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Quantum speedup at zero temperature via coherent catalysis
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It is known that secondary nonstoquastic drivers may offer speedups or catalysis in some models of adiabatic
quantum computation accompanying the more typical transverse field driver. Their combined intent is to raze
potential barriers to zero during adiabatic evolution from a false vacuum to a true minimum; first-order phase
transitions are softened into second-order transitions. We move beyond mean-field analysis to a fully quantum
model of a spin ensemble undergoing adiabatic evolution in which the spins are mapped to a variable mass
particle in a continuous one-dimensional potential. We demonstrate that the necessary criterion for enhanced
mobility or “speedup” across potential barriers is actually a quantum form of the Rayleigh criterion. Quantum
catalysis is exhibited in models where previously thought not possible, when barriers cannot be eliminated. For
the 3-spin model with a secondary antiferromagnetic driver, catalyzed time complexity scales between linear and
quadratic with the number of qubits. As a corollary, we identify a useful resonance criterion for quantum phase
transition that differs from the classical one, but converges on it, in the thermodynamic limit.
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I. INTRODUCTION

In computer science, computational tasks may be crudely
divided into two categories: easy and hard. Easy problems are
soluble in a time limit t∗ that scales polynomially with n, the
number of available computing resources (bits or qubits), t∗ ∼
nα , whereas hard tasks might take an exponentially long time
to complete, t∗ ∼ αn. Much of the interest in quantum com-
puting has been fueled by the possibility that classically hard
problems can sometimes become “easy” when performed by a
particular quantum algorithm running on a quantum computer.

One quantum computing paradigm particularly well suited
to the solution of optimization problems is adiabatic quantum
computing [1,2]. In this model, an ensemble of quantum bits
(qubits) is initialized in the ground state of a trivial Hamil-
tonian. This could be, for instance, associated with a strong
linear magnetic field. During the execution of the algorithm
the Hamiltonian is smoothly and continuously changed or
annealed into the “target” Hamiltonian encoding the original
computational task. This ground state represents a globally
optimal solution to that task. If the quantum annealing from
initial to target Hamiltonian occurs sufficiently slowly or
adiabatically, the system remains in the instantaneous ground
state throughout, guaranteeing that the optimal solution is
recovered in finite time. The system always stays at the lowest
point on the energy surface or “cost function” landscape.
This approach differs quite dramatically from classical ap-
proaches to optimization, possibly involving gradient descent
techniques, where it can be impossible to know whether a
recovered solution corresponds to a local or global minimum.
This also assumes the cost function in parameter space is
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sufficiently smooth that gradient information can be derived—
not often the case in combinatorial optimization.

While success is guaranteed in finite time by the adiabatic
theorem [3], the energy landscape may become highly non-
trivial during the annealing process; the ground state must
navigate through a landscape of hills and valleys that spring
up around it as the algorithm progresses. Large time penalties
are suffered when energy barriers, of height O(1) on the scale
of the Hamiltonian, emerge between the current state of the
system and the true minimum energy. These energy barriers
are associated with a first-order phase transition during the
adiabatic process. Under ideal circumstances the algorithm is
executed at zero temperature, to preserve the system in its
ground state, so there is no possibility of thermal activation
over the barrier in question. The only remaining option is for
the quantum state to tunnel through the barrier to the true
ground state on the other side, exactly as first discussed by
Gamow in his famous paper of 1928 describing α-particle
decay [4]. The ground state is seen to jump in a discontinu-
ous way between configurations, and the phase transition is
described as “first order.” This phenomenon is possibly the
Achilles heel of quantum annealing: Tunneling, only possible
via quantum mechanics, is also an exponentially slow process
in w, the barrier width: t∗ ∝ cw. Consequently, for problems
which exhibit barrier widths scaling positively with system
size n (number of qubits), the exponential delay in adia-
batic passage at the phase transition produces an exponential
slowdown in performance. This is reflected in an overall
exponential-scaling time-to-solution with n. The problem in-
stances that feature such first-order phase transitions seem to
belong (unavoidably) to the class of “hard” problems [5].

In this paper, we will explore, in a fully quantum set-
ting, techniques by which those barriers may be reduced, by
the introduction of additional control fields or interactions.
The idea that secondary control interactions might eliminate
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FIG. 1. Pairing of energies during transition from the unimodal
to bimodal ground state. Here ξ1 is a displacement variable and β

a “width” variable. This important transition we call the quantum
Rayleigh limit: ξ1 ∼ β, derived later in Eq. (5). As plotted, adjacent
even and odd eigenvalues E±

k of the piecewise-parabolic potential
are seen to “pair up,” to become doubly degenerate, as the scaled
separation of the wells increases beyond the order of the well widths,
i.e., ξ1 � β (above for the case β = 1). In this limit (blue-shaded
region) the energies are well below the barrier height (dashed line)
and the intrapair spectral gap decreases exponentially with the barrier
height V0. A sketch of the ground-state wave function is shown (upper
middle) in the limit of well-separated wells. For ξ1 < β, violating
the Rayleigh criterion, the wells coalesce and the vacuum energy E+

0

(red) and other eigenenergies subsume the barrier. At the leftmost
edge the two wells merge completely, and eigenvalues revert to those
of a simple harmonic oscillator: (n + 1/2)h̄ω.

barriers, turning hard problems into easy ones, was proposed
16 years ago in Ref. [6], and the idea resurfaced more recently
in Ref. [7] where the secondary driver was of a specific
nonstoquastic type. Numerical support for quantum speedup
in instances of spin glasses was given in Ref. [8].

Here we refer to controlled barrier suppression in a more
general sense as “coherent catalysis.” This invites a compar-
ison with classical chemical kinematics in a sense that was
perhaps first used for quantum information in Ref. [9] and that
surfaced again recently in the context of adiabatic quantum
computing in the excellent review by Albash and Lidar [10].
The application of the “catalyst” (secondary driver) during
annealing lowers the activation energy of the migration from
false to true ground state. The purity of the quantum state is
preserved; hence the process is coherent.

We begin with an examination of a prototype double-well
system, for which we establish the necessary conditions for
a crossover from exponential to polynomial time complexity.
This is associated with a qualitative change in the quantum
ground state from a bimodal to unimodal profile, and energy
level “unpairing,” as illustrated in Fig. 1. An analogy is made
with the Rayleigh diffraction limit of angular resolution in
physical optics [11]. (Two pointlike objects are considered
resolved when the maximum of one image coincides with the
first minimum of the other. When applied to two Gaussian
point-spread functions, the distance between the two maxima
becomes comparable to the sum of their standard deviations.)

Moving to composite systems, we will see that the number
n of adiabatically evolving qubits plays a nontrivial role in
the time complexity; in some sense, quantum computers of
mesoscopic scale might be better suited to certain classes

of computational tasks, rather than holding fast to the naive
idea that “more is simply better.” Even in a completely
decoherence-free setting the limit of large n will lead to a
predominantly classical behavior. A peculiarity in our analysis
produces an effective Planck’s constant h̄ that varies inversely
with the number of qubits, attaining values much larger than
10−34 in systems of modest size (to be clarified in Sec. VII).
As a result of this inverse relationship larger ensembles of
qubits exhibit weaker quantum behavior.

The novelty of our technique is to move beyond a conven-
tional “mean-field” calculation by inclusion of phenomena de-
rived from or modified by the zero-point (vacuum) energy of
the quantum system as it evolves through the shifting potential
landscape. (In contrast, the mean-field description reproduces
only that potential energy surface and ignores kinetic energy
completely.) Even at zero temperature a quantum system
possesses vacuum energy and there exists the possibility that
it overwhelms any adjacent barrier and/or “delocalizes”; this
effect is magnified for a large effective h̄.

To showcase the utility of these results, we reexamine
the widely studied quantum 3-spin model, presenting 3-body
interactions of uniform strength between all qubit triples. It is
revealed, contrary to previous thinking, that a crossover from
hard to easy solution is indeed possible, with nonstoquastic
drivers. (In Appendix D we further discuss the somewhat
simpler Lipkin-Meshkov-Glick model [12,13] that again has
long-range order but only 2-local interactions in the presence
of both transverse and longitudinal fields. Such a setting
may be more amenable to near-term experimental verification
of coherent catalysis, given some of the latest advances in
quantum computing hardware [14].) We choose to examine
these highly symmetric “toy” Hamiltonians with no topo-
logical features as they are analytically tractable yet exhibit
first- and second-order phase transitions typical of real-world
optimization problems.

II. INTRODUCING QUANTUM TRANSPORT
BY VACUUM DELOCALIZATION

It is said that “a rising tide raises all ships.” Traditionally
one examines the potential landscape of quantum annealing
problems in isolation, seeking insight from the landscape’s
shifting topology as the annealing progresses. That level of
analysis, however, may miss some subtleties and features that
allow quantum speedups where they were previously thought
not possible. In essence, the Hamiltonian has both potential
and kinetic energy, and the latter may play a significant role
in transport. The evolution of the ground-state components is
not that of a classical hill-walker exploring the contours of the
potential landscape, nor that of a quantum particle tunneling
underneath the barrier; it is more akin to a ship buoyed up over
it on the sea of its own vacuum energy, Fig. 2.

It has been discovered that in certain quantum annealing
models (by an external control field or coupling) the potential
landscape of complex hills and valleys may be altered in the
proximity of a phase change, when the quantum state tunnels
from one potential well to another through an intervening
barrier. The wells on either side of the barrier begin to coalesce
as the intervening barrier is suppressed, “softening” the phase
change from first order to second order (or discontinuous to
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FIG. 2. Three quantum transport mechanisms exist in a double
well during annealing. The potential barrier (dark blue curve) has
height V0 and the vacuum energy is E+

0 (red horizontal line). The
inverted parabola centered at the origin is stitched to two parabolic
wells centered on ±ξ1 with characteristic width β. The join location
is ξ = ±ξ1/(1 + β4) (vertical dashed lines in all subplots). The upper
panel indicates two well-understood mechanisms of quantum tunnel-
ing (red dashed line) through the barrier and classical activation over
the barrier (black dashed line) following absorption by a thermal
photon from the environment. The ground state is shown as a gray
profile in all three panels. Tunneling and thermal activation are
possible transport mechanisms when the wells are far apart, ξ1 � β,
and the barrier is larger than the vacuum energy, V0 > E+

0 . There is,
however, another transport mechanism, vacuum delocalization, that
comes into play when the width of the ground state in one isolated
well approaches the well separation, i.e., β ≈ ξ1, perhaps initiated
by some external catalysis. This “Rayleigh limit” may occur when
the vacuum energy subsumes the barrier, as in the middle panel.
While sufficient for delocalization, this is by no means a necessary
condition—as the lower panel demonstrates. The potential in this
lower panel has values (α, β ) �→ (2, 2), as compared with �→ (3, 1)
in the upper panel, and �→ (1.08, 1.08) in the middle panel.

continuous). It is sometimes assumed that the barrier must be
completely razed for such a qualitative change in the charac-
teristics of the phase change to occur. It is our observation
that lowering the barrier to the scale of the vacuum energy
is sufficient. This allows the vacuum state to subsume the
barrier and delocalize. In tandem, the adiabatic transfer of
the quantum state between the wells proceeds at an exponen-
tially increased rate. Interestingly, we shall see that the more
fundamental condition for this enhanced mobility is that the
ground-state profile be at the point of coalescing from bimodal
to unimodal; see Fig. 2. This limit we refer to as the Rayleigh
limit, for obvious reasons, examined further in Fig. 3. At such
a point, the system may be considered as a “particle in a box,”
the dimension of the box corresponding to the width of the
unimodal ground state at the phase transition. (In the antithet-
ical scenario a large intervening barrier greatly exceeds the
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FIG. 3. Contour plot of isogaps (constant spectral gap �01) in
{ξ1, β} parameter space for the potential of Sec. III. Rayleigh limit
is indicated by magenta line. As in the previous figure, the effec-
tive width of the wells vs the width of the top of the barrier is
characterized by the ratio β = σ1/σ∗ from Eqs. (A2). The distance
between the well minima is 2ξ1 in the same scale-free units. Gap
�01 is exponentially small when the ground state is split into two
localized components (lower right sketch), one in each well; ξ1 > β.
If these two parameters become comparable the gap approaches
h̄ω1 as the wells effectively merge (upper right sketch). For a bulk
unimodal state of effective width L the energies and gaps will scale
∝ L−2 (particle in a box). For fixed well separation ξ1 the magenta
curve traces β values associated with a maximum gap, i.e., where
the indicated isogap contours are vertical. This line asymptotes to
β ∼ 0.82ξ1. For larger β (above the magenta line) �01 remains
large but the well energies and gaps decrease as 1/β2, no longer
exponentially.

vacuum energy, permitting only exponentially slow quantum
tunneling of a localized state from one side to the other.)

First, a thorough investigation of a double well will provide
a more mathematical underpinning to the above remarks.

III. QUANTUM TRANSPORT IN A DOUBLE WELL

Since the performance of the adiabatic algorithm stems
from the ability of the ground state to conquer potential
barriers as it evolves towards the target state, let us examine
this simplest of possible scenarios—that of a generic sym-
metric double well in one dimension, with real coordinate
z, and centered on z = 0. Such models are used extensively
with great success to explain phenomena such as diatomic
molecular bonding in chemistry and microwave frequency
oscillations between the vibrational modes of the ammonia
molecule.

As the distance between two wells increases, the spectrum
of energy levels is observed to pair up in doublets, each
containing adjacent orthogonal symmetric and antisymmetric
eigenstates. Doublets are separated in energy by ∼h̄ω (the
characteristic energy of one well taken in isolation) but the in-
tradoublet splitting itself shrinks exponentially small in the
well separation. See Fig. 1. By this exercise, and in the spirit
of Gamow’s work [4] mentioned earlier, we wish to gain
insights about any crossover in the scaling behavior of these
spectral gaps as the wells’ distance varies. For the execution
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of the adiabatic algorithm, the gap size fundamentally dictates
time to solution. To foster confidence in the veracity of this
statement we present the following illustration.

Supposing the system begins in the ground state of the left
well, we can calculate the probability it will migrate to the
right well. Assume the true ground state of the system is a
real-valued positive set of amplitudes that corresponds to an
equal superposition ψ+

0 (z) = [ψ0(z − z1) + ψ0(z + z1)]/
√

2
of the local simple harmonic oscillator ground states confined
to the left and right wells. This is a reasonable assumption
for wells separated by a wide barrier. Near a minimum the
potential is by definition quadratic: V (z ≈ z1) = V0 + V ′′

0 (z −
z1)2; we recall that the eigenstates of a simple harmonic oscil-
lator are Hermite functions, with the ground state Gaussian-
distributed: ψ0(z) ∝ exp{−z2/(2σ 2)}, where σ = √

h̄/(mω)
provides a natural length scale and ω = √

V ′′
0 /m relates the

energy scale of local quanta to the well curvature. Equally,
we can assume the first excited state is the antisymmetric
superposition ψ−

0 (z) = [ψ0(z − z1) − ψ0(z + z1)]/
√

2, as its
orthogonality to the ground state is guaranteed, even when the
overlap

∫
ψ0(z − z1)ψ0(z + z1)dz becomes substantial. The

symmetry of the potential energy V (z) = V (−z) guarantees
that eigenstates will have definite even-odd parity, ψ±

k (z) =
±ψ±

k (−z), where k labels a particular doublet. The Sturm-
Liouville theorem [15] dictates that in one dimension there
can be no degeneracies, and that the odd-even doublets will be
paired with the odd states above the even ones in energy [16].

Now to relate the spectral gap size to the rate of migration
across the barrier for the two-state model: Taking the Hamilto-
nian to be quasistatic during the transition, a particle localized
in the left well, at t = 0, will be ψ0(z − z1) ∝ ψ+

0 − ψ−
0 ,

which evolves to

ψ (z, t ) = exp{−iE+
0 t/h̄}ψ+

0 − exp{−iE−
0 t/h̄}ψ−

0

= exp

{−i(E+
0 + E−

0 )t

2h̄

}

×
{

(ψ+
0 + ψ−

0 ) cos
t�

2h̄
+ i(ψ+

0 − ψ−
0 ) sin

t�

2h̄

}
(1)

(ignoring normalization), and � = E−
0 − E+

0 is the energy
gap. The system oscillates back and forth between the two
wells at a frequency �/(2h̄), and a characteristic timescale
for the migration from left to right well is

τ ∼ h/�. (2)

Armed with the knowledge that barrier migration occurs on
timescales varying inversely with the size of the spectral gap,
one is motivated to understand how the latter varies with the
height of the barrier and the distance between the two wells.
This has been a heavily researched topic in the limit of tall
barriers and large separations [17]; however the behavior in
transition to lower barriers and small separations is not well
documented.

If we demand the double well to be continuous, smooth and
piecewise-parabolic, the barrier height can be calculated:

V0 = mz2
1

2

(
1

ω2∗
+ 1

ω2
1

)−1

. (3)

At the barrier summit we define a characteristic frequency
ω∗ = √−V ′′

0 /m∗ and a length scale by σ∗ = √
h̄/(m∗ω∗): the

width of a localized ground state, were the maximum inverted.
Analogously we can define σ1 = √

h̄/(m1ω1), the width of a
localized ground state in one of the two wells with frequency,
ω1 = √

V ′′
1 /m1. This “Frankensteined” potential represents a

restricted subset of all possible double wells but its modest
formulation, we hope, will produce insights that generalize
well to the wider domain (for instance, when we examine
the quantum 3-spin model in Sec. V). One might arbitrarily
imagine wells with more elaborate structure away from the
well extrema, without revealing much about quantum trans-
port mechanisms in general. As was stated earlier, it is not
the barrier height, or even its size relative to the ground-state
energy, that establishes the spectral gap and computational
complexity. The more correct question one should ask is
whether the distinct well components have coalesced, i.e.,
whether a quantum Rayleigh “resolution limit” is reached.

Detailed examination of the piecewise potential and its
analytical eigenstates is presented in Appendix A. Eigenstates
φ± are composed of parabolic cylinder functions; e.g., the
ground state φ+ is a superposition of such cylinder functions
[18], called a Kummer function, Eq. (A6).

The following useful expression is derived in Appendix A
for the spectral gap as a scale-free ratio:

�01

h̄ω∗
=

φ+
0 (0) dφ−

0
dξ

(0)

2
∫ ∞

0 φ+
0 φ−

0 dξ
, (4)

where the denominator is the semioverlap of the ground and
excited states, and the variable ξ = z/σ∗ is the displacement
variable (measured in units of σ∗, the effective width of
the barrier summit). Substituting the analytical forms of the
eigenstates, the gap function of Eq. (4) is maximized for well
separation ξ1 = z1/σ∗ �→ 0, demonstrating that the largest gap
occurs when two wells merge. Introducing the scaled well
width β = σ1/σ∗, Fig. 3 indicates a maximum of the spectral
gap in β near β ≈ 0.82 ξ1. For distinct, localized wells (ξ1 �
β) the gap quickly vanishes to become exponentially small.
For fixed ξ1 and larger β � ξ1 beyond its maximum, the gap
shrinks again, but only polynomially quickly. This is because
the coalesced well is now becoming wider as β increases.
(Further reduction in the barrier height occurs but is now
irrelevant.) The gap decays as the inverse square, �/(h̄ω∗) =
1/β2 = ω1/ω∗, as should be expected; the wells are merging
and the gap maps onto that of a single harmonic oscillator:
h̄ω1. We shall learn that the spread or confinement of the
(unimodal) ground state is the harbinger of quantum mobility,
rather than barrier suppression.

In terms of the original variables, fast adiabatic transport
across a potential barrier does not depend directly on the
potential barrier size, nor the curvature at the summit. Rather
it depends on the violation of a Rayleigh separability criterion:

z1 > σ1 =
√

h̄

[
1

m1V ′′(z1)

]1/4

(Rayleigh limit). (5)

This criterion is entirely defined in terms of the potential
curvature and coordinate extent in the vicinity of the well
minima at z = ±z1. Quantum mechanics only enters via the
coupling constant

√
h̄; its value dictates the spread or confine-
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ment of the ground state in a potential minimum. This may
seem an odd remark, but it is relevant for later sections where
an effective h̄(n) emerges that will depend on the number of
qubits n; see Eq. (13).

It is not obvious how universal such a criterion might
be, and whether it might be extrapolated to wells of dif-
ferent shape and symmetry. In a later section we tackle the
quantum 3-spin, where we will encounter transitions between
asymmetric double wells of a quantum particle with position-
dependent mass.

IV. ASYMMETRIC POTENTIAL
AND RESONANCE CONDITION

The asymmetric double well with a high barrier and widely
separated minima ξ1 and ξ2 can be characterized as being far
from the Rayleigh limit: ξi � βi. Such a scenario is less inter-
esting in the current context of vacuum delocalization, and has
already been carefully examined, including the phenomenon
of resonant tunneling, in Refs. [19–21].

When the wells begin to coalesce and βi ∼ ξi one might
ask now what are the conditions for quantum catalysis when
the potential has asymmetry. To begin with, we must con-
sider whether the system is at the point of a quantum phase
transition. In the symmetric well it was guaranteed that the
ground state represents a phase transition due to its inherent
symmetry. But for a asymmetric double well, the ground state
may be largely confined to the wider or deeper minimum.

To correctly identify the point of transition we should
look to the barrier summit. A key observation is that the
asymmetric piecewise parabolic potential still has a maximum
of unit curvature there. Locally this inverted parabola has
traveling wave solutions ψ (±z): parabolic cylinder functions
with imaginary arguments [18], moving to the left and right;
see Appendix A. (Bound states of a double well must share the
same eigenvalue and the traveling waves are mirror images of
each other.) The overall solution in the vicinity of the barrier
is a linear combination of these, Aψ (z) + Bψ (−z).

Given the context of phase transition, if we associate
the minimum spectral gap with the maximum ground-state
variance, this maximum is only possible when the state is as
equally distributed as possible between the two asymmetric
wells. By matching energy levels and introducing the bound-
ary condition at the barrier summit ψ ′(z∗) = 0, it is as if we
have introduced a double-sided mirror; each side of the barrier
has a ground state that is one half of a fully symmetric double
well. This is the key to an evenly distributed wave function
between the two asymmetric wells. So the real-valued sym-
metric combination (A = B above) is the only possibility.

Once this Kummer wave function (A6) is matched to the
solutions farther out in each of the two wells of different
widths and depths, it will be stitched to a different decaying
solution as z �→ ±∞. The join points will differ on each
side because of the asymmetry, ξ = −ξ1/(1 + β4

1 ) and ξ =
+ξ2/(1 + β4

2 ). The overall ground state will look like the
ground state of a symmetric double well for z < 0 joined at
z = 0 to the ground state for a different symmetric double
well for z > 0. It is necessary that the two symmetric wells
have the same ground-state energy; all the stitched-together

FIG. 4. An asymmetric well may also be modeled as piecewise
parabolic, with two location and two width parameters, {ξ1,2, β1,2},
respectively. Here we have chosen different width parameters
{β1, β2} �→ {1, 3−1/4} for all plots, and equal location parameters
ξ1 = ξ2 ≈ 1.25. These values correspond to the optimal catalysis of
the quantum 3-spin; see Eq. (22). To identify the point of phase
transition at the barrier summit the vacuum energy ε of all three
potentials must coincide: the asymmetric potential and both symmet-
ric wells from which it is composed (vacuum energy level depicted
by red horizontal lines). Near the barrier summit the potential is an
inverted parabola; the ground state has identical analytical form in
all three cases (upper plots): a standing wave formed from right-
and left-moving parabolic cylinder functions (see Appendix A for
further discussion). Without this resonance condition we cannot
assume that the ground state represents a system at the point of
phase transition. Figure 19 illustrates the different phenomenon of
resonance tunneling for slow phase transitions where neither well
approaches the Rayleigh limit and the barrier greatly exceeds the
vacuum energy.

ground-state components must share the same eigenvalue to
represent a composite eigenstate. See Fig. 4.

Thus we have a resonance condition analogous to the one
for tunneling through high barriers mentioned at the start of
this section: Phase transitions in asymmetric double wells
occur when the ground states of the two symmetric double
wells (from which the asymmetric well is derived) have the
same energy deficit below the barrier summit.

V. INTRODUCING THE FERROMAGNETIC
3-SPIN MODEL

Now let us apply this delocalization transport mechanism
to systems of n spins or qubits. We can define a quantum
annealing Hamiltonian as follows:

Ĥ = −�
Ĵx

j
− (1 − �)

Ĵ p
z

j p
, (6)

where � is an annealing parameter. The operators Ĵx,y,z are
associated with spin along the three Euclidean axes. Scalar j
is a total spin quantum number, and p is an integer power.
The control parameter � is typically initialized at 1 and
reduced slowly and smoothly to 0. In the current context �

is associated with the strength of a transverse magnetic field
(along the x direction). In the usual sense, Ĵ p

z is therefore the
“target” or “problem” Hamiltonian. (The quantum annealing
prepares the ground state of a problem Hamiltonian.)

As it is written, the Hamiltonian is bounded: |Ĥ | < 1
This model is called quantum ferromagnetic p-spin, and we
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will explore the p = 3 case. It is worthy of a comment that
the limiting case p ∼ ∞ faithfully represents the annealing
formulation of Grover’s unstructured search problem, which
belongs to the class of hard problems mentioned in the in-
troduction. Since, for example, Ĵz = ∑

i σ
(i)
z /2 is a collective

spin operator, the interaction term with p = 3 gives rise to
3-local interactions of type σ (i)

z ⊗ σ
( j)
z ⊗ σ (k)

z . This may seem
at first to be somewhat unphysical. The advantage for us is
that despite the uniform and infinite-range couplings and no
topological features, the model exhibits a first-order phase
transition for a particular �c. It may provide insights about
the nature of “hard” problems in quantum annealing.

By the addition of a second control parameter κ ∈ [0, 1],
which varies the strength of a transverse antiferromagnetic
coupling σ (i)

x ⊗ σ
( j)
x , the 3-spin model becomes more

interesting:

Ĥ = −�
Ĵx

j
− κ (1 − �)

Ĵ p
z

j p
+ (1 − �)(1 − κ )

Ĵ2
x

j2
. (7)

It should be noted that this second control Hamiltonian +Ĵ2
x

has opposite sign to the other terms, which implies that in
the computational basis the off-diagonal terms are no longer
real and nonpositive. This is a definition of nonstoquasticity.
It has been conjectured that the inclusion of such nonsto-
quastic terms might be crucial to any speedup of quantum
annealing over classical computation. Indeed, nonstoquastic
Hamiltonians may not be simulated efficiently by classical
algorithms. Seki and Nishimori proved in Ref. [7] that for p-
spin models of p � 4 the inclusion of the nonstoquastic term
above can, during the annealing schedule, circumvent the first-
order phase transition. For p = 3, the mean-field analysis they
performed indicates that the first-order phase transition should
persist, resulting in an exponential slowdown of the adiabatic
evolution. We will show that actually this is not the case; even
for p = 3 there is the possibility of nonstoquastic speedup.

The nonstoquastic term has the effect of widening the spec-
tral gap at the phase transition. Equivalently, the free-energy
landscape is altered such that potential barriers are suppressed
entirely into second-order phase transitions. Traversing the
fully lowered barrier, the ground state no longer jumps dis-
continuously at the phase transition; rather it stretches across
the valley floor to occupy the other well, with amplitudes that
“smear” across the intervening coordinate space (see Fig. 5).

VI. MEAN-FIELD PICTURE

In a conventional treatment one proceeds with a mean-field
analysis. In such an approach, all n qubits are unentangled and
identical, collectively forming a large spin-coherent state:

|ψ〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉, (8)

|�〉 =|ψ〉⊗n. (9)

This state, because all the qubits are identical, is also in the
j = n/2 fully symmetric subspace. Also note the qubit is
confined to the x-z plane just like the Hamiltonian, and that
θ is the polar angle made by the spin-coherent state with the
x axis. If we take the expectation value of Ĥ with |�〉 we can

FIG. 5. In the quantum 3-spin model, increasing the antiferro-
magnetic coupling governed by (1 − κ ) from Eq. (7) “softens” the
discontinuous or first-order phase transition occurring for the exter-
nal magnetic field parameter � = 0.565, to approach a continuous or
second-order transition nearby. This is illustrated above for n = 100
spins. For κ = 1 the discontinuity in the ground state [amplitudes
ψ (z) on the vertical axis] is quite apparent as it tunnels from the
paramagnetic phase centered on z = m/ j = 0 to the ferromagnetic
phase near z = +1. For κ = 0.1, this transition has been “smeared
out” by the contribution of the nonstoquastic driver +Ĵ2

x ; the state
distribution changes continuously with � in the second plot.

write it in terms of {�, κ, θ} parameters:

〈Ĥ〉 = −� cos θ − κ (1 − �) sinp θ + (1 − �)(1 − κ ) cos2 θ.

(10)

In Cartesian coordinates, we may express sin θ = z and
cos θ = x = √

1 − z2 and introduce the annealing ratio γ =
�/(1 − �):

〈Ĥ〉
�

= V (z) = −
√

1 − z2 −
[

κ

γ

]
zp +

[
1 − κ

γ

]
(1 − z2).

(11)

This is a mean-field description of the energy V (z) as a
function on the line z = m/ j ∈ [−1, 1], where m is the mag-
netic quantum number. We continue in the fully symmetric
space of maximum spin j = n/2, as the Hamiltonian always
commutes with the total spin operator �J2 = Ĵ2

x + Ĵ2
y + Ĵ2

z
for all {�, κ} values. This energy function on the line will
continuously change as κ and � are varied, and if the changes
are made adiabatically, the spin configuration remains in the
minimum of this function. Equivalently, the overall spin-
coherent state is like a macroscopic pointer oriented in the
direction θ0 associated with the minimum energy.

Of course, even though much can be gained from this
classical analysis, this does not provide a complete picture.
The spins are highly coupled with long-range order and during
its evolution the system undergoes a first- or second-order
phase transition. It is hard to believe that a description devoid
of entanglement and other quantum properties will capture
the correct characteristics in proximity to the phase transition
where quantum features are dominant (e.g., peaks in entan-
glement and quantum Fisher information). Recall also that
the bottlenecks occurring in this critical region dictate the
overall time complexity of the algorithm. We now illustrate
this shortcoming with the p = 3 case.
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VII. FULL QUANTUM MODEL OF 3-SPIN
WITH NONSTOQUASTIC DRIVER

First, let us make the problem fully quantum. We could
simply proceed by numerical diagonalization of the spin
Hamiltonian, but this provides little insight about the problem
or its characteristic features, and does not answer questions
such as, Why is there a phase transition? or Why should we
expect universality to the problem’s behavior for different n?
Why should we expect the problem to compute quickly or
slowly? And eventually, one might imagine running out of
processing power to perform the numerical computations at
large n. The approach we employ is to turn the discrete spin
problem into a continuous variable Schrödinger equation for
a particle in a potential. By similar techniques, we previously
studied criticality as a resource for quantum metrology in the
Lipkin model [22]. Using notation Ĵz|m〉 = m|m〉, designate
the ground state as |�0〉 = ∑+ j

m=− j ψm|m〉. Let us formulate
the difference equation, or recurrence relations for the Hamil-
tonian, featuring ψm, ψm±1, etc., which for small q = 2 in
Ĵq

x will not have many entries far from the leading diagonal.
Forming the inner product 1

�
〈m|Ĥ |�0〉,

= − κ

γ

(
m

j

)p

+ 〈m|
{

−
(

Ĵx

j

)
+

[
1 − κ

γ

](
Ĵx

j

)2
}

|�0〉.

To proceed we recall Ĵx = (Ĵ+ + Ĵ−)/2 and the action of
these ladder operators is

Ĵ±|m〉 =
√

j2 − m2 + j ∓ m |m ± 1〉.
Operating with the Hermitian spin operators to the left on the
basis states 〈m| ← gives

〈m|
(

Ĵx

j

)
=

√
j2 − m2

2 j

[
〈m − 1|

√
1 + 1

j − m

+〈m + 1|
√

1 + 1

j + m

]
. (12)

Similarly, Ĵq
x for q = 2 maps the |m〉 component into itself and

|m ± 2〉. Moving to pseudocontinuous coordinate z = m/ j ∈
[−1, 1] we introduce a small parameter,

h̄ = 1/ j (effective Planck constant), (13)

and rewrite 〈m ± 1|�0〉 = ψm±1 �→ ψ (z ± h̄). The exact re-
sult (before any approximation) is

〈m|
(

Ĵx

j

)
|�0〉 =

√
1 − z2

[
ψ (z − h̄)

√
1 + h̄

1 − z

+ ψ (z + h̄)

√
1 + h̄

1 + z

]
. (14)

The penultimate step is to identify a shift operator,

ψ (z ± h̄) = e±h̄Dψ (z) = exp

{
±h̄

d

dz

}
ψ (z), (15)

in terms of the differential operator D = d/dz, the generator
of translations in one dimension.

Finally, we expand everything to second order in the small
parameter h̄. This is only valid when the quantum state and
the form of the potential are sufficiently smooth: h̄2D2 �
h̄D � 1, which may not always be the case. There are errors
associated with truncation to O(h̄2), but these should be less
significant for larger qubit ensembles n = 2 j � 1, resulting
in the effective h̄ � 1. Then combinations like ψ (z + h̄) +
ψ (z − h̄) map to cosh(h̄D)ψ (z) ≈ [1 + (h̄D)2/2]ψ (z). As a
consequence, transverse field term Ĵz, as well as contributing
to the potential energy, is the origin of a kinetic energy
term − h̄2

2
d2ψ

dz2 in the Schrödinger equation. In some sense, the
transverse field provides the kinetic energy that allows the
quantum system to migrate through barriers.

All transverse terms of form Ĵq
x contribute to both kinetic

and potential energy terms in the Hamiltonian:

〈m|
(

Ĵx

j

)q

|�〉 �→
[

qh̄2

2
D(1 − z2)

q
2 D + (1 − z2)

q
2

]
ψ (z).

(16)

Note the slightly unusual form of the kinetic energy operator
for a variable mass, written in a manifestly Hermitian form:
P̂M̂−1P̂/2 (although such a position-dependent mass does
occur in the semiconductor tunneling literature [23]). Here,
momentum operator P̂ = −ih̄D and inverse mass

M−1(z) = −q(1 − z2)
q
2 . (17)

The potential energy contribution to V (z) from the above
mapping of Ĵq

x is +(1 − z2)
q
2 . An analytical treatment of

the Schrödinger equation with position-dependent mass was
presented in Ref. [24].

Now we are at a point where we can write out the
eigenequation Ĥ |�k〉 = Ek|�k〉 reformulated for a single par-
ticle of variable mass in a continuous potential:[

1

2
P̂M̂−1P̂ + V (z)

]
ψk (z) = Ek

�
ψk (z). (18)

The inverse mass operator can be zero or negative in the
parameter space of {�, κ}:

M̂−1(z) =
√

1 − z2 − 2(1 − z2)

[
1 − κ

γ

]
. (19)

Despite the fact this was a completely different approach
to the mean-field or classical spin derivation, the potential
energy V (z) coincides with the free energy in the mean-field
picture, Eq. (11). The key improvement is that in addition to
defining a potential energy surface, we now have an analytical
expression for the kinetic energy. Variable mass problems are
interesting in their own right, and studying this one, with
its possibility of infinite and negative mass, may reveal new
behaviors within the p-spin paradigm. Or these anomalies
may point to limitations of a model that is only quadratic
in momentum P̂. (Interestingly, the negative mass boundary
is coincident with the second-order phase transition in the
p = 3 case.) It is also intriguing how this model will behave
for mesoscopic values of n: sufficiently large to maintain the
validity of the transformation to continuous variables, but
small enough that the effective h̄ = 1/ j is of a size that the
ensemble behaves in an extravagantly quantum manner. This
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FIG. 6. Zero-temperature energy surfaces V (z) associated with quantum annealing as a transverse field � is lowered adiabatically (upper
row of 2D plots provides an overhead plan view): Coordinate z = m/ j ∈ [−1, 1] is the ratio of the magnetic quantum number m to total
spin j. For an n-qubit ensemble confined to the fully symmetric subspace, the total spin j = n/2. Loci of the maxima (dashed red line) and
minima (unbroken red line) are indicated, as are births of new maximum-minimum pairs (red dots), and second-order phase transitions where
a minimum becomes a maximum (black dots). These latter points are associated with lines of zero curvature, V ′′(z) = 0. As � is reduced,
the ground state evolves in (a) and (b) by a first-order phase transition connecting z = 0 via tunneling through an intervening barrier (dark
blue contour) to reach the global minimum at z = 1. The blue and cyan contours trace out the potential wells when they have equal depth, as
defines the classical first-order transition. (In the 2D plan view, the blue transition line intersects the red dashed line associated with a potential
maximum, a signature of barrier penetration.) To contrast, case (c) illustrates the Lipkin-Meshkov-Glick (LMG) model [12,13], in which the
ground state smoothly evolves from being localized at z = 0 to z = ±1, bifurcating continuously near the critical point �c = 2/3 (green line).
The “gentler” phase transition here is described as second order or continuous; the green contour intersects no intervening V (z) maximum,
and there is no barrier penetration. Cases (a) and (b) present the p-spin model for p = 3 which, at least classically, presents an unavoidable
first-order phase transition; the barrier cannot be fully suppressed to zero. Case (b) shows the modified potential produced by the presence
of the nonstoquastic catalyst term in the p-spin Hamiltonian, a transverse ferromagnetic coupling of strength (1 − κ ), as described in Sec. V.
The catalysis softens the transition, bringing the first- and second-order transition points in close proximity (red and black dots of top middle
figure) and effecting partial barrier suppression.

is the opposite extreme to the thermodynamic limit n ∼ ∞,
i.e., the classical limit h̄ ∼ 0, where quantum effects vanish.
The energy surfaces V (z) for z ∈ [−1, 1] are indicated for a
range of annealing parameter �, two snapshots taken at values
1 and 0.4 for κ , in Figs. 6(a) and 6(b). The third subplot (c)
will be discussed in Appendix D.

VIII. ADIABATIC EVOLUTION ACROSS
THE SOFTENED PHASE TRANSITION

For adiabatic evolution the ground state will remain in
the global minimum of the potential surface. The system
begins at � = 1 in the unique minimum at z = 0; then a
second minimum-maximum pair are born as the transverse
field is slowly turned off. The annealing ratio at which the
new minimum appears is given in Eq. (C1). The coordinate
location of the new minimum is rather clumsy if expressed as
z1(�, κ ), but it can be compactly expressed as a condition in

terms of the associated polar angle θ1:

sin(θ1) = γ sec(θ1) + 2κ − 2

3κ
. (20)

This minimum V (z1) begins at a higher energy than the
z = 0 paramagnetic minimum but sinks quickly as � �→ 0;
see Fig. 6 again. During the annealing this ferromagnetic
minimum drops lower than the central minimum, and it is at
this point that the ground state of the system jumps discontin-
uously to the ferromagnetic state in a first-order phase tran-
sition. The point on the annealing schedule that corresponds
to the minimum spectral gap actually occurs somewhere be-
tween the birth of the second ferromagnetic minimum and
the point at which the wells have equal depth. In fact all the
interesting quantum behavior of this model occurs between
these extremes, outside of which a mean-field description
will suffice. This is illustrated in Fig. 7, a contour plot of
the j = 40 inverse gap 1/� that indicates clearly a phase
transition region bounded by curves associated with the birth
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FIG. 7. Any annealing schedule that maps {�, κ} values
{1, 1} �→ {0, 1} will unavoidably traverse the minimum gap region
that corresponds to the phase transition of the quantum 3-spin
model, Eq. (7). The phase transition ridge may not be circumvented,
as is quite apparent in the upper contour plot of the inverse gap
1/� for n = 50 ( j = 25). The ridge extends throughout the full
parameter range κ ∈ [0, 1]. Near the line κ = 1 the transition is
first order; the associated minimum gap is always exponentially
small in j. However, for optimized control parameters {�c, κc} =
{0.598, 0.479} (denoted by a white star) the ridge defining the phase
transition has a saddle, a “maximum minimum gap.” Optimized
annealing schedules that minimize computation time should pass
near this point. In fact, for κ � κc as j � 1 a polynomially small
minimum gap is always possible, even though a classical analysis
of the potential landscape alone would seemingly forbid this. The
lower plot shows the {�c, κc} parameter pairs (stars) for different
labeled 17.5 � j � 95. (For j � 17, optimal κc = 1.) The orange
and blue curves describe respectively the birth of the second potential
minimum V ′′(z1) = 0 and the point at which both wells are of equal
depth, V (z1) = V (0). The green line corresponds to the second-order
phase transition at z = 0. It is “hidden” in the sense that any adiabatic
annealing schedule progressing from right (� = 1) to left sides will
initially encounter the first-order transition from the z = 0 minimum
to z1 > 0; the green curve never crosses the blue-orange bounded
region, for all κ .

FIG. 8. For direct comparison, here are plotted the spectral gap
“landscape” for both systems, as a function of the control parameters
� (transverse field) and κ (antiferromagnetic driver). The upper plot
depicts, for n = 80 spins, the 3-spin ensemble. The lower figure is
the equivalent analytical model: a particle of variable mass moving
in a one-dimensional continuous potential well. This 1D model is
seen to exhibit the same qualitative features as the original spin
ensemble (upper plot), except for an infinite-mass singularity at z =
0 coincident with the hidden second-order phase transition (white
dashed curve in lower plot); see Eq. (19). The saddle point of the
phase transition ridge for the original 80-spin system is indicated (in
both plots) by a white star marker, and with a cyan marker for the
continuous model. Ground-state wave functions associated with both
models are shown in Fig. 11.

of the second minimum and the classical first-order phase
transition, in orange and blue, respectively. Figure 8 compares
this annealing landscape of the original n-spin ensemble and
the corresponding 1D particle model we have developed,
with good agreement. Finally, Fig. 18 in the Appendix B
illustrates the domain of applicability of the mean-field model
quite explicitly (including its failure in proximity to the phase
transition).

As a side remark, we mention that in the {�, κ} parameter
space, for very small κ ∼ 0 the gap closes very fast to be fac-
torially or exponentially small, without any associated phase
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FIG. 9. The phase transition ridge features a saddle point, or
“maximum minimum gap,” more clearly visible in 3 dimensions
when plotted against control variables κ and �. The energy gap of
this saddle point scales polynomially with system size j. At larger
κ (reducing the influence of the nonstoquastic driver) the gap size
shrinks to be exponentially small in j. For very small κ the gap
again quickly closes from polynomial to exponential or factorial; this
anomalous gap was first discussed in Ref. [25].

transition; this anomalous behavior has been documented
previously in Ref. [25] and relates to the fact that a finite
number of spins n = 2 j cannot exactly represent an irrational
value of the variable z = m/ j. (In the current context this
is not an interesting limit because the problem Hamiltonian
vanishes when κ = 0.) See Fig. 9 for a three-dimensional
visualization of the spectral gap landscape.

In Fig. 7 along the ridge of the phase transition there is a
white star marker indicating the location of the saddle, or max-
imum minimum gap. As j increases we would like to know
whether this optimized gap begins to shrink at a polynomial
or exponential rate. In terms of classical phase transition anal-
ysis, the second-order phase transition (green arc of Fig. 7,
lower plot) is always hidden behind the first-order transition
(blue curve), and therefore there is no hope to produce a
polynomial-sized gap. Stated using carefully chosen language
in Ref. [26]: Upon examining the potential surface,“the first-
order transition line persists down to κ = 0. This fact may be
interpreted in terms of the Landau theory of phase transitions
that there would appear a cubic term in the Landau free
energy for the cubic Hamiltonian with p = 3, which strongly
enhances the possibility of first-order transition.”

Here the authors are referring to the cubic term that arises
in Eq. (11), setting p = 3. The apparent inevitability of barrier
penetration via tunneling, with the associated exponentially
small spectral gaps and first-order phase transitions in many
quantum annealing landscapes (beyond simple p-spin models,
e.g., spin glasses), is a phenomenon much cited in arguments
against the efficiency of the adiabatic algorithm for practical
problems [5]. This is somewhat ironic: tunneling itself is one
of the vaunted traits of quantum annealing that offer it an
advantage over classical algorithms. Let us examine what
happens to the double well as κ is reduced, turning on the
influence of the nonstoquastic antiferromagnetic driver +Ĵ2

x .
From Fig. 10 it is seen that reducing κ also lowers the

barrier; it becomes completely suppressed only for κ = 0.
This limit, however, brings us back to the anomalous case

FIG. 10. For the quantum 3-spin model, the Hamiltonian contri-
bution of the transverse antiferromagnetic driver +(1 − κ )Ĵ2

x is illus-
trated near the classical first-order phase transition (wells are of equal
depth). Control parameters κ (indicated) and � (not shown) and are
chosen to fulfill this condition, and as κ �→ 0 the contribution of the
nonstoquastic driver increases, lowering the barrier V0, and reducing
the separation of the potential wells z1. The paramagnetic well is
centered on the origin (unbroken white line). The dashed white line
describes the ferromagnetic minimum at z = z1. Asymmetry of the
wells is apparent even when they are of equal depth, as above.

discussed earlier [25]. How does the optimal nonstoquastic
driver contribution κc scale with the system size n = 2 j? If κc

approaches zero too quickly it suggests that the nonstoquastic
terms may not be very useful for larger ensembles. More
crucially, what gap scaling can we achieve, even without being
able to suppress the barrier entirely?

Algebraic analysis of the κ � 1 limit (Appendix C)
shows at small κ (strong nonstoquastic driving) the coordi-
nate distances z1, characteristic frequencies ω, and barrier
heights V0 scale �→ {κ, κ2, κ4}, respectively. And application
of Rayleigh criterion from Eq. (5) indicates a scaling law at
the saddle point:

κc ∼ O(
√

h̄) = α/
√

j, (21)

where α we shall call the “Rayleigh coefficient.”
This is encouraging, first because it vindicates our choice

to work in the limit of small κ for larger ensembles. Also, it
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−1.0 −0.5 0.0 0.5 1.0

FIG. 11. The Rayleigh limit is clearly violated at optimal catal-
ysis for both the original discrete spin system and the continuous
model, i.e., for the widest minimum gap �01, here illustrated for n =
80 qubits. Optimal control parameters {�c, κc} were found for the
spin system by numerical search using a truncated Newton method.
The ground state �(z) (blue and dashed red curves) no longer has
isolated components in each well; they are largely coalesced. Note
the asymmetry, not only of the potential well V (z) (gray filled curve),
but of the wave function, biased towards the ferromagnetic well
(centered on z1).

says the relative strength κ of the problem Hamiltonian −Ĵ3
z

to the nonstoquastic driver +Ĵ2
x must decay only polynomially

in system size n = 2 j. An optimal barrier will decay as κ4
c ∝

1/ j2. For any finite ensemble an optimized catalysis occurs
for a nonzero barrier. Total barrier suppression, if it were even
possible, would be suboptimal. (It is of course not possible in
the 3-spin model.)

Combining Eq. (13) with Eq. (21) above, h̄ = 1/ j ∝ κ2
c for

optimal catalysis, the vacuum energy for the isolated wells
h̄ω0,1/2 is of the same order as the potential barrier height
V0 ∼ κ4

c ; all energy scales are equivalent.
Let us examine the Rayleigh limit ξ1 ∼ β for the asymmet-

ric potential, e.g., of Fig. 11. We may apply the phase transi-
tion resonance condition that was introduced in Sec. IV. Map-
ping the nonstoquastically driven 3-spin into the piecewise-
parabolic potential produces

{ξ1, β1, ξ2, β2} �→
{

α

31/4
, 1,

α

31/4
,

1

31/4

}
, (22)

where α is the scaling coefficient of the Rayleigh criterion, to
be recovered presently (κc = α/

√
j). Asymptotic expressions

for ξ, β terms in the small-κ limit are also worked out in
Appendix C rather than interrupting the current narrative. The
asymmetric potential in scale-free coordinates was depicted in
Fig. 4.

From Eq. (4) the energy h̄ω∗ contributes a multiplicative
factor α2 to the gap �01, using the small-κ result of Eq. (C9c).
The saddle point of the phase transition (maximum minimum
gap) occurs when the spectral gap times α2 is a maximum:

κc ≈ 1.67√
j

; (23)

the explicit dependence of the gap on α is plotted in Fig. 12.
(The numerical solution to the scale-free problem unlocks

0.5 1.0 1.5 2.0
0.2

0.4

0.6

0.8

1.0

FIG. 12. The spectral gap �01 in the 3-spin is formed by multi-
plying the O(1) gap in scale-free coordinates by h̄ω∗, which produces
�01 ∼ O(1/ j2 ). To find the numerical coefficient we may apply the
delocalization resonance condition of Sec. IV to produce this curve
of the gap (in arbitrary units) as a function of the Rayleigh coefficient
α. It features a maximum at α ≈ 1.67, corresponding to the saddle
of the phase transition.

the fundamental scaling coefficient, universal to the 3-spin
problem of any size j � 1.)

Going back to, and comparing, the original spin system,
numerical results for n � 400 are presented in the upper plot
of Fig. 13 which also asymptotes to κc ∼ 1.6/

√
j, confirming

the validity of the variable-mass model and the simplification
to a piecewise-parabolic potential.

These results further suggest that smaller systems will
more easily violate the Rayleigh separation criterion. In the
thermodynamic or classical limit, j ∼ ∞, it is impossible to
approach this Rayleigh boundary. Classically, one will always
have a first-order phase transition and exponentially small
gap. More correct than “classical,” we might designate this the
“large-spin limit”; the framework we have illustrated remains
quantum mechanical and tunneling is permissible, if unlikely.

Referencing Eq. (4) we know that �c ∼ O(1/ j2), with one
power of 1/ j coming from h̄ and the other from ω∗; the latter
was calculated at the critical κc in Eq. (C9c). The scale-free
analysis that produced α ≈ 1.67 also provides the scaling
here:

�c ∼
√

3

2 j2
. (24)

This compares remarkably well to the original 3-spin system,
verified numerically to 400 qubits in the lower plot of Fig. 13.

The prediction of a crossover from an exponentially small
gap to a polynomial one and the resulting quantum speedup,
especially in models where it was assumed not possible, is
a central result of this paper, as is the presentation of an
optimized catalysis (energy barrier suppression) associated
with a type of Rayleigh criterion and resonance for the
quantum ground state of a double well. A peak in mobility
is possible because of the competition between the increasing
mass and increased localization (narrowing of potential well)
of the state that occurs at lower κ . The former decreases
energy scales and the latter increases them. The inclusion of
kinetic energy and quantum uncertainty in the analysis may
require redrawing of the boundaries in many phase diagrams
produced for models such as p-spin that had previously been
based on consideration of the classical potential surface alone.
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FIG. 13. Upper plot collects numerical results for the nonsto-
quastic control parameter κc of 3-spin system for 4 � j � 196. The
optimized parameter values asymptote to κc ∝ 1/

√
j, Eq. (23). For

systems of j � 17 apparently the ground state is always delocalized
over the barrier, because the effective h̄ = 1/ j (and therefore vacuum
energy) is large. In these cases no catalysis (no barrier suppression) is
necessary to produce a polynomial gap: κc = 1. The lower plot shows
the scaling of the minimum gap, also with system size. Even though it
is forbidden from the perspective of classical phase transition theory,
a polynomial gap can be maintained in the quantum 3-spin model
by suppressing the potential barrier to an optimal nonzero height
V0 ∝ κ4

c . A partially lowered barrier permits the two well components
to merge; at the Rayleigh limit they become a unimodal state,
with polynomial spectral gap. Without any catalysis the minimum
gap will quickly close at an exponential rate (magenta line), the
crossover again indicated at j ≈ 17. The exponential scaling of the
uncatalyzed first-order transition asymptotes to � ∼ exp{−0.175 j},
as documented in Ref. [5]. The optimal gap (black dots) eventually
converges on the asymptote (cyan line) predicted by the continuous
model, Eq. (24). The rate of gap closure is always faster than that
of the Lipkin-Meshkov-Glick (2-spin) model [12,13] �c ∝ j−4/3, a
continuous phase transition. Its scaling is indicated in the lower plot
by a dashed line.

IX. t∗: TIME TO SOLUTION VIA OPTIMAL PATH

Earlier we gave a simple justification in the tunneling case
that time to solution and minimum gap at the phase transition
are inversely related: t∗ ∼ 1/�01(�∗, κ∗). Now we have a
Hamiltonian evolving under the influence of two drivers, �

and κ , for which we can adapt a recipe presented in Ref. [27].
With gradient operator ∇ = ( ∂

∂�
, ∂

∂κ
),

t∗ = 1

j

∫
C

1

�2
01

||∇Ĥ ||2 · (d �C). (25)

The open curve C connects the initial point {�, κ} = {1, 1} to
the final point {0, 1} in control space and ||M||2 denotes the
2-norm of a matrix M. Approximately, for the Hamiltonian of
Eq. (7) in the limit j � 1 we have ||∂Ĥ/∂�||2 ∼ 2 − κ and
||∂Ĥ/∂κ||2 ∼ 1 − �.

We believe annealing through the saddle point, identified
by a star in Fig. 7, permits a fast (polynomial time) adiabatic
evolution. Until now we have seen only the 1/ j2 scaling of
the gap size at the saddle; let us establish that optimal paths
actually traverse the phase transition in the neighborhood of
this saddle.

To investigate such paths C we can rasterize the contour
landscape of Fig. 7, turning it into a grid of pixels. Each pixel
becomes a node on a graph; we can use Eq. (25) to understand
movement costs (time penalty) along edges connecting these
nodes. Restricting movement to the {N, S, E ,W } directions
(diagonal costs are not uniquely defined) means that each
node or pixel is connected to at most four others. Next, we
can employ a pathfinding algorithm such as that pioneered by
Dijkstra in the late 1950s, Ref. [28], which uses a prioritized
queue to explore the graph. The algorithm is greedy; partial
paths are favored that have the lowest accumulated costs.
Shortest paths found in this manner are presented in Fig. 14.
We observed in Fig. 13 that the saddle moves off the straight-
line path (κ = 1) connecting {0, 1} ↔ {1, 1} for j > 17. In
contrast, the pathfinding algorithm finds an optimal route that
deviates from the beeline trajectory for j � 20. The optimal
path ventures close to the saddle point (akin to a mountain
pass through the phase transition ridge) only for larger j—for
instance the case j = 40 presented in Fig. 14.

To find an analytical answer to the scaling of this algorithm
with j, we will make some approximations. First, let us
assume the dominant contribution to t∗ will come from the
vicinity of the phase transition. In essence we want to find
an effective δ�, or δγ corresponding to the phase transition
region. We can begin by assuming the optimal path segment
δ�C will traverse the transition in a direction normal to the
curve γ0 from Eq. (C1) that defines the boundary of the
quantum region. In the parameter space of (κ, γ ) the vector
�γ0 = (κ, 2(1 − κ ) + 9κ2/4) has a normal vector �n ≈ (9κ/2 −
2,−1). This produces

t∗ ∼ δκ

j�2
c

{O(1)}, (26)

where we can easily find the effective width of the phase
transition δκ from the intersection of the normal line with
curves γ∗ and γ0; see Fig. 15.

The hidden second-order phase transition (occurring when
the paramagnetic minimum at the origin z = 0 becomes a
maximum) occurs precisely at γ2 = 2(1 − κ ), which is the
same as γ0 to first order in κ . The quantum phase transition
must occur between γ0 and γ2, and therefore t∗ ∼ O(κ2) or
smaller.

Numerical results of Fig. 15 suggest that δγ ∼ O(κ2.75) at
the critical κc. The associated small change δκ normal to the
phase transition ridge must also be

δκc ∼ O(κ2.75), (27)

when κ � 1. Putting all our scaling relationships together, in-
cluding the Rayleigh limit κc ∼ O( j−1/2) and gap size scaling
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FIG. 14. The algorithm due to Dijkstra is employed on a graph
produced by rasterizing the control landscape of Fig. 7, here the
ensemble size j = 40. Contours here are also of log 1/�01, the
cost of moving between adjacent nodes ∝ 1/�2

01. Darker-shaded
regions may therefore be more rapidly traversed. Movement costs
along graph edges, between pixels, are defined by Eq. (25). The
green line represents an optimal adiabatic contour C∗(�, κ ) from
the initialization parameters {�, κ} = {1, 1} (green dot) to the final
values {0, 1} (red dot). The blue pixels of the upper plot represent
the phase transition ridge, with the saddle indicated by a white star
marker. One might imagine an explorer journeying south from his
home in the northeast corner to cross a river close to the shallowest
point before heading to his destination in the northwest. There are
different anisotropic frictional movement costs for going south (1 −
�)(δκ ) versus west, (2 − κ )(δ�), independently of the node cost.
This explains the zero friction path traversed due south from {1, 1}
to ∼{1, 0.3} that then turns westward towards the saddle marker.
On the lower plot is t∗, the cumulative contribution to the total
adiabatic time. Unexplored regions are left uncolored in the lower
plot. Admittedly, there will be error in the sampling of the phase
transition terrain (the ridge is basically a delta function) which might
be improved by adaptive sampling of regions with steep gradients.

�c ∼ O( j−2), gives

t∗ ∼ O( jα ) (28)

for the catalyzed time complexity where we have given the an-
alytical bound α < 2 and numerical evidence for n ∈ [1, 400]
qubits indicates an α ∼ 13/8.

FIG. 15. In {κ, γ } parameter space, the quantum domain exists
between the birth of the ferromagnetic well in the potential at γ0 and
the point of the classical first-order phase transition γc, where the
potential wells have equal depth. Also shown is the hidden second-
order transition γ2 = 2(1 − κ ), where the paramagnetic minimum
becomes a maximum (dashed line). Between γc and γ0 appears the
true quantum phase transition at γ∗. Scaling of γ0 − γ∗ is observed
between κ2 and κ3; a fit line for κ2.75 is indicated on a logarithmic
scale in the lower plot (red line).

The overall algorithmic complexity of the catalyzed 3-spin
is polynomial, between linear and quadratic in the number of
spins or qubits.

The continuous model’s validity relies on a degree of
smoothness in, e.g., the wave function and its derivative. We
may be precluded from any refinement on smaller scales than
h̄ = 1/ j, e.g., in the coordinate z. Optimal catalysis has κc ∼
1/

√
j so sharp effects such as locating the phase transition

ridge might be associated with higher powers than κ2, and
thus may not be captured here. For these reasons we may be
restricted to the statement that in parameter space, the phase
transition ridge has width 1/ j or smaller at the saddle point of
optimal catalysis.

X. CONCLUSIONS AND OUTLOOK

One might expect that quantum mobility in a potential
with tall barriers increases monotonically as those barriers
are suppressed, by application of external control fields or
couplings. This can result in an exponential speedup in time
to solution. Some coupled-spin systems, however, exhibit a
sweet spot, an optimal catalysis, where mobility depends on
more than just complete barrier suppression. Indeed, that full
suppression may not even be possible, and the exponential
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FIG. 16. A light at the end of the tunnel: Subject to a full
quantum analysis, the phase portrait for the antiferromagnetically
driven 3-spin must be redrawn. The boundary between paramagnetic
phase (PP) and ferromagnetic phase (FP) in the space of control
parameters � and κ is no longer first order, and admits a softer
transition. This “polynomial back door” of order 1/

√
j bounded by

the saddle point (star marker) circumvents the exponential slowdown
in time-to-solution associated with tunneling; the annealing proceeds
in polynomial time.

speedup seems out of reach. For instance, the 3-spin model
with a nonstoquastic driver has a strong dependence on the
variable mass that results in a saddle point of the barrier in
parameter space.

We have shown that kinetic energy scales should not be
ignored, as they are in mean-field models. The scale is set by
the effective Planck constant h̄ = 1/ j, the reciprocal ensem-
ble size. This “quantum uncertainty” dictates the ability of a
ground state to delocalize across barriers. We repurpose the
Rayleigh optical separation criterion for quantum computing,
and identify its violation as a harbinger of exponentially
enhanced mobility; see Fig. 16. Also, when a double-well po-
tential exhibits asymmetry we identify a resonance condition,
allowing the quantum phase transition point to be precisely
located, as distinct from the nearby classical one. The full
quantum treatment of annealing through shallow barriers can
lead to radically different conclusions about time complexity
of the algorithm.

To illustrate this “optimized catalysis” we created an an-
alytical model, and verified numerically via a pathfinding
algorithm previously unexpected polynomial scaling (and uni-
versal coupling coefficients) of the time to solution for the
quantum 3-spin catalyzed by an antiferromagnetic coupling.

In terms of future work, if typical barrier heights are
known in an annealing problem, e.g., V0 ∼ n1/3 for some spin
glasses, one might match vacuum energies to that scale in
our models, to effect polynomial time solutions of otherwise
“hard” problems. The challenge then will be the optimal
control of the Hamiltonian landscape, without leveraging prior
knowledge of minimum gap and saddle or barrier locations
and magnitudes. Because the vacuum delocalization effect we
describe relies on mesoscopic-scale systems (a large effective
h̄ = 1/ j balanced against larger problem instances n = 2 j),
there is motivation to distribute large computations in an
optimal way among smaller quantum subsystems of, e.g., 10
to 1000 qubits.

These results hold in the adiabatic limit at zero tempera-
ture. For the nonzero-temperature case, we should assume that
kT � V0, because if kT ∼ V0, simulated annealing is known
to be an efficient approach.
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APPENDIX A: DETAILS OF THE
PIECEWISE-PARABOLIC POTENTIAL

In order to understand vacuum delocalization we may write
a Schrödinger equation for states in the vicinity of the barrier
maximum, where we will assume the potential is dominantly
quadratic:

− h̄2

2m

d2ψ+
0

dz2
+

[
V0 − E+

0 − mω2
∗

2
z2

]
ψ+

0 = 0. (A1)

It is possible that in this regime a typical WKB approach will
fail; although the WKB series is an exact asymptotic expan-
sion, its truncation to leading terms may not be justified here.
(It should be noted that a successful WKB analysis on the
phenomenon of quantum transport across a fully suppressed
barrier was presented in Ref. [6].)

General characteristics become clearer by switching to
nondimensionalized energy and length scales:

ξ = z/σ∗, (A2a)

δ± = (V0 − E±)/(h̄ω∗), (A2b)

ε = V0/(h̄ω∗) − δ+, (A2c)

β = σ1/σ∗, (A2d)

ξ1 = z1/σ∗. (A2e)

The rescaled energies δ± are the energy deficit under the
barrier summit for the ground and excited states, respectively,
and measured in “quanta” h̄ω∗ of the inverted maximum [29].
The rescaled ε is the ground-state energy measured from the
well bottom at V = 0. The barrier height will increase with
the square of well separation ξ1:

V0 = h̄ω∗
2

(
1

1 + β4

)
ξ 2

1 = h̄ω1

2

(
β2

1 + β4

)
ξ 2

1 . (A3)

For fixed well separation ξ1 the barrier is lowered mono-
tonically for increasing β = σ1/σ∗; i.e., widening the wells
also suppresses the barrier. We may rewrite the Schrödinger
equation for the ground and first excited states in the vicinity
of the barrier maximum (that is ξ and |δ±| � 1) as

−d2φ±
0

dξ 2
+ (2δ± − ξ 2)φ±

0 = 0, (A4)

enabling us to “roll up” parameters such as m, h̄, ω into the
new variable ξ .

These can be solved via parabolic cylinder functions, re-
membering the boundary conditions that φ− and dφ+/dξ are
necessarily zero at the origin ξ = 0 (because φ+ is an even
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FIG. 17. In the left column the ground state φ+ valid at the
summit ξ = 0, a Kummer function from Eq. (A6) (red curve), is
joined to the parabolic cylinder function of Eq. (A8) (black dashed
curve) valid within the well. The area under the correct piecewise
solution for φ+ is shaded blue. The barrier height V0 is proportional to
the harmonic mean of the squared frequencies, Eq. (3). The particular
parabolic cylinder function is chosen that decays to zero at ξ ∼ ∞.
Three cases are considered in turn, vacuum energies E+ below, equal
to, and above the barrier of height V0, indicated in the right column,
with rows corresponding to {ξ1, β} �→ {2.5, 0.5}, {1.07, 1}, {0.5, 1}
values. Recall that ±ξ1 is the location of each well minimum, the
ratio of well width to barrier width is β = σ1/σ∗ = √

ω∗/ω1 =
[V ′′(ξ = 0)/V ′′(ξ = ξ1)]1/4, and ±ξ1/(1 + β4) are the “seams.”

function and φ− is odd). The unnormalized ground-state and
excited-state solutions at the barrier summit are [18,29]

φ±
0 = D−1/2+iδ± [(1 − i)ξ ] ± D−1/2+iδ± [−(1 − i)ξ ], (A5)

decomposed as an even and odd superposition of parabolic
cylinder functions Dν (az) ± Dν (−az), respectively, with
complex a, ν. The ground state is expressible as a Kummer
confluent hypergeometric function, 1F1,

φ+
0 = e− iξ2

2 1F1

(
1

4
(1 − 2iδ+);

1

2
; iξ 2

)
, (A6)

a real function of the scaled coordinate ξ and eigenvalue δ+
that we have pinned to φ+

0 (0) = 1 (see Fig. 17).
Moving on to the wave functions at the well minima

(and beyond to ξ ∼ ±∞), in the scale-free setting these are
parabolic cylinder functions [30]. Examining first the well
centered on ξ = ξ1, the Schrödinger equation for the ground
state takes a form associated with Weber:

−d2φ+
0

dξ 2
+

[
(ξ − ξ1)2

β4
− 2ε

]
φ+

0 = 0. (A7)

The vacuum energy is ε = (ν + 1/2)/β2 and for an isolated
well the modified eigenvalues ν are all non-negative integers.
In the case of the ground state ν = 0, the associated eigen-
function would be a simple Gaussian profile, the lowest-order
Hermite function, as one would expect of a simple harmonic
oscillator. For a double well with very large separation ξ1 � β

the ground and first excited states are well approximated by
an even or odd superposition of two Gaussian components
centered on each well. This becomes invalid as the wells
are allowed to approach one another. (The double-Gaussian
ansatz is the wrong choice of orthonormal basis to span the
two-dimensional subspace of φ±

0 .) For finite-width barriers,
tunneling causes the eigenvalues to shift away from integer
values and the ground state in proximity to the wells becomes
again a parabolic cylinder function Dν , this time with real
noninteger ν:

φ±
0

(
ξ >

+ξ1

1 + β4

)
= Dβ2ε− 1

2

[√
2(ξ − ξ1)

β

]
. (A8)

Of the possible solutions to the Weber equation this par-
ticular form uniquely approaches zero in the limit ξ ∼ ∞, a
necessary boundary condition for normalization, to make the
wave-function square integrable. For the left well we choose
the solution that approaches zero as ξ ∼ −∞, actually the
prior solution reflected in the y axis:

φ±
0

(
ξ <

−ξ1

1 + β4

)
= ±Dβ2ε− 1

2

[
−√

2(ξ + ξ1)

β

]
. (A9)

This is a guaranteed independent solution to Weber’s equa-
tion, as long as β2ε − 1

2 is not a non-negative integer. For the
double well that we have constructed, the parabolic regions
were stitched to the inverted parabola at ξ = ±ξ1/(1 + β4)
in the scale-free coordinates. We must therefore join our two
ground (or excited) state solutions also at these locations. The
two states above are solutions for different regions of the
potential; they do not exist in superposition, unlike Eq. (A5)
near the summit, where a superposition of parabolic cylinder
functions was necessary to achieve the required even-odd
parity about ξ = 0. [Note the sign change in Eq. (A9) for the
excited state so it can be joined on to the odd-parity solution
of Eq. (A5).]

Confining attention to ξ > 0 there are two conditions that
allow our solutions to be matched, associated with the con-
tinuity of both the wave function and its derivative at the
join. Matching Eq. (A5) to the parabolic cylinder function
Eq. (A9) provides the relative amplitude of the symmetric
state scattered off the potential summit. Then also matching
gradients at the join is only possible for a discrete set of energy
eigenvalues, the lowest of which is the vacuum energy ε.

We are most interested in the gap δ− ↔ δ+ so let us
multiply Eqs. (A4) respectively by φ−

0 and φ+
0 , and then

subtracting one from the other, producing

d2φ−
0

dξ 2
φ+

0 − d2φ+
0

dξ 2
φ−

0 + 2φ+
0 φ−

0 (δ+ − δ−) = 0. (A10)

Next we may integrate by parts, using the result∫ B

A
(ψ1ψ

′′
2 − ψ2ψ

′′
1 )dξ = (ψ1ψ

′
2 − ψ2ψ

′
1) |BA. (A11)

032315-15



GABRIEL A. DURKIN PHYSICAL REVIEW A 99, 032315 (2019)

With integration limits ξ ∈ [0,∞], and recalling that φ−(0) =
0 and that for normalization purposes we expect φ±(∞) = 0,
we arrive at

�

h̄ω∗
= |δ− − δ+| =

φ+
0 (0) dφ−

0
dξ

(0)

2
∫ ∞

0 φ+
0 φ−

0 dξ
, (A12)

where the denominator is the semioverlap of the ground and
excited states.

APPENDIX B: ANALYSIS OF THE PHASE TRANSITION
IN THE CATALYZED 3-SPIN MODEL

Often, phase transitions in quantum spin systems are mod-
eled using a mean-field model, where the ground state is
represented as a product state of n spins (a spin-coherent
state) that tracks the potential minimum during the annealing
process. The validity of such a description can be investigated,

both in the neighborhood of the phase transition, and far from
it. Without the possibility of entanglement the model of a large
rotating classical pointer falls short, in particular in the transi-
tion region, as evidenced by Fig. 18. Classically, one usually
defines the phase transition as occurring when the two well
minima are of equal depth, but in the quantum case we should
instead nominate the minimum gap location on the annealing
landscape, which itself depends on the number of spins n.
Additional complications in the 3-spin model are mass that
varies as a function of the well location, and the fact the
double well is asymmetric at the minimum gap (see Fig. 19).

APPENDIX C: CATALYZED 3-SPIN MODEL
IN THE κ � 1 LIMIT

In the regime 0 < κ � 1 near the phase transition, the
annealing ratio at the quantum boundary (birth of the second
minimum) is

γ0 =
√

169κ4 − 172κ3 + 78κ2 + 8κ − 2(κ − 1)[κ (19κ − 2) + 1]3/2 − 2

6κ
. (C1)

The asymptotic expansion to second order of this expression
is:

γ0 = 2(1 − κ ) + 9
4κ2 + O(κ3). (C2)

Interestingly, this is not a convergent series for all κ ∈ [0, 1];
cubic and higher terms are ignored at our peril. The hidden
second-order phase transition (occurring when the param-
agnetic minimum at the origin z = 0 becomes a maximum)
occurs precisely at γ2 = 2(1 − κ ), which is the same as γ0

to first order in κ . The quantum phase transition must occur
between γ0 and γ2, and therefore must be O(κ2) or smaller.

We choose to parametrize this sweet spot as

γ0 − γ∗ = δγ =
[

xκ

2

]2

, (C3)

where x � 1.07 is a small parameter. (Value x = 1.07 corre-
sponds to the classical phase transition, at which the wells
have equal depth.)

The well separation within this quantum regime is

z1 = (3 + x)κ

2
+ O(κ2), (C4)

and the distance to the maximum from the minimum at the
origin is

z∗ = (3 − x)κ

2
+ O(κ2). (C5)

The barrier summit and ferromagnetic ground state are there-
fore separated by

z1 − z∗ = κx + O(κ2), (C6)

zero at γ = γ0 or x = 0, where these two extrema merge.
The barrier, or potential difference to the summit from the

minimum at z = 0, is polynomially dependent on κ:

V0 = κ4

128
(3 − x)3(1 + x) + O(κ5). (C7)

On the other side of the summit, the second minimum is below
the maximum by an energy

V00 = x3κ4

8
+ O(κ5). (C8)

In the same limit, the characteristic frequencies associated
with the quadratic extrema of V (z) are

ω0 ≈ 9 − x2

8
κ2 + O(κ3), (C9a)

ω1 ≈
√

3x

4
(3 + x) κ2 + O(κ3), (C9b)

ω∗ ≈
√

3x

4
(3 − x) κ2 + O(κ3). (C9c)

To summarize, in the small-κ limit, coordinate distances,
characteristic frequencies, and potential barriers scale with
the nonstoquastic driver as �→ {κ, κ2, κ4}. Figure 10 shows
at the classical phase transition point how the barrier size
and shape change with κ . (The implicit � values are chosen
to maintain the wells at equal depth as κ is varied.) At this
point we underscore some of the subtleties of this 3-spin
model, namely the asymmetry of the double well compounded
by a position-dependent mass variable, Eq. (17). The WKB
method has been discussed in the literature for tunneling under
a barrier between asymmetric wells [19,21] though we find
no previous work that discusses the coherent catalysis limit of
a “low barrier,” h̄ω/2 ∼ V0 (where lowest-order WKB trun-
cation will likely fail). We simplify the position-dependent
mass challenge by taking delta samples of the mass at the
potential minima. This is a reasonable assumption for narrow
wells and j � 1, but less accurate as wells become more
shallow and merge. Even so, the characteristic frequency at
a quadratic minimum will be ω(z) = √

V ′′(z)/m(z) and the
quantum ground state is “heavier” within the ferromagnetic
phase centered on z1 > 0 than at the z = 0 (paramagnetic
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FIG. 18. Mean spin for the 3-spin model has components 〈�J〉 = 〈�|{Ĵx, Ĵy, Ĵz}|�〉, normalized by the principal quantum number j. In polar
coordinates the magnitude r = |〈�J〉|/ j and angle θ = arctan{〈Ĵz〉/〈Ĵx〉}. The uncertainty is the standard deviation (red curves) calculated from

the quantum variance, j�r =
√

�2Ĵx + �2Ĵy + �2Ĵz. Dashed quarter circles in the polar plots correspond to uncertainty of a classical spin (a

spin coherent state), constant at 1/
√

j, in these units. Most of the quantum behavior is confined to a small parameter region �� close to the
classical first-order phase transition (PT) value, �c. Outside the region bounded by orange and blue lines the system behaves as a large rotating
spin with r = 1, and �r = 1/

√
j. Within this “quantum” boundary, however, the vector is quite nonclassical: r < 1 and �r > 1/

√
j. The

orange and blue boundary lines in the polar plot correspond to the birth of the second potential minimum and the classical phase transition,
respectively. At j = 40 the appearance of the minimum spectral gap (green line) occurs at an angle almost exactly bisecting the quantum
sector. The associated angle coincides with maximum uncertainty, �r. Within the boundary the spin vector describes almost a straight line
chord (magenta) perpendicular to the minimum gap “event” angle (green line). The phase transition is seen to be “softer” at lower spin number,
e.g., j = 10 (cyan curves of middle column). The j = ∞ line (black dashed curves of middle column) tracks the global minimum of V (z)
exactly; this is the thermodynamic limit where the vacuum (kinetic) energy vanishes. The rightmost plots illustrates the shape of the double
well for κ �→ {1.0, 0.4} at the birth of the second minimum (orange) and at the classical phase transition (blue) and for the minimum spectral
gap in the case j = 40 (green). Observe that at the minimum gap the potential is not symmetric, nor the wells of equal depth.

phase) ground state. Recall that β is a ratio of frequencies,
and not a function of h̄:

β = σ1

σ∗
≈

√
m∗ω∗
m1ω1

. (C10)

On the other hand, ξ1 = �z/σ∗ = �z
√

m∗ω∗/h̄. This is where
the energy scale will enter, in terms of parameter h̄ = 1/ j.

We shall also need the κ ∼ 0 asymptotic expression for the
variable masses:

1

m0
= ω0 ≈ 9 − x2

8
κ2 + O(κ3), (C11a)

1

m1
≈ 3

4
(3 + x)κ2 + O(κ3), (C11b)

1

m∗
≈ 3

4
(3 − x)κ2 + O(κ3). (C11c)

Notice that m0ω0 = 1, and therefore σ0 = 1/
√

j. For the
Rayleigh limit, powers of κ balance on both sides of z∗ ≈√

h̄/(m0ω0) only if h̄ = O(κ2), since z∗ = O(κ ), Eq. (C5).
Reordering the terms, demanding ξ1 ∼ β leads to a scaling
law at the maximum minimum spectral gap (saddle):

κc ∼ O(1/
√

j). (C12)

This result is employed to derive the asymptotic scaling of the
saddle spectral gap for the 3-spin in Sec. V.

Other useful asymptotic expressions for κ � 1 in the
quantum region between the birth of the second minimum and
classical phase transition point are

1

σ1
≈ 1

σ∗
=

√
j
(x

3

)1/4
(

1 − 9 − x2

8x2
κ

)
+ O(κ2). (C13)

The ratio deviates from unity only slightly:

β2 = σ1

σ∗
= 1 − 15

8
xκ2 + O(κ3). (C14)
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FIG. 19. Asymmetric double well: Here is illustrated the case
that the left well is outside the Rayleigh boundary: {ξ1, β1} �→
{3.0, 1.5} (white circle marker). Then one may employ WKB-like
methods; the gap can become so small on resonance to be dictated
by the potential shape and structure away from the parabolic extrema
[20]. In such a case the piecewise-parabolic model loses its general-
ity; errors or simplifications in the description of the potential have
greater magnitude than the spectral gap calculated via this poten-
tial. The light-shaded channel identifies the resonance condition for
{ξ1, β1, ξ2, β2}: an exponentially small minimum gap where one can
expect a first-order phase transition via slow tunneling.

The scaled distance from the barrier summit to the ferromag-
netic minimum is

ξ2 = z1 − z∗
σ∗

=
√

j

[
x5/4

31/4
κ + O(κ2)

]
. (C15)

The remaining two parameters are

ξ1 = z∗
σ∗

=
√

j

[(x

3

)1/4
(

3 − x

2

)
κ + O(κ2)

]
, (C16)

β1 =
(x

3

)1/4
+ O(κ ). (C17)

If we apply the ground-state resonance condition of Sec. IV
to our scale-free model, this produces x = 1. Figure 4 presents
the asymmetric well with x = 1. The parameters above then
map onto Eq. (22) in the main text.

APPENDIX D: QUANTUM 2-SPIN:
LIPKIN-MESHKOV-GLICK

The quantum 3-spin will prove challenging to implement
experimentally. In contrast, the 2-spin, the simplest p-spin
model, is an isotropic variant of the Lipkin-Meshkov-Glick
(LMG) model introduced by Fallieros in 1959 in Ref. [12]
to describe the nuclear physics of oxygen, and revisited by
Lipkin and collaborators in Ref. [13]. It is an Ising model with
infinite-range interactions; however, with 2-local rather than
3-local interactions the implementation on an experimental
quantum annealer (such as that of Ref. [31]) may be relatively
manageable. Current devices have up to n = 4000 qubits, but
do not implement the fully connected graph required of the

FIG. 20. The Lipkin-Meshkov-Glick (LMG) model with trans-
verse and longitudinal field parameters �x, �z, respectively, exhibits
the relatively gentle second-order phase transition we explored in
Ref. [22] (lower plot). It occurs for an annealing schedule that
follows the line of �z = 0 from �x > 2/3 to �x < 2/3 (direction
of red arrow). The minimum gap �02 near �z = 0, �x = 2/3 is
polynomial in n; transitions between the ground and first excited state
�01 are forbidden by parity along �z = 0. In contrast, an annealing
schedule for which �z �= 0 will not respect parity and the relevant
gap is �01 (upper plot). A schedule crossing this zero longitudinal
field line (direction of white arrow) must undergo a first-order phase
transition if �x � 2/3. Gap �01 is then exponentially small when
crossing �z = 0. The landscape above is for a j = 25 spin ensemble.

LMG model, (physical spins are topologically constrained to
couple to nearby spins). Their partially connected architecture
does, in fact, admit simulations of fully connected models of
smaller ensembles, via a process called “embedding.”

For LMG we dispense with the antiferromagnetic driver
+(1 − κ )Ĵ2

x . Instead there may exist some longitudinal field
component in addition to the transverse one, represented by
control parameters �z,x, respectively:

ĤLMG = −�x
Ĵx

j
− (1 − �x )

[
(1 − |�z|)

Ĵ2
z

j2
+ �z

Ĵz

j

]
. (D1)
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We previously studied the behavior of this model during
quantum annealing for the �z = 0 setting [22]; it undergoes
a second-order phase transition close to �x = 2/3 where the
unimodal ground state smoothly and continuously bifurcates
into a bimodal Schrödinger cat state, eventually becoming a
GHZ state [32]. The associated minimum gap at the phase
transition is polynomially small. The symmetry of this model
means that adiabatic transitions are forbidden from the ground
to first excited state due to their opposite parity; the relevant
minimum gap along the contour �z = 0 in parameter space
is actually �02 = E2 − E0 ∼ n−4/3. For nonadiabatic (e.g.,
thermal) transitions E0 �→ E1, or the first-order annealing
transitions where �z is nonzero and switches sign, that gap
also scales ∝ n−4/3 near �x ≈ 2/3 before becoming exponen-
tially small in the tunnel-splitting limit characterized by the
Gamow factor when �x � 2/3. All of this is illustrated in the
contour plots of Fig. 20.

The LMG continuous potential function becomes

V [LMG](z) = −
√

1 − z2 −
(

(1 − |�z|)z2

γx
+ z �z

)
+ O(h̄).

(D2)

For zero longitudinal field �z and within the ferromagnetic
phase �x < �0 the potential above is a beautifully symmetric
double well, with a barrier height fully controlled by �x. In
terms of the ratio γx = �x/(1 − �x ) the barrier is

V [LMG]
0 = 1

γx
+ γx

4
− 1. (D3)

FIG. 21. For both the Lipkin-Meshkov-Glick (LMG; red curve)
and quantum 3-spin model (blue curve), increasing the separation
of the well minima z1 leads to exponentially small minimum gaps,
which occur along the “ridge” of the phase transition (contour
plots to the right show these ridges in parameter space and the
direction along which they are traversed as z1 is increased). The
3-spin model is distinctive in that the minimum gap (blue) goes
through a maximum in z1, indicating a saddle point of “optimal
catalysis” (white star marker). Exploring the ridge in the reversed
direction now, from top left to bottom right (lower right panel), the
well separation continues to decrease with decreasing κ , but the
inverse mass 1/m ∝ κ2. There is apparently a competition between
the quantum “particle” becoming more confined at lower κ , but
heavier at the same time. The increasing mass eventually wins at
very low κ , causing the spectral gap to shrink again.

This very regular potential with a simple analytical form pro-
vides a perfect setting in which to examine the mechanism of
vacuum delocalization. For γx increasing through the critical
point γx �→ γc = 2, the potential barrier is completely razed
to a flat-bottomed quartic profile ∼z4 that evolves further into
a single quadratic minimum centered at the origin z = 0 for
γx > 2. The classical transition at γx = 2 is described by a
green contour line in the right-side plots of Fig. 6. In the
small-γx ferromagnetic phase (double-well potential) one may
introduce asymmetry or bias in the potential by a (positive
or negative) longitudinal field of |�z| � 1. This will lower
one well minimum with respect to the other and the adiabatic
ground state will lose its fragile superposition state. It shifts
completely to being a spin-coherent state pointed at the deeper
well.

Then by reversing the bias of �z the ground state will
have to tunnel across the large intervening barrier from the
false minimum to the true minimum. A magnetization mea-

FIG. 22. For longitudinal field �z �→ {0, +0.05, +0.25} the
ground-state amplitude density (found numerically) and potential ex-
trema (derived analytically) are shown in the left and right columns,
respectively. For the right column, the locus of the potential maxima
in coordinate space z is indicated (dashed red line), with the exterior
minima shown in blue (shallow) and green (deep). As the barrier
maximum is lowered with increasing �x , for a symmetry-breaking
�z > 0 one of the minima collides with the now off-center maximum.
Only the green minimum remains, moving towards the origin z = 0
as �x is increased further. Changing �z to −�z just reflects the
diagrams through the origin (top to bottom). In the lower figure
then the minimum at z ≈ −1 would become the true minimum,
and the (now false) ground state at z = +1 will tunnel through the
intervening barrier (red dashed maximum line), unless the barrier is
small enough, Eq. (D3), for vacuum delocalization to occur.
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surement should be able to record the characteristic time for
the population inversion to occur. The shape of the phase
transition ridge for the LMG model is compared with that of
the 3-spin in Fig. 21, and the extrema of the LMG potential
energy are plotted in Fig. 22.

When γx is increased to lower the intervening barrier to
a fixed height (the analog of nonstoquastic catalysis in the
p-spin model), one may observe directly a crossover in the
characteristic magnetization “switching time” (population
transfer from the left to the right well) as �z is varied from
slightly negative to slightly positive. Increasing the transverse
field, the γx � 2 or �x � 2/3 regime (wells start to coalesce

as the potential barrier between them shrinks) should permit
a polynomial gap for a range of �x, allowing the ground-state
energy to delocalize close to the barrier summit, before the
wells completely coalesce at �x = 2/3. The change in the
rate of population inversion from exponentially slow to rapid
polynomial timescales should be apparent and measurable in
the �x � 2/3 regime. Because parameter 1/ j plays the role of
an effective h̄ when transforming to a particle in a potential,
smaller ensembles exhibit more “extravagantly” quantum
effects, e.g., magnified vacuum energies, allowing increased
mobility across barriers without (exponentially slow)
tunneling.
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