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Controlling error orientation to improve quantum algorithm success rates
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The success probability of a quantum algorithm constructed from noisy quantum gates cannot be accurately
predicted from single-parameter metrics that compare noisy and ideal gates. We illustrate this concept by
examining a system with coherent errors and comparing algorithm success rates for different choices of two-qubit
gates that are constructed from composite pulse sequences, where the residual gate errors are related by a unitary
transformation. As a result, all of the sequences have the same error relative to the ideal gate under any distance
measure that is invariant under unitary transformations. However, the circuit success can vary dramatically
by choosing error orientations that do not affect the final outcome and error orientations that cancel between
conjugate controlled-nots, as demonstrated here with Clifford circuits, compiled Toffoli gates, and quantum
simulation algorithms. The results point to the utility of both minimizing the error and optimizing the error
direction and also to the advantages of using multiple control sequences for the same gate type within a single
algorithm.
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I. INTRODUCTION

The success probability of quantum algorithms depends on
the quality of underlying operations. In the near term, noisy
quantum gates will be a feature of all quantum hardware [1].
For every quantum gate there are multiple control sequences
that apply the same gate but yield different errors, even in the
same physical system. This control flexibility provides mul-
tiple methods for improving algorithms in the face of errors.
For stochastic errors, if one can control the weight and type
of stochastic errors, it is possible to run a series of imperfect
quantum circuits and extrapolate to the expected value of a
perfect quantum circuit [2–5]. For errors described by uni-
tary transformations, quantum control methods are available
to generate gates with smaller and smaller error including
dynamic decoupling [6–10], composite pulses [11–19], and
optimal control [20–23].

Typical discussions of errors focus on scalar metrics such
as the fidelity or the diamond norm [24–26] but error oper-
ators also have an orientation in the space of operators. A
quantum algorithm starts with state preparation and ends with
measurement. In general, both the state preparation and the
measurement break the symmetry of errors. An ideal case
would be where the error of every gate maps to an error at
the end of the circuit, which commutes with the measurement
and is therefore harmless. To achieve this goal, we would need
a method to control the error direction of each gate and to
understand how it propagates through the circuit.

We show this goal is achievable in the context of two-qubit
gates with systematic coherent errors. First, we define our
notation for unitary operations and our two fidelity measures:
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gate fidelity and circuit fidelity. Then we explain how a two-
qubit gate composite pulse sequence allows us to transform
what is initially a two-qubit error into a single-qubit error
on either qubit and oriented in any direction. Next, using an
implementation of the Bernstein-Vazirani algorithm [27] as
an example, we show how we can trace the single-qubit errors
through a Clifford circuit to determine the optimal orientation
for each gate. Finally, we show how this method can be used in
non-Clifford circuits by taking advantage of common patterns
of controlled-not gates in quantum algorithms. This work
shows that different implementations of the same two-qubit
gate, which have the same fidelity and diamond norm, can
lead to algorithmic failure probabilities that differ by orders
of magnitude.

II. NOTATION, ERROR MODEL, AND FIDELITY
MEASURES

Following standard quantum information notation, we
write the Pauli operators as X,Y , and Z . Other standard
gates are the Hadamard, H = √

1/2(X + Z ), the π/8 or
T gate, T = exp(iπ/8)[cos(π/8)I − i sin(π/8)Z], the phase
gate, S = T 2, and the controlled-not is a two qubit gate acting
on the control qubit c and the target qubit t , CNOT(c, t ) =
|0〉 〈0|c It + |1〉 〈1|c Xt [28]. We also define γ = SH , which
transforms Z to Y = γ Zγ †.

We are primarily interested in unitary operations U gener-
ated by a Hermitian operator A. Our typical notation will be

UA(θ ) = exp

(
− i

θ

2
A

)
(1)

and our convention is guided by the rotations of single qubits,
UZ (θ ) = Rz(θ ).
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The error model considered in this paper is an unknown
systematic error that is linear in θ . This is a common prob-
lem experimentally due to slow fluctuations in the value of
the control field. It is convenient to introduce the following
notation:

VA(θ ) = UA(θ (1 + ε)), (2)

where VA(θ ) represents an attempt to apply UA(θ ) that is
ruined by noise.

We quantify the fidelity of our n-qubit gates using the
entanglement fidelity [29] to compare our ideal gate UG and
the applied gate ŨG. Since we are only considering unitary
errors, we can write U †

GŨG as the gate associated error channel
and the entanglement fidelity is

Fgate =
∣∣∣∣∣
Tr[U †

GŨG]

2n

∣∣∣∣∣
2

. (3)

To quantify our circuit fidelity, we compare the actual
measured output with the desired measured output. In many
algorithms, the output register O is only a fraction of all of
the qubits involved in the circuit C. We define the circuit
fidelity by comparing the reduced density matrix on O of the
ideal circuit, ρO, to the reduced density matrix on O for the
error-prone circuit ρ̃O as

Fcircuit =
∣∣∣Tr[

√√
ρOρ̃O

√
ρO]

∣∣∣2
. (4)

We choose this definition so that in the limit of the ideal
output being a pure state on O, ρO = |ψO〉 〈ψO|, the fidelity is
the probability that the output state yields the correct answer,
Fcircuit = 〈ψO| ρ̃O |ψO〉. For the circuits studied in this paper,
the output register is not entangled with other registers and is
ideally a pure state.

The circuit fidelity can be much higher than the gate
fidelity. Consider a circuit, which consists of prepare 0, apply
H , and measure in the X basis. The ideal output is |+〉.
Consider two erroneous H gates: Ha = UX (ε)H and Hb =
UZ (ε)H . The gates have the same gate fidelity but Hb has no
impact on circuit fidelity,

Fgate(Ha) = Fgate(Hb) = Fcircuit (Hb) = cos(ε/2)2 (5)

Fcircuit (Ha) = 1. (6)

This trivial example shows that the orientation of the error
can have a large effect on circuit fidelity and that any one
parameter metric of gate error may be a poor predictor of
algorithmic success. Ha and Hb have the same distance from H
and the same fidelity loss compared to H for any metric that
is invariant under unitary transformations. In the remainder
of the paper, we will show that this difference in Fcircuit for
constant Fgates can occur naturally by combining composite
pulses and two-qubit gates with systematic errors.

III. COMPOSITE PULSES FOR ISING-TYPE
INTERACTIONS

In our model the only error is a systematic error in
the implementation of two-qubit gates. Each two-qubit gate
is generated by an Ising-type Hamiltonian with the ideal

two-qubit gate being UXX (θ ) = exp(−iθXX/2). Our error is
that the nonideal gate V has a systematic error such that
VXX (θ ) = UXX (θ (1 + ε)). This error naturally occurs due
to imprecise timing and slow fluctuations of the control
fields.

Jones showed that under the assumption of perfect single-
qubit gates the errors in V can be mitigated using compos-
ite pulse sequences developed for single-qubit gates [30].
Composite pulses on single-qubit gates rely on the algebra
of su(2): [Ai, Aj] = iεi jk2Ak . For single qubits, A1 = X, A2 =
Y, A3 = Z . For our problem, we are given A1 = XX and we
are free to choose A2 from any weight-2 Pauli operator that
anticommutes with XX . Regardless of our choice, A3, is a
weight-1 Pauli operator that anticommutes with XX [31].
In analogy with single-qubit operators: we denote Aj as the
operator and aj as the direction in the Lie algebra.

Since A1 and A2 are unitary and Hermitian, A1A1 =
A2A2 = I , and anticommute A1A2 = −A2A1, it is convenient
to define A(φ)

A(φ) = cos(φ)A1 + sin(φ)A2 (7)

and the related unitary operator

UA(φ)(θ ) = cos(θ/2)I

− i sin(θ/2)[cos(φ)A1 + sin(φ)A2]. (8)

For concreteness, we choose the composite pulse sequence
SK1 [13],

SK1A1 (θ ) = VA(−φSK1 )(2π )VA(φSK1 )(2π )VA1 (θ ) (9)

= UA3 (βε2)UA1 (θ ) + O(ε3), (10)

φSK1 = cos−1 (− θ
4π

) and β = 4π2 sin(φSK1) cos(φSK1) dis-
played graphically in Fig. 1. The important feature of SK1
for this study is that the leading order of the error is a rotation
about A3 and this will hold for all fully compensating pulses
that correct to εn where n is even.

Given A1 = XX , the following choices of A3 are possible
Y I, ZI, IY , and IZ . This transformation of a two-qubit error
into a predominantly single-qubit error gives us a number of
opportunities for error cancellation. We can also convert the
error to an XI or IX error by conjugating the composite pulse
that yield Z errors with π/2 rotations about YY at the cost of
additional gates [31].

In the rest of the paper, we focus on CNOT gates. These
gates are constructed from rotations about π/2 around XX
and local gates [32,33]. These local gates transform the
residual errors to a choice of ZI, XI, IZ , and IY . CNOT
is its own inverse and conjugating the gate sequence yields
an equivalent CNOT where the rotation error can be con-
sidered coming before the gate and will have the opposite
sign.

For completeness, we write out the pulse sequences that
yield rotation errors after the gate around XI and Y I on the
control qubit and IY on the target qubit. In these sequences,
φSK1 = cos−1(−1/8) and V †

A (θ ) = VA(−θ ). CNOTSK1 will be
used to represent any of the composite pulse sequences in
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a1

a3

a2

2

2

2

SK1

SK1

FIG. 1. A visual of the SK1 pulse sequence. The dominant
residual error points orthogonal to the plane of correction (in this
figure a1–a2). This second-order rotation has an angle of rotation
proportional to the pulse area, β = 4π 2 sin(φSK1) cos(φSK1).

Eqs. (14)–(17).

W2 = UZI (−π/2)UY I (−π/2)UIX (−π/2) (11)

W1 = UY I (π/2) (12)

CNOT = W2VXX (π/2)W1 (13)

CNOTY I = W2UY I (φSK1)VXX (2π )UY I (−2φSK1)

×VXX (2π )UY I (φSK1)VXX (π/2)W1 (14)

CNOTIY = W2UIY (φSK1)VXX (2π )UIY (−2φSK1)

×VXX (2π )UIY (φSK1)VXX (π/2)W1 (15)

CNOTXI = W2UZI (−φSK1)VXX (2π )UZI (2φSK1)

×VXX (2π )UZI (−φSK1)VXX (π/2)W1 (16)

CNOT−XI = CNOT†
XI . (17)

IV. STRATEGIES FOR REDUCING CIRCUIT ERROR BY
CONTROLLING GATE ORIENTATION

We employ two strategies for reducing circuit error. The
first strategy notes that preparation and measurement sets a

|0〉 H • H

|0〉 H • H

|0〉 H • H

|0〉 H • H

|0〉 H Z H

FIG. 2. A circuit for implementing the Bernstein-Vazarani for
f (x) = a · x given a = 1111.
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CNOT Gate
CNOTSK1

CNOTXI Circuit

CNOTYI Circuit

CNOT Circuit

Gate

FIG. 3. Comparison of 1-Fcircuit for the four-bit Bernstein-
Vazarani circuit for different CNOT implementations as a function
of the systematic error ε (solid lines). The underlying 1-Fgate are
plotted for the different implementations of CNOT (dashed lines).
Although the corrected CNOTs (CNOTX I and CNOTY I , which are
both examples of CNOTSK1) have the same Fgate, they result in
drastically different Fcircuit .

basis. Any erroneous unitary operation that preserves the basis
will not change the measurement outcome and generates only
a global phase on the prepared state. The second strategy notes
that CNOTs often form conjugate pairs around other unitary
operations. We can then carefully choose the gate sequence
so the leading-order residual coherent error is on the control
qubit and is canceled between the paired CNOTs.

A. Tracing errors through the circuit

After applying the composite pulse, the residual error is
a single-qubit rotation. We can track how the Pauli operator
transforms from the error location to measurement to deter-
mine which Pauli error we should choose. This generally can
be quite hard but if we restrict ourselves to Clifford circuits we
can take advantage of fault-path tracing methods developed
for quantum error correction [34–36].

As an example consider an implementation of the
Bernstein-Vazirani circuit presented in Fig. 2 and commonly
used in experiments [37,38]. The final measurement is in the
Z basis, between the CNOT and the Z measurement is a
Hadamard gate that changes X to Z . We then simply choose
the composite pulse that yield an error, which is primarily an
X rotation on the control qubit.

• • • • T

• • T † T † S

H T † T T † T H

FIG. 4. A circuit for implementing the Toffoli gate from single-
qubit gates and CNOT gates. Note that the six CNOT gates come in
three conjugate pairs.
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CNOT Toffoli

Gate
Gate

FIG. 5. Comparison of of 1-Fgate of the Toffoli gate as a function
of the systematic error ε for different CNOT pulse sequences (solid
lines). The underlying gate errors of the CNOT sequences making up
the Toffoli (Fig. 4) are also presented (dashed lines). Corrected pulse
sequences improve gate fidelity for small ε over the naive circuit, but
a strategy of canceling errors on the target qubit by conjugate pairs
yields the lowest loss in Toffoli gate fidelity and a fundamentally
improved scaling.

Regardless of the error orientation the SK1 gates have
the same fidelity and diamond distance. They both yield an
improvement in the circuit fidelity relative to a naive gate but
the SK1 gate where the error is oriented along X significantly
outperforms the alternative choice (Fig. 3). For the naive gate
and the poorly chosen composite pulse gate, the circuit error
and gate error decreases by the same power of ε. By choosing
the composite pulse sequence that leads to the error vanishing
on the measurement the circuit error decreases as ε6 compared
to gate errors that are decreasing as ε4. Tracing error can
even work in circuits not made from Clifford gates but it is
only practical for circuits of limited depth and may not yield
as dramatic gains. In these cases, it may be more valuable
to construct more robust gate sequences locally within the
circuit.

B. Canceling errors with CNOT conjugation

A common pattern in quantum algorithms is an operation
placed between the target of two CNOTs. The control bit is
not modified during this operation and by aligning the errors
to cancel on the control bit, we can again reduce the circuit
error. We present two examples of this procedure in practice:
the Toffoli gate and a quantum simulation algorithm.

1. Toffoli gate

Consider the canonical circuit for implementing a Toffoli
gate from CNOTs (Fig. 4), T gates, and Hadamards [28]. The
six CNOTs form three pairs of conjugated CNOTs.

We compare four choices of gates: naive gates, CNOT, SK1
with errors on the control bit, CNOTXI , SK1 with errors on the
target bit, CNOTIY , and SK1 with conjugate error cancellation
on the control bit, CNOT±XI (Fig. 5). Using naive CNOTs, the
error of the Toffoli gate is always worse than the error of the
CNOTs. This is not surprising, since the Toffoli is composed
of six CNOTs. This remains true for CNOTIY and CNOTXI ,
which improve the overall fidelity relative to CNOT for small
errors. Using CNOT±XI to cancel errors on conjugate CNOT
pairs, we find the unexpected behavior that the Toffoli gate
fidelity loss is less than the underlying CNOT error, showing
the value of this strategy for coherent error cancellation.

V. QUANTUM SIMULATION AND PHASE ESTIMATION

Quantum simulation on a quantum computer requires
generating Hamiltonian dynamics with multiqubit operators.
Whether this is performed by Trotter decomposition [39] or
Taylor series expansions [40] or quantum signal processing
[41], the underlying methods involve an array of conjugate
CNOTs that transform single-qubit operators into multiple-
qubit operators. These conjugations of operators allow us to
cancel the coherent errors using CNOT pairs as we did for the
Toffoli gate.

Quantum simulation is a subroutine in a phase estima-
tion algorithm for finding the eigenvalues of a Hamiltonian
[42,43]. The phase estimation requires the inverse QFT,
which is constructed from increasingly fine controlled rota-
tions. These controlled rotations can also be constructed from

•

UXX (θ)
=

• •
H • • H

H UZ
θ
4 UZ − θ

2 UZ
θ
4 H

•

UY Y (θ)
=

• •

γ† • • γ

γ† UZ
θ
4 UZ − θ

2 UZ
θ
4

γ

|0 H • • UZ − π
8 UZ

π
4 UZ − π

8 H

|0 H • • • • H • •

UXX (π) UY Y (π) UXX (π) UY Y (π) UXX (π) UY Y (π)|ψ

FIG. 6. The phase estimation circuit, which simulates the Hamiltonian XX + YY . There is a symmetry for all of the CNOT gates within
this circuit. All of the CNOT gates in this circuit have a neighboring CNOT gate, which acts on the same control such that no unitary acts
on the control qubit in between them. By ensuring the implementation of these neighboring CNOT pairs are the conjugate of each other with
the dominant error placed on the control qubit, the dominant residual error from the CNOT pair will become identity. This technique can be
applied to any controlled rotation. The state |ψ〉 on which phase estimation is performed was chosen as the ground state of H, |10〉−|01〉√

2
.
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10 2

10 1

100

1

CNOT Gate
CNOTSK1 Gate

CNOT±XI Circuit

CNOTXI Circuit

CNOTIY Circuit

CNOT Circuit

FIG. 7. Comparison of 1-Fcircuit for the quantum simulation cir-
cuit (Fig. 6) for different CNOT gates versus the systematic error
parameter ε (solid lines). The underlying CNOT errors, 1-Fgate, for
SK1 corrected and uncorrected CNOT gates are also plotted (dashed)
lines. The best error suppression occurs when the corrected gates are
chosen as conjugate pairs (CNOT±X I ).

single-qubit rotations and conjugate CNOTs. Again this yields
an opportunity to cancel coherent errors.

We demonstrate our method using a four-qubit imple-
mentation of phase estimation to determine the eigenvalue
of a two-qubit spin Hamiltonian. The XY spin Hamiltonian
HXY = ∑

k, j hk, j (XkXj + YkYj ) has a number of applications
in nuclear physics and condensed matter physics. Quantum
simulations of this Hamiltonian with single-qubit energy
terms have been performed using nuclear magnetic resonance
[44,45], trapped ions [46,47], and superconducting [4,48]. We
have chosen the parameters such that the phase is exact for
two-qubit phase estimation. This example already shows the
key opportunity for cancellation in the quantum simulation
and in the quantum Fourier transform (Fig. 7). We allow
for perfect state simulation in this case and note that state
preparation is often part of the circuit where CNOTs do not
appear in conjugate form. In many cases the first strategy of
attempting to cancel the errors on initialization instead of final
measurement will be useful.

First, comparing SK1 sequences CNOTXI and CNOTIY ,
we see in Fig. 7 that the error on the control line yields a
lower circuit error for small errors and for both circuits the
error is reduced as ε2 following the gate fidelity reduction of
ε2. The circuit with conjugate CNOTs (CNOT±XI ) yields a
circuit error that scales as ε6 and shows again that for small
coherent error that the circuit fidelity is greater than the gate
fidelity.

VI. CONCLUSION

We have shown that controlling the orientation of errors
greatly improves algorithm performance using a simple model
of over rotation in two-qubit gates. This work again empha-
sizes that single-parameter characterizations of gate quality
are limited predictors of circuit success [26]. The SK1 gates
considered here all have exactly the same fidelity and diamond
norm relative to the ideal gate but remarkably different per-

formance in the context of the circuits. As a result, for any
quantum control procedure one should optimize not only for
error but also the orientation of the error. For higher-order
composite pulse sequences where the residual error is orthog-
onal to the gate, our approach can be applied directly. This is
the case for amplitude errors when the pulse sequence has an
even-order residual error [17]. For odd order residual errors,
for example, BB1 [12], the error is not orthogonal to the gate
and the controlling orientation will have only a limited effect.
For numerical optimal control, error orientation can be added
to the cost function for optimization. We generally expect that
tuning conjugate pairs of CNOTs can reduce the effect of
errors even when the error has only partial unitarity [49] based
on modeling the cancellation of coherent errors in quantum
error correcting protocols [50].

In Ref. [50], error cancellation occurs by the application
of oppositely rotating multiqubit coherent operators that are
related by a stabilizer operator, which describes a symmetry
of the error correcting code space. Given these multiqubit
operators, this method of stabilizer slicing does not cost any
additional operations or any additional time. The methods
presented here always cost additional time but only require
two-qubit operations. If the coherent error of different two-
qubit gates is perfectly correlated, we can extend the method
of CNOT conjugation (Sec. IV B) to error cancellation be-
tween neighboring CNOTS with different targets (or different
controls). This would allow us to remove coherent gate errors
in stabilizer measurement circuits consisting of an even num-
ber of interactions between a single ancillary qubit and the
data. This is a common motif in error correction including the
weight-4 stabilizers that make up the bulk of the surface code
[51]. The tracing of error approach to cancel errors (Sec. IV A)
is more useful for reducing error in the creation, verification,
and measurement of ancillary qubits [52–54].

Composite pulse sequences have been successful for
single-qubit gates [37,55–58], but are generally unused for
two-qubit gates. The reason is that two-qubit gates typically
have longer gate times than single-qubit gates, which results
in more stochastic noise per gate. The SK1 sequence studied
here for UA(π/2) is nine times longer than the naive gate
and as a consequence stochastic errors will accumulate. Faster
two-qubit gates or weaker stochastic errors are necessary for
the sequences discussed here to be useful in the laboratory and
helpful for error correction.

Experimentalists have access to a wide variety of pulse
sequences that generates nominally the same gate. The broad
principles of canceling the errors locally or erasing them
in measurement or state preparation can be used to help
determine which gate sequence to choose. These simple rules
can help increase the length of quantum computations in this
era of noisy quantum gates.
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