4 − 2 sin 2γ
. (13)

The result illustrated in Fig. 1(c) shows that parameters are
available in experiment. To further validate the feasibility, we
calculate the fidelity of the state |�(t )〉 driven along the con-
structed Hamiltonian H (t ) = H0(t ) + Hadd (t ) with Hadd (t ) =

−αadd (t )(h1 + h3 + h5). The fidelity here is defined as F (t ) =
|〈GHZ|�(t )〉|2 and tends to 1 quickly (orange squares) as
depicted in Fig. 2, which has the same effect as the CD scheme
H0(t ) + Hcd (t ) (red solid line). By contrast, the final fidelity
is only about 0.63 without any additional terms (black dashed
line). As we can see the number of many-body interactions is
greatly reduced; the target state, which has the same precision
as the traditional CD method, can be prepared with reduced
complexity in practice.

A matter of effectiveness may appear, if the number
of the operators hk is further reduced. Notice that the
Eqs. (12) represent the suppression on transitions |φ5(t )〉 ↔
{|φ3(t )〉, |φ4(t )〉, |φ6(t )〉}, respectively. It is reasonable to be-
lieve that even if only part of the equations take effect, the
constructed shortcut will also work. For example, if α1,3,5,6 =
0 the other parameters α2,4(t ) can be acquired through the sec-
ond and third equations in Eqs. (12) as presented in Fig. 1(d)
and Table I (fourth row). Driven by this Hamiltonian H

′
(t ) =

H0(t ) + H
′
add (t ) with H

′
add (t ) = −α2(t )h2 − α4(t )h4, the final

fidelity gets close to 83% as shown in Fig. 2 (blue dashed line),
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FIG. 1. The time-dependent parameters αk (t ) deduced from the Eqs. (12) on the conditions (a). α1,3,4 = 0, (b). α1,3,6 = 0, (c). α2,4,6 = 0,
(d). α1,3,5,6 = 0, respectively. The corresponding analytical solutions are listed in the Table I.
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FIG. 2. Quantum state fidelity of the evolved state with different
protocols: no additional Hamiltonian (black dashed line), auxil-
iary Hamiltonian H

′
add (t ) (blue dashed line), additional Hamiltonian

Hadd (t ) (orange squares) and exact CD term Hcd (t ) (red solid line),
respectively. Detailed explanation can be found in the main text.

which is less than that in CD protocol (red line), but better
than no additional Hamiltonian case (black dashed line). The
actual performance is closely related to the time duration T
and selected operators hk . In short, this method offers much
flexibility to design speed-up protocols allowed by available
resources in experiment.

IV. EXPERIMENT

Our experiment was carried out on a Bruker Avance III
400 MHz (9.4 T) spectrometer equipped with a QXI probe at
room temperature. The ensemble of nuclear spins is provided
by Diethyl-fluoromalonate dissolved in d-chloroform, where
the 13C, 1H, and 19F nuclei constitute a three-spin chain. The
molecular structure and relevant properties are given in Fig. 3.
The natural Hamiltonian of the three-spin chain in a triple-
resonance rotating frame is

Hnmr =
3∑

i< j,=1

πJi j

2
σ i

zσ
j

z , (14)

FIG. 3. Relevant properties of the natural spin chain consisting
of 13C, 1H, 19F nuclear spins marked in the Diethyl-fluoromalonate.
The table on the right side summarizes the relevant NMR parameters,
i.e., the resonance frequencies ωi (on the diagonal), the J-coupling
constants Ji j (above the diagonal), and the relaxation times T2 in the
last columns.

FIG. 4. 13C experimental spectra (red) after a [π/2]y readout
pulse applied to carbon channel for equilibrium state (top), PPS
(middle), and GHZ state (bottom). The blue spectra show the results
by fitting. The four resonance lines are labeled by the corresponding
states of the two other qubits.

where Ji j represents the coupling strength between spin i and
spin j. The experiment consists of the following steps: (i)
initial-state preparation; (ii) dynamic evolution along the STA;
(iii) quantum measurement and state tomography.

(i) Initial-state preparation. Starting from the equilibrium
state, we first initialized the system into the pseudopure state
(PPS) of the form

ρ000 = 1 − ε

8
1 + ε|000〉〈000|

through the line-selective pulse method [58], with polariza-
tion ε ≈ 10−5 and 1 being the 8 × 8 identity matrix. The
experimental spectrum of the prepared PPS after applying a
[π/2]y readout pulse to 13C is shown in Fig. 4. Since we
used an unlabeled sample, the information of the 1H and 19F
spins was transferred to the 13C spin with a SWAP gate and
then the 13C spectra was observed. The prepared PPS was
confirmed by a full state tomography [59], which involves
the application of seven readout pulses and recording of the
spectra of all three channels. The amplitudes of spectra were
obtained by a fit to Lorentzians. Figures 6(a) and 6(c) show the
reconstructed density matrix ρ000

exp , from which we calculated
the state fidelity to be

F = Tr
(
ρ000

exp ρth
)

√
Tr

((
ρ000

exp

)2)
Tr

(
ρ2

th

) ≈ 0.99, (15)

where ρth is the theoretical density matrix. Then the initial
state [|0〉+|1〉]⊗3 was produced by applying [π/2]y pulse to
the three spins.

(ii) Dynamic evolution along the STA. The key step in
our experiment is to implement the shortcut to adiabatic pas-
sage using H (t ) = H0(t ) + Hadd (t ). The evolution operator
U (0, T ) from time 0 to T is given by

U (0, T ) = T
(
e−i

∫ T
0 H (t )dt

)
,

where T denotes the time-ordering operator. For the ex-
perimental implementation, the continuous passage was dis-
cretized into L segments [60,61], where the step size is chosen
such that in the interval [tl−1, tl ] the Hamiltonian H (t ) can be
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FIG. 5. Pulse sequence in experiments. The color rectangles
represent the hard pulses applied to individual qubits and pulse
phases is indicated inside them. Time durations τ12 = 2J[tl ]�t

πJ12 cos(ϕ2 ) ,

τ23 = 2J[tl ]�t
πJ23 cos(ϕ2 ) and τ13 = 2J[tl ]�t

π |J13| cos(ϕ2 ) represent free evolutions under
the natural Hamiltonian.

assumed to be constant

H[tl ] = −B[tl ]
3∑

i=1

σ i
x − J[tl ]

3∑
i=1

σ i
zσ

i+1
z − α[tl ]

3∑
k=1

σ i
zσ

i+1
y

with the discrete parameters B[tl ] = cos(πtl/(2T )),
J[tl ] = sin(πtl/(2T )), α[tl ] = π/(4T [2 − sin (πtl/T )]),
tl = T l/L = �t l , and l = 0, 1 . . . L. In the limit of L → ∞
and �t → 0, the total time evolution operator is given
by U (0, T ) = ∏L

l=0 Ul with the lth step Ul = e−i�tH [tl ].
Though each term of H[tl ] does not commute, Ul can be
approximately implemented by the Trotter’s formula [62],

e−i
∑3

j=0 Wj�t =
3∏

j=0

e−iWj�t + O(�t2) (16)

for arbitrary operators Wj . We here set W0 = −B[tl ]
∑3

i=1 σ i
x,

Wj �=0 = −J[tl ]σ
j

z σ
j+1

z − α[tl ]σ
j

z σ
j+1

y and then the time evo-
lution operator can be expressed as Ul ≈ ∏3

j=0 e−iWj�t . Note
that the duration of each step �t has to be short enough so
that the Hamiltonian simulation can have good accuracy. In
experiments we chose L = 7 and T = 0.5, and throughout
this process the theoretical fidelity of every step keeps more
than 0.993. Each term of Ul can be precisely implemented by
a combination of radio-frequency pulses and J-coupling evo-
lutions between the neighboring qubits under NMR pulsing
techniques [51,63,64]. As shown in Fig. 5, the shortcut-to-
adiabaticity passage can be implemented with the multipulse
sequence in experiments.

(iii) Qutanum measurement and state tomography. Finally,
we performed state tomography on the final states and the
reconstructed density matrix ρexp are shown in Figs. 6(b)
and 6(d). To make a quantitative analysis of the results, two
measures were adopted: (i) the attenuated correlation [65]
defined by

c(ρexp) = Tr(ρthρexp)

Tr(ρthρth)
, (17)
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FIG. 6. The real parts (a), (b) and imaginary parts (c), (d) of the
experimental density matrices for the initial state |000〉 (left part),
and the GHZ state (right part). The color bar represents the value of
density matrix ρexp.

and (ii) the fidelity defined in Eq. (15). The experimental
result of the attenuated correlation for the final state was
c(ρ exp) ≈ 0.72 due to the loss of polarization. To remove
the effect, we used the second measure and calculated the
experimental fidelity to be F (ρ exp) ≈ 0.94. The imperfections
out of the initial-state preparation, radio-frequency pulses, and
inhomogeneity of magnetic fields are sources of infidelity. Ac-
cording to our numerical simulations, the imperfection of the
initial state produces about 1% error; accumulated deviation
of serial pulses produces about 4% error. The experimental
time (∼16.9 ms) is short compared to the transverse relax-
ation time T2 (∼s), the decoherence caused by the relaxation
should be relatively small.

In experiment the instantaneous state fidelity of each step
was also calculated to assess the effectiveness of this short-
cut. As mentioned, the shortcut-to-adiabaticity passage was
discretized into L steps and can be implemented with the
multipulse sequence. We experimentally reconstructed den-
sity matrix ρexp[tl ] at the lth step by quantum state tomography
and calculated the state fidelity defined in Eq. (15) with the
instantaneous ground state ρth[tl ] of original Hamiltonian. As
shown in Fig. 7, driven by the Hamiltonian H0(t ) + Hadd (t ),
the state fidelities keep high throughout the discrete passage
(orange x symbols), although a bit lower than the theoretical
prediction (black dotted line). This result indicates we have
succeeded in constructing a shortcut-to-adiabaticity passage
with a simple term Hadd (t ). As a comparison, in experiment
the original Hamiltonian H0(t ) was also used to drive the sys-
tem under the same condition, and the final fidelity dropped
to only about 0.35 (blue squares). Note here the continuous
passage H0(t ) was also discretized into L steps and the time
evolution operator was also approximately implemented with
Trotter’s formula (the experimental pulse sequence and details
can be acquired similarly from Ref. [64]). Therefore, we
can conclude that the present scheme can obviously speed
up the adiabatic process with feasibility and simplicity in
experiment.
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FIG. 7. Instantaneous state fidelity of each step in experiment
with original Hamiltonian H0(t ) (blue squares), with Hamiltonian
H0(t ) + Hadd (t ) (orange x symbols), respectively. The color dashed
lines represent the theoretical expectations with the Trotter’s formula
for two case. Here, experimental pulse sequence for simulating H0(t )
can be acquired from Ref. [64].

V. CONCLUSIONS AND OUTLOOK

In summary, we prepared a multiparticle entangled state
via STA in a three-qubit NMR system. The traditional CD
term Hcd (t ) often takes a complicated form and requires com-
plex resources to realize interactions absent in experiment.
To overcome this hurdle, we adopted a flexible method [47],
that is, by partially nullifying the nonadiabatic transitions, to

create the GHZ state on Ising spin system. This method can
significantly reduce the experimental difficulties by decreas-
ing the number of many-body interactions.

Applying the STA protocol in a many-body system is a
nontrivial task. This experiment demonstrates the feasibility
of this method via current technology and therefore provides
an alternative technique to implement fast coherent quantum
control in many situations, such as, suppressing the defects
produced when crossing a quantum phase transition [39],
engineering quantum heat engines [66], and realizing fast
quantum information processing for multiqubit systems. Note
that in Ref. [45], with a different strategy, the idea of real-
izing the effective STA by a set of available control terms
was also discussed in theory. Recently, by modulating the
original Hamiltonian of the system, Petiziol et al. [67] also
proposed a method for effectively replicating the dynamics of
Hcd (t ) without the need for new unrealizable terms in original
Hamiltonian, which also offers a different and feasible method
to be investigated in future experiments.
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