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Entropy production in the quantum walk
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We explore the notion of generated entropy in open quantum systems. We focus on the study of the discrete-
time quantum walk on the line, from the entropy production perspective. We argue that the evolution of the coin
can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature
that depends on the initial state. The entropy balance shows that there is a positive-entropy production during the
evolution, in accordance with the second law of thermodynamics.
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I. INTRODUCTION

Over the past two decades, interest in the thermodynamic
aspects of quantum systems has increased enormously. Very
important results have been obtained, which have led to a
greater understanding of issues such as the equilibration and
thermalization mechanisms [1,2], the canonical typicality of
quantum states [3,4], and the possibility of extracting work
from quantum systems [5,6], among many other questions.
Some reviews on the current state of the discipline can be
found in Refs. [7–10].

One of the first questions that is natural to ask is whether
the different magnitudes of classical thermodynamics have a
counterpart in quantum systems in such a way that the laws of
thermodynamics are preserved in the quantum regime. This
is not an easy question to answer, given that the inherently
statistical character of the macroscopic thermodynamic prop-
erties loses its meaning when studying systems with only
a few components. In order to shed light on these issues,
the approaches to quantum thermodynamics from paradigms
such as the quantum mechanics of open systems or from
information theory have been very helpful.

With this idea in mind, we explore the concept of gen-
erated entropy in quantum systems. Generated entropy is a
key concept in classical thermodynamics, since it allows us
to establish the degree of irreversibility associated with a
thermodynamic process or, equivalently, it can be associated
with the work we could have obtained in an ideal process
between the same initial and final states, which is lost due to
irreversibilities.

For a classical system that undergoes an infinitesimal pro-
cess, exchanging energy with an environment at temperature
T , one possible statement of the second law of thermodynam-
ics is

dS = δQ

T
+ δSgen, δSgen � 0, (1)

where dS is the entropy change of the system, δQ is the heat
exchanged with the environment, δSgen � 0 is the generated
entropy associated with the process, and the equality holds
for reversible processes.

Some previous works have addressed the study of entropy
production, particularly from an information-theoretic point
of view [11,12]. The experimental determination of the en-
tropy production rates in quantum systems has been reported
recently [13,14]. In this work we analyze the validity of the
expression (1) in the paradigmatic model of the discrete-time
quantum walk (DTQW) on the line, from a pure thermody-
namic approach.

This paper is organized as follows. In Sec. II we describe
the DTQW on the line, in particular its evolution when the
initial state is a Gaussian-distributed walker on the positions.
In Sec. III the coin’s degrees of freedom of the walker are con-
sidered as a two-level open system, in contact with a thermal
bath, associated with the position’s degrees of freedom. Our
main result, the entropy generation in the quantum walk on
the line, is presented in Sec. IV. Finally, some remarks and
perspectives are discussed in Sec. V.

II. DISCRETE-TIME QUANTUM WALK ON THE LINE

The DTQW on the line [15] evolves in the composed
Hilbert space Hn ⊗ HS , where Hn is the position space
spanned by the basis {|n〉}, associated with integer positions
in the line, and HS , the chirality space described by the basis
{|+〉, |−〉}. The dynamics is given by successive applications
of the operator

U = T (In ⊗ Uθ ), (2)

where Uθ is a unitary evolution operator in two dimensions,
describing the quantum coin and parametrized by the coin bias
parameter θ ,

Uθ =
(

cos θ sin θ

sin θ − cos θ

)
. (3)

Above, T is the conditional translation operator

T =
∑

n

|n + 1〉〈n| ⊗ |+〉〈+| + |n − 1〉〈n| ⊗ |−〉〈−| (4)

and In is the identity operator in Hn.
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Any pure initial state can be expressed as

|ψ (0)〉 =
∑

n

|n〉 ⊗ [an(0)|+〉 + bn(0)|−〉], (5)

where an(0) and bn(0) satisfy the normalization condition∑
n |an(0)|2 + |bn(0)|2 = 1. After t applications of U , the

state will be

|ψ (t )〉 = Ut |ψ (0)〉 =
∑

n

|n〉 ⊗ [an(t )|+〉 + bn(t )|−〉]. (6)

Since in general the evolution produces entanglement between
the systems, the coin will find itself in a mixed state charac-
terized by its reduced density operator

ρS (t ) = trE |ψ (t )〉〈ψ (t )| (7)

whose matrix expression in the basis {|+〉, |−〉} is

ρS (t ) =
( ∑

n |an(t )|2 ∑
n an(t )b∗

n(t )∑
n a∗

n(t )bn(t )
∑

n |bn(t )|2

)
. (8)

It is well known that for large t , the expression (8) becomes
stationary, so the coin reaches an equilibrium state that de-
pends on the initial state of the global system [16–23]. In what
follows we will focus on the coin evolution, considering it as
a two-level open system that equilibrates due to interaction
with a large environment, composed by the infinite position
degrees of freedom of the walker. In order to highlight the
interpretation of Hn as a thermal bath, we will consider
situations in which many sites of the position’s Hilbert space
are initially occupied. In the case of bipartite systems with a
global Hamiltonian without degenerate gaps, this restriction
has been proven to be sufficient to ensure the equilibration
on average of the system [2]. We must point out that in the
case of the DTQW on an infinite line, an equilibrium state
is reached even if the walker is initially localized. However,
in spite of this singular behavior, as a rule, some kind of
thermodynamic behavior can only be expected if many sites
of the environment are occupied. Therefore, we will consider
this case, which, on the other hand, is the one of interest in
quantum computation algorithms [24,25]. In particular, we
will consider the family of initial states

an(0) = e−n2/4σ 2

4
√

2πσ 2
cos(γ /2),

(9)

bn(0) = e−n2/4σ 2

4
√

2πσ 2
sin(γ /2)eiϕ

corresponding to an initially Gaussian walker, distributed
around the origin with a width σ and with arbitrary chirality
determined by the angles γ and ϕ. The asymptotic reduced
density matrix for the initial state given by Eq. (9) has been
obtained in recent works, in the limit σ � 1 [26,27],

ρS = 1

2

(
1 + cos α cos θ cos α sin θ

cos α sin θ 1 − cos α cos θ

)
, (10)

where

cos α = cos θ cos γ + sin θ sin γ cos ϕ (11)

is the cosine of the angle between the initial Bloch vector

�B = (sin γ cos ϕ, sin γ sin ϕ, cos γ ) (12)

and the vector �v,

�v = (sin θ, 0, cos θ ). (13)

III. THE COIN AS AN OPEN SYSTEM

In order to implement an entropy balance, we must analyze
the DTQW on the line, which is essentially a mathematical
model, from a physical point of view. As it was previously
mentioned, we will consider the coin’s degrees of freedom
as a two-level system in thermal contact with a large bath,
described by the position’s Hilbert space Hn. To complete the
physical description, we must identify the local Hamiltonian,
whose expectation value will be defined as the internal energy,
and the temperature T of the lattice experienced by the qubit.
In Ref. [26] it is shown that for sufficiently wide position
distributions the dependence on the initial state in Eq. (10)
can be factorized in such a way that the asymptotic reduced
density ρS can be written in the canonical distribution form

ρS = e−βH ′
S

tr(e−βH ′
S )

(14)

for a fixed Hermitian operator H ′
S , called the entanglement

Hamiltonian,

H ′
S = −ε�σ · �v. (15)

Here ε is an arbitrary factor with units of energy and �σ the
vector whose components are the Pauli matrices.

The initial-state-dependent entanglement temperature
Tent = 1/kBβ is [28]

Tent = ε

kB ln[tan(α/2)]
, (16)

where kB is the Boltzmann constant. In addition, Tent contains
all the dependence on the initial state and is a measure of the
entanglement produced during the evolution.

We observe that the asymptotic reduced state (14) can be
interpreted as the equilibrium state of a two-level system gov-
erned by an effective local Hamiltonian H ′

S that equilibrates
due to thermal contact with a heat reservoir at temperature
Tent. In this case, the temperature is not an intrinsic property of
the bath, since it also depends on the initial state of the system
through the parameter α. As a consequence, there is no global
attractor for all initial states, but a diameter of equilibrium
states, one for each value of α. This implies that all initial
states placed on a circumference orthogonal to the vector �v
on the Bloch sphere evolve to a common equilibrium state,
located at the center of the circumference (see Fig. 1).

We should remark that when narrow initial position distri-
butions are considered, the system cannot be modeled under
the system-thermal bath paradigm since the equilibrium state
cannot be expressed in the form of Eq. (14) for a fixed
Hamiltonian [26].

An additional argument that reinforces the idea of taking
H ′

S as the local Hamiltonian arises from the analysis of the
numerical simulations. Figure 1 shows the evolution of the
reduced state in the Bloch sphere for a Hadamard walk
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FIG. 1. Time evolution of the Bloch vector associated with the
coin state. The initial states considered are Gaussian-distributed
walkers with width σ = 10 and initial chirality |+〉 (green small
circle) and 1√

2
(|+〉 + |−〉) (red large circle), respectively. The Bloch

vectors are represented by the black dots and converge to the asymp-
totic state (the center of each circle). The same asymptotic state is
reached for all the initial coin states in each circumference.

(θ = π/4). We notice that for both initial states considered,
the Bloch vector at the time t + 1 is very close to the vector
that we would obtain by rotating the Bloch vector at time t
an angle η = π with respect to the ê = 1√

2
(1, 0, 1) axis. This

suggests that the unitary part of the reduced evolution for one
step must coincide with such rotation. Recalling the general
expression for a rotation operator

Rη,ê = eiξ e−i(η/2)ê·�σ , (17)

the unitary part of the coin evolution for one step can be
obtained by choosing ê = 1√

2
(1, 0, 1), η = −π , and arbitrary

ξ (in what follows we take ξ = 0 for simplicity),

U ′ = Rπ,(1/
√

2)(1,0,1) = ei(π/2)H , (18)

where the generator of the rotation H is the Hadamard opera-
tor

H = 1√
2

(
1 1

1 −1

)
. (19)

On the other hand, the entanglement Hamiltonian (15) for θ =
π/4 is also essentially the Hadamard operator

H ′
S = −ε�σ · �v = −εH, (20)

which shows that the unitary part of the observed reduced
dynamics is generated by the same operator that appears in the
expression of the thermal state (14) and supports our argument
about considering H ′

S to serve as the local Hamiltonian.

IV. GENERATED ENTROPY

Once we have identified the local Hamiltonian and the
effective temperature of the thermal bath, we are in a position
to implement an entropy balance. We will assume that the
entropy of the qubit corresponds to the von Neumann entropy
of its reduced state ρS ,

SvN = −kBtr(ρS ln ρS ), (21)

whose expression in terms of the eigenvalues of ρS , λ±, is [29]

SvN = −kB[λ+ ln λ+ + λ− ln λ−]. (22)

Defining the internal energy as the expected value of the
local Hamiltonian

E (t ) = 〈H ′
S〉 = −ε tr[ρS (t )H] (23)

and also defining, since there is no work involved, the heat
exchanged in one step as the change in the internal energy

δQt→t+1 = E (t + 1) − E (t ), (24)

we will investigate the validity of the expression (1) of the
second law of thermodynamics. The entropy generated until
step t , starting from a pure state, which therefore has SvN (0) =
0), is

Sgen(t ) = SvN (t ) − Q0→t

Tent
, (25)

where Q0→t = E (t ) − E (0) is the total heat exchanged during
the evolution.

Analyzing the numerical simulations of Fig. 1, we notice
that the trajectory defined by the successive nonequilibrium
states lies so close to the plane α = const that it is not possible
to observe them in the figure. This implies that the scalar
product of the Bloch vector with the vector �v that defines the
entanglement Hamiltonian is approximately constant, a fact
that, because of the previous definitions, must be interpreted
as the approximate conservation of the local energy during the
evolution. However, these small energy fluctuations contribute
to the generation of entropy in the process, as we will show in
the examples below.

In Fig. 2(a) we present the numerical results for the von
Neumann entropy as a function of the number of steps,
for a Gaussian walker initially centered at the origin, with
several values of σ , and the coin initially in the state |+〉.
We notice that, in spite of the overall growing trend, the von
Neumann entropy oscillates before reaching the asymptotic
state. After considering the transport term due to heat flow
shown in Fig. 2(b), we notice that the generated entropy
[Fig. 2(c)] presents a monotonically increasing behavior.
Therefore, whenever the von Neumann entropy of the system
decreases, heat is transferred to the environment in an amount
such that its increase in entropy exceeds the reduction in the
von Neumann entropy.

We note that, although the final value of the entropy does
not depend on σ , as long as this width does not take very small
values, the evolution to the asymptotic value is faster for small
values of σ . This can be understood when the evolution of the
occupancy distribution is considered. In Ref. [30] it is shown
that the initial Gaussian distribution gradually separates into
two Gaussian peaks that move, to the right and to the left,
with a velocity that is determined by the parameters of the
Hadamard evolution operator. Therefore, the time required for
the separation to be complete (within a given approximation)
is proportional to the width of the original position distribu-
tion. We have verified that when the separation is complete,
the entropy stops changing. This explains the slower growth
of Sgen(t ) for the larger values of σ .

Numerical simulations show analogous behavior for other
nonlocal initial states of the walker, given that many states
of the position space are initially occupied. For example, in
Fig. 3 we show simulations for the case where the initial
state is a uniform superposition of several kets |n〉 centered
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FIG. 2. Dimensionless thermodynamic function for (a) von Neu-
mann entropy, (b) entropy change due to heat transfer, and (c) gen-
erated entropy, corresponding to an initially Gaussian-distributed
walker, centered at the origin, with σ = 30 (black thick line), 20
(green thin line), 10 (blue dot-dashed line), and 5 (red dotted line).
The initial chirality is |+〉 in all cases.

at the origin. We note that the thermal-state-generated entropy
is in good agreement with the one obtained in the previous
Gaussian-distributed initial-state case. This supports the use
of the same entanglement Hamiltonian in the entropy balance.
In Fig. 3 we again notice that the consideration of the entropy
flux term corrects the von Neumann entropy oscillations in the
evolution towards the asymptotic state. However, in this case,
there is a small net contribution from the Q0→t/Tent term to
the generated entropy.
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FIG. 3. Similar to Fig. 2 for a walker that starts in a uniform
superposition of 101 position states centered at the origin. The initial
chirality state is |+〉. The dimensionless thermodynamic function is
shown for (a) von Neumann entropy, (b) entropy change due to heat
transfer, and (c) generated entropy.

Consistency with previous work

Reference [12] calculates the entropy generation for open
Hamiltonian systems in thermal contact with a large reservoir

Sgen(t ) = kB
[
D

(
ρS (0)||ρeq

S

) − D
(
ρS (t )||ρeq

S

)]
, (26)

where D(ρ||ρ ′) = tr(ρ ln ρ) − tr(ρ ln ρ ′) is the relative
entropy of the states ρ and ρ ′ and ρ

eq
S is the equilibrium
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state. It is possible to show that the expression (26) is
always positive if ρ

eq
S is a stationary solution of the reduced

dynamics. This excludes systems presenting recurrences, but
holds for a DTQW evolving on an infinite line.

The consistency between our formalism and Eq. (26) is a
direct consequence of the possibility, for initial wide Gaussian
position distributions, of writing the equilibrium state in the
form of Eq. (14). As an example, note that the asymptotic
value of the generated entropy, according to Eq. (26), is

S∞
gen = kBD

(
ρS (0)||ρeq

S

)
. (27)

Using the definition of relative entropy and the equilibrium
state (14), after some algebra we obtain

S∞
gen = kB ln

[
2[tan (α/2)]cos α

sin α

]
. (28)

This coincides with the calculation of the asymptotic value
of the von Neumann entropy (22) using the eigenvalues of
Eq. (10), as expected since in this case the heat exchanged
with the environment Q0→t is zero, in agreement with the
discussion presented in the paragraph following Eq. (25).

For a Hadamard walk with the coin starting in the state
|+〉, i.e., γ = 0, and a Gaussian-distributed walker, Eq. (11)
implies that α = π/4. Substituting this value in Eq. (28), we
obtain

S∞
gen/kB = 3

2
−

√
2

2
ln(

√
2 + 1) � 0.4165, (29)

which coincides with the asymptotic value of Figs. 2(c)
and 3(c).

V. CONCLUSION

The main objective of this work has been the study of
the DTQW on the line from the point of view of entropy
generation. We considered the chirality degrees of freedom
as a two-level system that evolves towards an equilibrium
state due to its interaction with a much larger environment,
composed by the position degrees of freedom.

It is important to emphasize that the interpretation of Hn

as a thermal bath could only be established when the initial
position occupation level is high. This means that our present
study does not include highly localized initial states.

After identifying the local Hamiltonian, we have observed
variations in the evolution of its expected value, a fact that
can be interpreted as the equivalent of heat transfer with
the lattice. This implies, for example, that in optical imple-
mentations of quantum walks [31–34], there should always
exist energy transfer between the photon and the optical
devices. The consideration of the heat transfer term in the
entropy balance is of particular importance, since it ensures
a monotonic increase in the entropy production during the
entire evolution. Since the time-reversed process would imply
entropy destruction, our study suggests that, despite being
possible due to unitary reversibility, the Gaussian packet
narrowing in position space, starting from a highly distributed
state, is an extremely unlikely process from the thermo-
dynamic point of view. This is equivalent to saying that,
at least in the case of this system, the process of going
from a very entangled state to a product state is extremely
improbable.
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