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Mutually unbiased bases (MUBs) constitute the canonical example of incompatible quantum measurements.
One standard application of MUBs is the task known as quantum random access code (QRAC), in which
classical information is encoded in a quantum system, and later part of it is recovered by performing a quantum
measurement. We analyze a specific class of QRACs, known as the 2d → 1 QRAC, in which two classical dits
are encoded in a d-dimensional quantum system. It is known that among rank-1 projective measurements MUBs
give the best performance. We show (for every d) that this cannot be improved by employing nonprojective
measurements. Moreover, we show that the optimal performance can only be achieved by measurements which
are rank-1 projective and mutually unbiased. In other words, the 2d → 1 QRAC is a self-test for a pair of MUBs
in the prepare-and-measure scenario. To make the self-testing statement robust we propose measures which
characterize how well a pair of (not necessarily projective) measurements satisfies the MUB conditions and
show how to estimate these measures from the observed performance. Similarly, we derive explicit bounds
on operational quantities like the incompatibility robustness or the amount of uncertainty generated by the
uncharacterized measurements. For low dimensions the robustness of our bounds is comparable to that of
currently available technology, which makes them relevant for existing experiments. Last, our results provide
essential support for a recently proposed method for solving the long-standing existence problem of MUBs.
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I. INTRODUCTION

Mutually unbiased bases (MUBs) play an important role
in many quantum information processing tasks. They are
optimal for quantum state determination [1,2], information
locking [3,4], and the mean king’s problem [5,6]. Moreover,
they give rise to the strongest entropic uncertainty relations
(among projective measurements) [7–9]. One intuitive way
to look at them is the following: Imagine that we encode a
classical message in a pure state corresponding to an element
of a basis. If we measure this state in a basis unbiased
to the initial one, then each measurement outcome occurs
with the same probability. That is, we do not learn anything
about the originally encoded message. Formally, two bases
{|ai〉}d

i=1 and {|b j〉}d
j=1 in Cd are mutually unbiased if

|〈ai |b j〉|2 = 1

d
∀i, j ∈ [d] := {1, 2, . . . , d}. (1)

Due to their importance, significant effort has been ded-
icated to investigating their structure (see Ref. [10] for a
survey and Ref. [11] for a classification in dimensions 2–5).
It is known that in dimension d , there are at least 3 and
at most d + 1 MUBs and the upper bound is saturated in
prime power dimensions. The maximal number of MUBs in
composite dimensions is a long-standing open problem (see
Refs. [12–17] for the case of dimension 6).
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Another scenario in which MUBs perform well is the so-
called 2d → 1 quantum random access code (QRAC) [18,19].
In this setup, two classical dits are encoded into a qudit,
and the aim is to recover one of them chosen uniformly at
random. It is well-known that sending a quantum system gives
an advantage over sending a classical system (of the same
dimension) [20] and this fact is used in many quantum in-
formation protocols [21–25]. It is commonly believed that the
optimal performance of the 2d → 1 QRAC is achieved when
the measurements correspond to a pair of MUBs in dimension
d , but this claim has only been proven for a restricted class of
measurements [26].

The observation that quantum systems can give rise
to stronger-than-classical correlations was first made by
Bell [27] (although in a slightly different setup). Moreover, it
turns out that some of these strongly nonclassical correlations
can be achieved in an essentially unique manner. That is, the
observed statistics allow us to identify the employed states
and measurements (up to local isometries and extra degrees
of freedom). The most prominent example of this kind is the
well-known CHSH inequality [28], which is maximally vio-
lated by a pair of MUBs in dimension 2 on both sides [29–32].
Whenever such an inference—characterizing the state and/or
measurements based solely on the observed statistics—can
be made, it is referred to as self-testing [33–35]. Self-testing
is closely related to the concept of device-independent (DI)
quantum information processing, in which the devices used
in the protocol are a priori untrusted [36–40]. It is clear
that what makes DI cryptography possible is precisely the
self-testing character of the correlations observed during the
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FIG. 1. Schematic representation of the 2d → 1 QRAC protocol.

protocol. By now self-testing is a well-developed field [41–48]
and includes results which are robust to noise [49–55]. Such
statements are of particular interest, as they can be directly
applied to experiments [56].

Recently the notion of self-testing has been extended to
prepare-and-measure scenarios [57]. In this setup, a prepara-
tion device creates one of many possible quantum states and
then sends it to a measurement device. The latter performs
one of many possible measurements on the state, and then
produces a classical output. This scenario encompasses many
important quantum communication protocols, e.g., the BB84
and B92 quantum cryptography protocols [58,59] and the
aforementioned QRACs.

In the prepare-and-measure scenario one cannot distin-
guish between classical and quantum systems, unless addi-
tional restrictions are imposed. The standard choice is to place
an upper bound on the dimension of the system transmitted
between the devices [60–62]. This is often referred to as the
semi-device-independent (SDI) model for which several cryp-
tographic protocols have been proposed [63–65]. In analogy
to the DI model, it is clear that the security of SDI protocols
is related to self-testing results in the prepare-and-measure
scenario.

In this paper, we investigate the self-testing properties of
the 2d → 1 QRAC. In Ref. [57], the authors derive robust self-
testing results for d = 2 and ask whether similar statements
hold for larger d . We resolve this question by deriving a
robust self-testing statement for arbitrary d . We show that
the optimal performance in the 2d → 1 QRAC certifies that
the two measurements correspond to MUBs. To make the
statement robust we propose measures that characterize how
close a pair of POVMs is to the MUB arrangement and derive
explicit bounds on those in terms of the QRAC performance.
Finally, we use this characterization to obtain explicit bounds
on operationally relevant quantities like the incompatibility
robustness [66] or the amount of uncertainty produced.

II. SETUP

In the 2d → 1 QRAC scenario (see Fig. 1), on the prepara-
tion side Alice gets two uniformly random inputs, i, j ∈ [d].
Based on these inputs she prepares a d-dimensional state ρi j ,
and sends it to Bob who is on the measurement side. He gets
a uniformly random input y ∈ {1, 2}, which tells him which
of Alice’s inputs he is supposed to guess. If y = 1, he aims to
guess i, otherwise j. This is performed by a measurement on
ρi j , which we describe by the operators {Ai}i for y = 1, and
{Bj} j for y = 2, where Ai, Bj � 0,

∑
i Ai = ∑

j B j = I and
i, j ∈ [d]. The outcome of the measurement determines Bob’s

guess and the figure of merit is the average success probability
(ASP), which can be written, using the above notation, as

p̄ = 1

2d2

∑
i j

tr[ρi j (Ai + Bj )]. (2)

III. IDEAL SELF-TEST

To obtain the ideal self-testing statement we derive an
achievable upper bound on the ASP and identify situations
in which all the steps in the derivation are tight. Note that
tr [ρi j (Ai + Bj )] � ||Ai + Bj ||, where ||.|| is the operator norm,
and since (Ai + Bj ) � 0, one can always find a state ρi j

such that this inequality is saturated. Let us from now on
assume that the preparations are always chosen optimally,
which allows us to focus solely on the measurements. Finding
the maximal ASP can be performed using operator norm
inequalities and other tools from matrix analysis and yields
the following theorem.

Theorem 1. The average success probability of the 2d → 1
QRAC is upper bounded by

p̄ � 1

2

(
1 + 1√

d

)
=: p̄Q, (3)

and this bound can only be attained if Bob’s measurements
are rank-1 projective and mutually unbiased. Moreover, in the
optimal case the prepared states are the unique eigenstates of
Ai + Bj , corresponding to the highest eigenvalue.

It was previously known that this upper bound holds if we
restrict ourselves to rank-1 projective measurements and that
among these measurements only MUBs can actually achieve
it [26]. What we show is that the QRAC performance cannot
be improved by employing nonprojective measurements and
that the optimal performance indeed requires MUBs, even
if we allow for generic measurements. Note that this does
not follow from any extremality argument, as in general
projective measurements are not the only extremal d-outcome
measurements [67].

For a complete proof, we refer the reader to Appendix A.
Here, we state that the crucial step is to use operator norm
inequalities to show that the ASP is bounded by

p̄ � 1

2
+ 1

2d2

∑
i j

√
ti j, (4)

where ti j := tr(AiBj ) � 0, and therefore
∑

i j ti j = d . The
right-hand side is strictly Schur-concave in {ti j}i j , and hence is
uniquely maximized by the uniform distribution, ti j = 1

d [68],
which yields p̄Q. A separate argument implies that to reach p̄Q

both measurements must be rank-1 projective and combining
these two facts leads to the conclusion that the two measure-
ments correspond to MUBs.

Theorem 1 implies that the 2d → 1 QRAC is an SDI self-
test for a pair of MUBs in dimension d: observing the optimal
ASP implies that the two measurements constitute a pair of
MUBs. One might wonder whether the self-testing statement
can be made even stronger, in the sense of providing more
details about the measurements, but this is not possible. It is
easy to check that every pair of MUBs is capable of producing
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FIG. 2. Lower bound on the overlap entropy for
p̄∈ [ 1

2 + 1
2d

√
d
, p̄Q] in dimension 4.

the optimal ASP. This ideal self-test is crucial for the success
of the methods described in Ref. [26], as there it is essential
that the optimal QRAC ASP can only be obtained with an
arbitrary pair of MUBs.

IV. ROBUST SELF-TEST

Since in a real experiment one never observes the optimal
performance, the ideal self-testing result is not sufficient.
Instead, we need a robust self-testing statement, which tells us
what can be certified in the case of sub-optimal performance.

Inequality Eq. (4) implies that observing the optimal ASP
forces the distribution {ti j}i j to be uniform. For subopti-
mal performance we immediately get a bound on the 1

2 -
Rényi entropy (H 1

2
({qi}) = 2 log2 [

∑
i
√

qi]) of the distribu-
tion {ti j/d}i j , which we call the overlap entropy HS (A, B) :=
H 1

2
({ti j/d}i j ). More concretely, from Eq. (4) we deduce that

HS (A, B) � 2 log2[d
√

d (2 p̄ − 1)]. (5)

This bound is nontrivial as long as p̄ > 1
2 + 1

2d
√

d
and ob-

serving p̄ = p̄Q implies HS (A, B) = log2(d2), which is the
maximal value of the overlap entropy for a pair of POVMs.
For d = 4 the lower bound is plotted in Fig. 2.

Looking at the overlap entropy is not sufficient, because
the maximal value can be achieved by measurements which
are not MUBs, for instance, the trivial measurements corre-
sponding to Ai = Bj = I/d . The missing part is an argument
showing that the measurements are close to being rank-1 pro-
jective. For a d-outcome measurement {Ai}i acting on Cd this
property can be assessed by looking at the sum of the norms,
N (A) := ∑

i ||Ai||, since for all measurements N (A) � d and
the maximal value is attained if and only if the measurement
is rank-1 projective. Therefore, saturating N (A) = N (B) = d
and HS (A, B) = log2(d2) certifies the MUB arrangement.

To obtain a bound on N (A) we need a stronger version of
Eq. (4). In Appendix B we show that

p̄ � 1

2
+ 1

2d2

∑
i j

[si j − (2 −
√

2)si jni j], (6)

where ni j := 1 − 1
2 (||Ai|| + ||Bj ||) and si j := ||√Ai

√
Bj ||. This

bound reduces to Eq. (4) if we omit the negative term and

FIG. 3. Lower bound on the sum of the norms for p̄ ∈ ( p̄0, p̄Q]
in dimension 4.

bound si j by
√

ti j , which constitutes an alternative derivation
of Theorem 1 (as ni j = 0 for all i, j implies that both mea-
surements are rank-1 projective).

The important feature of Eq. (6) is that it allows us to lower
bound the sum of the norms. In Appendix B we show that for
p̄ > p̄0 := 1

2 + 1
2d2

√
(d2 − 1)d we have

N (A) � d − 2 + √
2

d
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)], (7)

and by symmetry the same bound holds for N (B). It is easy to
check that for p̄ = p̄Q, the right-hand side evaluates to d , i.e.,
the optimal performance certifies that both measurements are
rank-1 projective. The lower bound given in Eq. (7) is plotted
for d = 4 in Fig. 3.

Since Eqs. (7) and (5) allow us to robustly certify the
two defining properties of MUBs (rank-1 projectivity and
uniformity of overlaps, respectively), combining them yields
a robust self-test for MUBs. Note that the robustness is limited
by Eq. (7) which requires that p̄ > p̄0.

V. OPERATIONAL BOUNDS

In the previous paragraph we have focused on quantities
tailored to certify closeness to the MUB arrangement. Let us
now show that a similar approach can be used to derive bounds
on quantities which have an immediate operational meaning.

We begin with the incompatibility robustness. We say
that two POVMs {Ai}i and {Bj} j are compatible (or jointly
measurable) if there exists a parent POVM {Mi j}i j , such that∑

j Mi j = Ai and
∑

i Mi j = Bj for all i, j. Otherwise, they
are incompatible, which is often taken as the definition of
nonclassicality. To quantify incompatibility beyond this bi-
nary characterization, the notion of incompatibility robustness
has been introduced [66]. Consider the noisy POVMs, Aη

i =
ηAi + (1 − η) tr Ai I/d , and similarly Bη

j . The incompatibility
robustness η∗ of A and B is defined as the largest η such that
{Aη

i }i and {Bη
j } j are compatible. According to this measure

MUBs are highly incompatible, but, perhaps surprisingly,
they are not the most incompatible among rank-1 projective
measurements in dimension d [69].

Recently an analytic upper bound on η∗ has been derived
for an arbitrary set of POVMs [70]. For a pair of POVMs the
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FIG. 4. Upper bound on the incompatibility robustness over the
nontrivial region in dimension 4.

bound reads

η∗ �
d2 maxi j ||Ai + Bj || − ∑

i(tr Ai )2 − ∑
j (tr Bj )2

d
∑

i tr A2
i + d

∑
j tr B2

j − ∑
i(tr Ai )2 − ∑

j (tr Bj )2
.

(8)

All the quantities appearing in this expression can be bounded
using the previously developed methods, which leads to a
bound which depends only on the observed performance p̄.
Since the final bound is rather complex, we do not present it
here and refer the interested reader to Appendix C. The impor-
tant feature of the bound is that for the optimal performance
p̄ = p̄Q we recover the correct value of the incompatibility

robustness for a pair of MUBs, i.e., η∗ =
√

d/2+1√
d+1

. In Fig. 4 we
plot the bound for d = 4 over the region where it is nontrivial.

We note here that similar bounds can be derived for other
measures of incompatibility robustness using the same tech-
niques. Among these is a measure that uses arbitrary POVMs
as noise [71], for which MUBs are the most incompatible pair
of POVMs (of any number of outcomes) in dimension d [72].
This can also be certified by observing p̄ = p̄Q.

The second operational quantity we consider is the amount
of randomness produced by the uncharacterized measure-
ments. For a POVM A, let H (A)ρ := H ({ tr(Aiρ)}i ) be the
Shannon entropy of the outcome statistics of A on the state ρ.
Maassen and Uffink derived a state-independent lower bound
on H (A)ρ + H (B)ρ for rank-1 projective measurements [7].
For our purposes we need a more general statement which
covers nonprojective measurements. Such a bound has been
derived in Ref. [73] and reads

H (A)ρ + H (B)ρ � − log2 c, (9)

where c := maxi j ||
√

Ai
√

Bj ||2. Therefore, we need an upper
bound on si j and such a bound has already been derived in
Appendix B. The final statement reads

H (A)ρ + H (B)ρ

� −2 log2

(
2 p̄ − 1 + 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2]

)
.

(10)

FIG. 5. Lower bound on the entropic uncertainty over the non-
trivial region in dimension 4.

The optimal performance certifies log2 d bits of randomness,
which is the maximal value for a pair of projective measure-
ments. We plot the above bound for d = 4 over the region
where it is nontrivial in Fig. 5.

We note that a similar bound can be derived for the
one-shot analog of the Shannon entropy, the min-entropy
Hmin (which coincides with the ∞-Rényi entropy), which is
often preferred in cryptographic scenarios. It was shown in
Ref. [74] that for a pair of POVMs, Hmin(A)ρ + Hmin(B)ρ �
− log2 ( 1+√

c
2 ), for which we can derive a similar bound to that

of Eq. (10).

VI. SUMMARY AND OUTLOOK

We have shown that the 2d → 1 QRAC constitutes a
robust self-test for MUBs in arbitrary dimension. Observing
sufficiently high ASP allows us to deduce that the employed
measurements are close to being rank-1 projective and that
their overlaps are close to being uniform. The same approach
can be used to bound operationally relevant quantities like
the incompatibility robustness or the amount of randomness
produced. For low dimensions the robustness of our bounds
makes them interesting from the experimental point of view.

The most obvious direction for further research is to use
our self-testing results to prove SDI security of prepare-and-
measure quantum key distribution using high-dimensional
systems. One of the main components of the SDI security
proof given in Ref. [63] is the relation between the observed
QRAC performance and the randomness produced for d = 2
(qubits). In this work we derive precisely such relations for
arbitrary d and we believe that one can use them directly in
security proofs.

There is an important difference between SDI self-testing
and DI self-testing. In the usual DI self-testing we certify
systems up to local isometries and extra degrees of freedom.
Since the second equivalence is not relevant in the SDI setup
(the dimension of the system is fixed), one might expect that
SDI self-testing should characterize the measurements up to
a unitary transformation. However, this is generally not the
case: While in some dimensions all pairs of MUBs are equiv-
alent up to unitaries (and possibly complex conjugation), e.g.,
d = 2, 3, 5, there are dimensions where this is not the case,
e.g., d = 4 [11]. It is natural to ask whether these inequivalent
classes of MUBs can be distinguished by considering more
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complex QRACs. In fact, a related version of this question
appears readily if we consider nd → 1 QRACs with n > 2.
In this case it is known that different classes of n-tuples of
MUBs perform differently [26,75]. Numerical evidence for
n = 3 and low d suggests that the optimal performance is
achieved by one of these classes, so one might conjecture
that such QRACs self-test this particular class. Again, it is not
clear how to certify the remaining classes.

The 2d → 1 QRAC analyzed in this paper is closely
related, at least in spirit, to the family of Bell inequali-
ties proposed by Bechmann-Pasquinucci and Gisin [76]. We
hope that the understanding gained in this work will help
us to prove self-testing statements for those inequalities. It
would be particularly interesting to see whether the need for
“more-than-unitary” freedom can also appear in the standard
nonlocality-based self-testing.

ACKNOWLEDGMENTS

We thank Michał Oszmaniec for fruitful discussions. M.F.
acknowledges support from the Polish NCN Grant Sonata
No. UMO-2014/14/E/ST2/00020. J.K. acknowledges sup-
port from the National Science Centre, Poland (Grant No.
2016/23/P/ST2/02122). This project is carried out under the
POLONEZ programme, which has received funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie Grant Agreement
No. 665778.

APPENDIX A: IDEAL SELF-TEST

In the main text, we establish that the QRAC ASP can be
upper bounded by

p̄ � 1

2d2

∑
i j

||Ai + Bj ||, (A1)

and this can always be saturated by suitable states ρi j on the
preparation side. To bound the above quantity, we use a spe-
cial case of a matrix norm inequality derived by Kittaneh [77],
applied to the square-root function and the operator norm.
For further purposes, we briefly reproduce the proof here as
well. We will make use of the fact that for operators A, B on a
Hilbert space, ||A ⊕ B|| = max{||A||, ||B||} [78].

Theorem 2. Let A, B � 0 be operators on a Hilbert space.
Then ||A + B|| � max{||A||, ||B||} + ||√A

√
B||.

Proof. Consider the block-operator

X =
(√

A√
B

)
, and thus X †X = A + B. (A2)

Therefore,

||A + B|| = ||X †X || = ||XX †|| =
∣∣∣∣
∣∣∣∣
(

A
√

A
√

B√
B
√

A B

)∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
(

A 0
0 B

)
+

(
0

√
A
√

B√
B
√

A 0

)∣∣∣∣
∣∣∣∣

�
∣∣∣∣
∣∣∣∣
(

A 0
0 B

)∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
(

0
√

A
√

B√
B
√

A 0

)∣∣∣∣
∣∣∣∣

= max{||A||, ||B||} + ||
√

A
√

B||, (A3)

where we used some basic properties of the operator norm
(see, e.g., Ref. [78]; or Ref. [77] for a more detailed and
general version of the proof).

Using the above theorem, we get

p̄ � 1

2d2

∑
i j

(max{||Ai||, ||Bj ||} + ||√Ai

√
Bj ||). (A4)

From
∑

i Ai = ∑
j B j = I it follows that Ai, Bj � I, and thus

||Ai||, ||Bj || � 1. Then

p̄ � 1

2d2

∑
i j

(1 + ||√Ai

√
Bj ||) = 1

2
+ 1

2d2

∑
i j

||√Ai

√
Bj ||.

(A5)

Now we use the fact that for any operator O, ||O|| � ||O||F ,
where ||O||F :=

√
tr(O†O) is the Frobenius norm [78]. There-

fore,

p̄ � 1

2
+ 1

2d2

∑
i j

||√Ai

√
Bj ||F = 1

2
+ 1

2d2

∑
i j

√
tr(AiBj ).

(A6)

Recall that ti j := tr(AiBj ) and, therefore, ti j � 0 and
∑

i j ti j =
d . The right-hand side of Eq. (A6) is a symmetric and strictly
concave function of the ti j , and as such, it is strictly Schur-
concave (see, e.g., Ref. [68]). Therefore, it is maximized
uniquely by setting all the ti j uniform, ti j = 1

d for all i, j ∈ [d].
The upper bound on the ASP set by such ti j is then

p̄ � 1

2
+ 1

2d2

∑
i j

1√
d

= 1

2

(
1 + 1√

d

)
. (A7)

Note that this bound is saturated by measuring in MUBs (see
also Ref. [26]).

Now, let us turn our attention to necessary conditions for
saturating the above bound. We first show that at least one
of the measurements must be rank-1 projective to reach the
optimal ASP. Saturating the upper bound requires tr(AiBj ) =
1
d for all i, j ∈ [d] and by summing over one of the in-
dices, we see that tr Ai = tr Bj = 1 for all i, j. Investigating
the chain of inequalities obtained above, it is necessary for
optimality that max{||Ai||, ||Bj ||} = 1 for all i, j ∈ [d]; oth-

erwise, p̄ < 1
2d2

∑
i j (1 + ||√Ai

√
Bj ||) � 1

2 (1 + 1√
d

). Assume
that there exists a j∗ such that ||Bj∗ || < 1. Then to ful-
fill max{||Ai||, ||Bj∗ ||} = 1 for all i ∈ [d], it is necessary that
||Ai|| = 1 for all i ∈ [d]. Since these operators must all be
trace-1 and positive semidefinite, it follows that Ai = |ai〉〈ai |
for all i ∈ [d]. If there is no such j∗, then ||Bj || = 1 for all
j ∈ [d], and we arrive at an analogous condition for Bj . Thus,
without loss of generality we can assume that Ai = |ai〉〈ai | for
all i ∈ [d].

The rest of this Appendix is dedicated to showing that
the other measurement must also be rank-1 projective. Let
us analyze the inequality derived by Kittaneh and to do
so, we first recall a few definitions from matrix analysis.
We denote by L(H) the algebra of linear operators on the
Hilbert space H, and by ||.||H the Hilbert space norm. The
numerical range of an operator O is W (O) := {〈x |Ox〉|||x||H =
1}, while the numerical radius is w(O) := sup||x||H=1 |〈x |Ox〉|.
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By construction every complex number c ∈ W (O) satisfies
|c| � w(O) and we always have w(O) � ||O|| [78].

In Theorem 2, the inequality comes from the triangle
inequality and to investigate when this holds as an equality
we use a result by Barraa and Boumazgour [79].

Theorem 3. Let S, T ∈ L(H) be nonzero. Then the equa-
tion ||S + T || = ||S|| + ||T || holds if and only if ||S||||T || ∈
W (S†T ).

For a finite-dimensional Hilbert space the numerical range
is always closed [78], thus in our case the closure in the
theorem is redundant. It is immediate to see that a nec-
essary condition for the operators S and T to saturate the
triangle inequality is that ||S||||T || � w(S†T ). However, from
the submultiplicativity of the operator norm, we know that
w(S†T ) � ||S†T || � ||S†||||T || = ||S||||T ||, and hence this con-
dition is equivalent to w(S†T ) = ||S||||T ||.

We will also use the following bound on the numerical
radius, obtained by Kittaneh [80].

Theorem 4. If O ∈ L(H), then

[w(O)]2 � 1
2 ||O†O + OO†||. (A8)

We are now ready to derive a necessary condition to
saturate Kittaneh’s inequality in Theorem 2.

Lemma 5. Let A, B � 0 be operators on a Hilbert space.
Then, the equality ||A + B|| = max{||A||, ||B||} + ||√A

√
B||

holds only if ||A|| = ||B||.
Proof. Let us denote the block-operators appearing in the

proof of Theorem 2 by

S =
(

A 0
0 B

)
= S†, T =

(
0

√
A
√

B√
B
√

A 0

)
= T †.

(A9)

Then, following from Theorem 3 and the discussion below it,
a necessary condition for A, B � 0 to saturate Kittaneh’s in-
equality is that w(ST ) = ||S||||T || = max{||A||, ||B||}||√A

√
B||.

Applying Theorem 4 to ST , we get that

(ST )†ST =
(√

AB3
√

A 0
0

√
BA3

√
B

)
,

ST (ST )† =
(

A
3
2 BA

3
2 0

0 B
3
2 AB

3
2

)
, (A10)

and hence

(w(ST ))2 � 1

2
max

{∣∣∣∣√AB3
√

A + A
3
2 BA

3
2
∣∣∣∣, ∣∣∣∣√BA3

√
B + B

3
2 AB

3
2
∣∣∣∣}

� 1

2
max

{||√AB3
√

A|| + ∣∣∣∣A 3
2 BA

3
2
∣∣∣∣, ||√BA3

√
B|| + ∣∣∣∣B 3

2 AB
3
2
∣∣∣∣}

= 1

2
max

{∣∣∣∣√AB
3
2
∣∣∣∣2 + ∣∣∣∣A 3

2

√
B
∣∣∣∣2

,
∣∣∣∣A 3

2

√
B
∣∣∣∣2 + ∣∣∣∣√AB

3
2
∣∣∣∣2}

= 1

2

(∣∣∣∣A 3
2

√
B
∣∣∣∣2 + ∣∣∣∣√AB

3
2
∣∣∣∣2) � 1

2
(||A||2 + ||B||2)||

√
A
√

B||2

� max{||A||2, ||B||2}||
√

A
√

B||2. (A11)

Here, in the second line, we used the triangle inequal-
ity, in the third line the identity ||O||2 = ||O†O|| and in the
fourth line submultiplicativity. The last inequality is trivial,
and is only saturated if ||A|| = ||B||. Therefore, ||A + B|| =
max{||A||, ||B||} + ||√A

√
B|| only if ||A|| = ||B||.

This lemma shows that saturating the upper bound on the
ASP implies that ||Bj || = ||Ai|| = 1 for all i, j ∈ [d]. It was
also necessary that tr Bj = 1, and therefore (similarly to the
Ai), Bj = |b j〉〈b j | for all j ∈ [d], and both measurements
must be rank-1 projective. From here, it follows immediately
from the condition tr(AiBj ) = 1

d , that the bases defining the
measurements must be mutually unbiased.

APPENDIX B: ROBUST SELF-TEST

While it is clear what it means for two measurements to be
exactly mutually unbiased, there are multiple ways of turning
this definition into an approximate statement (particularly if
we allow for nonprojective measurements). For our purposes
it is natural to split the definition of MUBs into two standalone
conditions and consider them separately.

The first condition, which is usually implicit in the def-
inition of MUBs, is that both measurements are projective

and that the measurement operators are rank-1. Let {Ai}i be
a d-outcome measurement on a d-dimensional system and let
us consider the sum of the norms, N (A) := ∑

i ||Ai||. This is a
suitable quantity, because

N (A) =
∑

i

||Ai|| �
∑

i

tr Ai = d,

and since ||Ai|| � 1, the maximum is achieved iff every mea-
surement operator is a rank-1 projector. Therefore, the differ-
ence between

∑
i ||Ai|| and the maximal value d tells us how

much {Ai}i deviates from being rank-1 projective.
The second condition, often referred to as the MUB condi-

tion, requires that the overlap between every pair of measure-
ment operators is the same. The question here is how to gener-
alize the overlap to nonprojective measurements. The quantity√

tr(AiBj ) discussed in the main text is a valid generalisation
of the overlap in the sense that it reduces to the overlap
for rank-1 projective measurements. However, the argument
given below naturally leads to a different quantity, namely
||√Ai

√
Bj ||. Note that this is a commonly used definition of

the overlap, e.g., in the context of uncertainty relations.
The main purpose of this Appendix is to derive a lower

bound on N (A) as a function of the observed performance.
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However, to do that, we must first derive explicit bounds on
the range of ||√Ai

√
Bj ||.

In our argument we use the following technical lemma.
Lemma 6. The function

h(x, y) := x + y − αxy −
√

x2 + y2

for α := 2 − √
2 satisfies h(x, y) � 0 for x, y ∈ [0, 1].

Proof. If we express x and y in terms of the polar coordi-
nates

x = r cos(θ − π/4),

y = r sin(θ − π/4),

the function becomes

h(r, θ ) = r[cos(θ − π/4) + sin(θ − π/4) − 1]

− αr2

2
sin[2(θ − π/4)] = r(

√
2 sin θ − 1)

+αr2

2
cos 2θ.

To cover the square x, y ∈ [0, 1] we prove the statement for
r ∈ [0,

√
2] and θ ∈ [π/4, 3π/4]. For fixed θ the function

h(r, θ ) is a quadratic function of r and the coefficient of the
quadratic term is nonpositive. This means that to determine
the minimum value, it suffices to consider the extreme points,
i.e., r = 0 and r = √

2. Since h(0, θ ) = 0, we only have to
look at the latter. We have

h(
√

2, θ ) = 2 sin θ −
√

2 + α cos 2θ

= −2α sin2θ + 2 sin θ + 2 − 2
√

2

= 2α(1 − sin θ )

(
sin θ − 1√

2

)
,

and it is easy to see that for θ ∈ [π/4, 3π/4] each term is
nonnegative.

Moreover, we use the following operator norm inequality
derived by Kittaneh [81].

Theorem 7. For positive semidefinite operators A and B
acting on a finite-dimensional Hilbert space we have

||A + B|| � 1

2
(||A|| + ||B|| +

√
(||A|| − ||B||)2 + 4||

√
A
√

B||2).

(B1)

In our argument A and B will be particular measurement
operators from the two measurements. We define the general-
ized overlap between Ai and Bj as

si j := ||√Ai

√
Bj || ∈ [0, 1].

Another relevant quantity of a pair of measurement operators
is the norm deficiency defined as

ni j := 1 − (||Ai|| + ||Bj ||)/2 ∈ [0, 1].

It is easy to see that if ni j = 0 for all i, j, we have∑
i

||Ai|| =
∑

j

||Bj || = d,

i.e., both measurements are rank-1 projective. Our goal now
is to relate the right-hand side of Eq. (B1) to si j and ni j . First,

note that

||Ai|| − ||Bj || = 2||Ai|| − (||Ai|| + ||Bj ||)
� 2 − 2(1 − ni j ) = 2ni j

and similarly

||Bj || − ||Ai|| � 2ni j .

These two inequalities imply that

(||Ai|| − ||Bj ||)2 � 4n2
i j,

and plugging this back into Eq. (B1) gives

||Ai + Bj || � 1 − ni j +
√

n2
i j + s2

i j .

Applying the inequality derived in Lemma 6 to si j and ni j

gives

||Ai + Bj || � 1 + si j − αsi jni j,

where α = 2 − √
2. Applying this upper bound to Eq. (A1)

immediately yields

p̄ � 1

2d2

∑
i j

(1 + si j − αsi jni j )

= 1

2
+ 1

2d2

∑
i j

si j − α

2d2

∑
i j

si jni j . (B2)

Let us first bound the range of si j , i.e., find explicit functions
of p̄ denoted by smin and smax such that

si j ∈ [smin, smax]

for all i, j. To do this we drop the last term in Eq. (B2) to
obtain

p̄ � 1

2
+ 1

2d2

∑
i j

si j .

To bound the sum of si j we bound the operator norm by the
Frobenius norm:

si j = ||√Ai

√
Bj || � ||√Ai

√
Bj ||F = √

tr(AiBj ) = √
ti j

and finally use the normalization condition
∑

i j ti j = d . Let us
now separate one term from the rest of the sum. For simplicity
we choose the first term, i.e., s11, but by symmetry the same
argument applies to every si j . We obtain

p̄ � 1

2
+ 1

2d2

⎛
⎝s11 +

∑
i j �=11

si j

⎞
⎠

� 1

2
+ 1

2d2

⎛
⎝s11 +

∑
i j �=11

√
ti j

⎞
⎠. (B3)

Since the remaining sum contains d2 − 1 terms, concavity of
the square root implies that

∑
i j �=11

1

d2 − 1

√
ti j �

√∑
i j �=11 ti j

d2 − 1
=

√
d − t11

d2 − 1
�

√
d − s2

11

d2 − 1
,

032316-7
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where in the last step we used the fact that s11 � √
t11.

Plugging this bound into Eq. (B3) gives

p̄ � 1

2
+ 1

2d2

[
s11 +

√
(d2 − 1)

(
d − s2

11

)] =: f (s11).

Computing the derivative of f shows that f is increasing for
s11 < 1/

√
d and decreasing for s11 > 1/

√
d . The maximum

achieved for s11 = 1/
√

d corresponds to the optimal ASP.
This implies that the lowest and highest values of s11 com-
patible with the observed p̄ can be determined by computing
the two solutions of the equality

p̄ = 1

2
+ 1

2d2

[
s11 +

√
(d2 − 1)

(
d − s2

11

)]
.

This reduces to solving a quadratic equation and finally we
deduce that s11 ∈ [smin, smax], where

smin := 2 p̄ − 1 − 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2], (B4)

smax := 2 p̄ − 1 + 1

d

√
d (d2 − 1)[1 − d (2 p̄ − 1)2]. (B5)

The optimal performance, i.e. p̄ = 1
2 + 1

2
√

d
, implies that

smin = smax = 1√
d

. Moreover, since both functions are contin-
uous in p̄, for sufficiently good performance we obtain bounds
stronger than the trivial s11 � 0 and s11 � 1. This concludes
the first part of the argument, i.e., providing explicit bounds
on the range of the generalized overlaps.

For the second part of the argument, in which we show
that the measurements are close to being rank-1 projective, we
need all the overlaps to be bounded away from 0, i.e., smin > 0.
According to Eq. (B4) this is guaranteed as long as p̄ > p̄0 for

p̄0 := 1

2
+ 1

2d2

√
(d2 − 1)d.

Using the concavity result while keeping the negative term in
Eq. (B2) leads to

p̄ � 1

2
+ 1

2d2

(
s11 +

√
(d2 − 1)

(
d − s2

11

)) − α

2d2

∑
i j

si jni j .

Without loss of generality we can assume that s11 is the
smallest overlap and then

p̄ � 1

2
+ 1

2d2

(
s11 +

√
(d2 − 1)

(
d − s2

11

)) − αs11

2d2

∑
i j

ni j,

which is equivalent to∑
i j

ni j �
1

αs11

[
s11 +

√
(d2 − 1)

(
d − s2

11

) − d2(2 p̄ − 1)
]
.

(B6)
To analyze the right-hand side, we define

g(x) := 1 +
√

(d2 − 1)

(
d

x2
− 1

)
− d2(2 p̄ − 1)

x
,

and now our goal is to maximize g(x) over x ∈ [0, 1/
√

d],
as smin � 1/

√
d . Recall that we work under the assumption

that p̄ > p̄0 and therefore 2 p̄ − 1 > 0. We can analytically

compute the derivative dg/dx and set it to 0 to conclude that
the only stationary point corresponds to

x∗ :=
√

d3(2 p̄ − 1)2 − (d2 − 1)

d (2 p̄ − 1)
=

√
d − d2 − 1

d2(2 p̄ − 1)2
.

Evaluating the second derivative d2g/dx2 at x∗ tells us that
this is a maximum and since this is the only stationary point,
it must be the unique maximizer in the interval [0, 1/

√
d].

Therefore, in Eq. (B6) we can set s11 = x∗ to obtain∑
i j

ni j �
1

α
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)].

Finally, we can use this bound to obtain lower bounds on the
sums of the norms

∑
i ||Ai|| and

∑
j ||Bj || for the individual

measurements. Since

∑
i j

ni j = d2 − d

2

⎛
⎝∑

i

||Ai|| +
∑

j

||Bj ||
⎞
⎠,

we can use the trivial bound N (B) = ∑
j ||Bj || � d to obtain

N (A) =
∑

i

||Ai|| � d − 2

d

∑
i j

ni j

� d − 2

αd
[1 −

√
d3(2 p̄ − 1)2 − (d2 − 1)]. (B7)

Clearly, the same lower bound holds for N (B).

APPENDIX C: INCOMPATIBILITY ROBUSTNESS

In this Appendix we derive an analytic upper bound on the
incompatibility robustness as a function of the observed ASP.
We start with a bound derived recently in Ref. [70]:

η∗ �
d2 maxi j ||Ai + Bj || − ∑

i(tr Ai )2 − ∑
j (tr Bj )2

d
∑

i tr A2
i + d

∑
j tr B2

j − ∑
i(tr Ai )2 − ∑

j (tr Bj )2
.

(C1)

The aim is to bound all the terms appearing in this formula by
quantities which we have already bounded in Appendix B.

Let us start with the numerator. The first term is easy to
bound since

||Ai + Bj || � 1 + si j,

and maxi j si j � smax given in Eq. (B5).
To bound the second term we use the fact that for posi-

tive semidefinite operators (tr A)2 � tr A2 and then bound the
Frobenius norm by the operator norm:

(tr Ai )
2 � tr A2

i = ||Ai||2F � ||Ai||2.
To bound the sum of the squares

∑
i ||Ai||2 we use a stan-

dard inequality for vector p-norms which for d-dimensional
vectors reads ||x||2 � 1√

d
||x||1. Applying this to the real vector

whose components are given by xi = ||Ai|| yields

∑
i

||Ai||2 � 1

d

(∑
i

||Ai||
)2

.

032316-8
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Putting the two inequalities together gives

∑
i

(tr Ai )
2 � 1

d

(∑
i

||Ai||
)2

,

which can be bounded using Eq. (B7).
The first term in the denominator we have already bounded:

From the previous argument we see that

∑
i

tr A2
i � 1

d

(∑
i

||Ai||
)2

.

Bounding the last term turns out to be slightly more involved,
so we state it as a separate lemma.

Lemma 8. Let {Ai}i be a d-outcome measurement acting
on Cd . If ∑

i

||Ai|| � q,

then ∑
i

(tr Ai )
2 � d + (d − q)(d − q + 1).

Proof. Before proceeding to the technical details, let us
briefly explain the idea behind the proof. Suppose we are
given a partition of the d measurement outcomes into two
disjoint sets. Moreover, we are promised that the trace of the
measurement operators corresponding to the outcomes in the
first (second) set belongs to the interval [0, 1] ([1, d]). It turns
out that an upper bound on the desired quantity can be derived
in terms of simple properties of this partition. Maximising this
bound over all valid partitions leads to the main result of the
lemma.

Formally, we are given two sets X and Y such that X ∪ Y =
[d] and X ∩ Y = ∅. Moreover, we have

i ∈ X ⇒ tr Ai ∈ [0, 1],

i ∈ Y ⇒ tr Ai ∈ [1, d].

Define n := |X |, γ := ∑
i∈X tr Ai and clearly

n − γ � 0. (C2)

Moreover, the assumption of the lemma implies

q �
∑

i

||Ai|| =
∑
i∈X

||Ai|| +
∑
i∈Y

||Ai|| �
∑
i∈X

tr Ai + |Y |

= γ + d − n,

and therefore

n − γ � d − q. (C3)

For the rest of the argument let us think of n and γ as some
fixed values. Once we derive the final upper bound in terms
of these two variables, we will maximize it over the allowed
pairs of n and γ .

For i ∈ X we have (tr Ai )2 � tr Ai, and therefore

∑
i∈X

(tr Ai )
2 �

∑
i∈X

tr Ai = γ .

To bound the second term we must explicitly determine the
allowed combinations of {tr Ai}i∈Y . Since {tr Ai}i∈Y ∈ [1, d]|Y |
and ∑

i∈Y

tr Ai = d − γ ,

the valid choices of {tr Ai}i∈Y form a polytope. It is easy to
see that all the vertices of this polytope correspond to setting
|Y | − 1 values to 1 and the last value to [d − γ − (|Y | − 1)].
Since

∑
i∈Y (tr Ai )2 is a convex function of the traces, the

maximal value is achieved at a vertex, and therefore

∑
i∈Y

(tr Ai )
2 � (|Y | − 1) + [d − γ − (|Y | − 1)]2.

Plugging in |Y | = d − n gives

∑
i∈Y

(tr Ai )
2 � d − n − 1 + (n − γ + 1)2

= d + (n − γ )(n − γ + 1) − γ .

Putting the two bounds together leads to

∑
i

(tr Ai )
2 =

∑
i∈X

(tr Ai )
2 +

∑
i∈Y

(tr Ai )
2

� d + (n − γ )(n − γ + 1).

Now we must maximize the right-hand side subject to the
constraints given in Eqs. (C2) and (C3). The maximum is
achieved when the latter is saturated, which leads to the final
result of the lemma.

The final bound reads

η∗ �
1
2 d2(1 + smax) − q2

d

q2 − d − (d − q)(d − q + 1)
, (C4)

where smax is the quantity defined in Eq. (B5), while q is the
right-hand side of Eq. (B7).
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