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The learning-with-errors (LWE) problem is one of the fundamental problems in computational learning theory
and has in the last years become the cornerstone of postquantum cryptography. In this work, we study the
quantum sample complexity of learning with errors and show that there exists an efficient quantum learning
algorithm (with polynomial sample and time complexity) for the learning-with-errors problem where the error
distribution is the one used in cryptography. While our quantum learning algorithm does not break the LWE-
based encryption schemes proposed in the cryptography literature, it does have some interesting implications for
cryptography: if a quantum adversary has access to a particular superposition of quantum states, a LWE-based
encryption scheme becomes insecure. In particular, if a quantum sample state could be created from classical
samples, then it would be possible to break LWE-based schemes using our learning algorithm. Finally, we extend
our results and show quantum learning algorithms for three related problems: learning parity with noise, learning
with rounding, and short integer solution.
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I. INTRODUCTION

The large amount of data arising in the real world, for
example through scientific observations, large-scale experi-
ments, internet traffic, social media, etc., makes it necessary
to be able to predict some general properties or behaviors of
the data from a limited number of samples. In this context,
computational learning theory provides rigorous models for
learning and studies the necessary and sufficient resources,
for example, the number of samples or the running time
of the learning algorithm. In his seminal work, Valiant [1]
introduced the model of PAC learning, and since then this
model has been extensively studied and has given rise to
numerous extensions.

In another revolutionary direction, quantum computing
takes advantage of the quantum nature of small-scale systems
as a computational resource. In this field, the main question is
to understand what problems can be solved more efficiently
in a quantum computer than in classical computers. In the
intersection of the two fields, we have quantum learning
theory, where we ask if quantum learning algorithms can be
more efficient than classical ones.

One of course needs to be careful about defining quantum
learning and more precisely, what kind of access to the data
a quantum learning algorithm has. On one hand, we can just
provide classical samples to the quantum learning algorithm
that can then use the quantum power in processing these clas-
sical data. In the more general scenario, we allow the quantum
learning algorithm to receive quantum samples of the data, for
a natural notion of a quantum sample as a superposition that
corresponds to the classical sample distribution.

More precisely, in classical learning, the learning algorithm
is provided with samples of (x, f (x)), where x is drawn
from some (possibly unknown) distribution D and f is the

function we wish to learn. The goal of the learner in this
case is to output a function g such that with high probability
(with respect to the samples received), f and g are close,
i.e., Pr[ f (x) �= g(x)] is small when x is drawn from the same
distribution D.

The extension of this model to the quantum setting is that
the samples now are given in the form of a quantum state∑

x

√
D(x)|x〉| f (x)〉. Note that one thing the quantum learner

can do with this state is simply measure it in the computational
basis and get a classical sample from the distribution D.
Hence, a quantum sample is at least as powerful as a classical
sample. The main question is whether the quantum learner
can make better use of these quantum samples and provide
an advantage in the number of samples and/or running time
compared to a classical learner.

In this work we focus on one of the fundamental problems
in learning theory, learning with errors (LWE). In LWE, one
is given samples of the form

(a, a · s + e (mod q)),

where s ∈ Fn
q is fixed, a ∈ Fn

q is drawn uniformly at random
and e ∈ Fq is an error term drawn from some distribution
χ . The goal is to output s, while minimizing the number of
samples and the computation time.

First, LWE is the natural generalization of the well-studied
learning-parity-with-noise problem (LPN), which is the case
of q = 2. Moreover, a lot of attention was drawn to this
problem when Regev [2] reduced some (expected to be) hard
problems involving lattices to LWE. With this reduction, LWE
has become the cornerstone of current postquantum crypto-
graphic schemes. Several cryptographic primitives proposals
such as fully homomorphic encryption [3], oblivious transfer
[4], identity-based encryption [5–7], and other schemes are
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based in the hardness of LWE (for a more complete list see
Ref. [8] and Ref. [9]).

Classically, Blum et al. [10] proposed the first subexpo-
nential algorithm for this problem, where both sample and
time complexities are 2O(n/ log n). Then, Arora and Ge [11]
improved the time complexity for LWE with a learning algo-
rithm that runs in 2Õ(n2ε ) time, for some ε < 1

2 , and it uses at
least �(q2 log q) samples. For LPN, Lyubashevsky [12] has
proposed an algorithm with sample complexity n1+ε at the
cost of increasing computation time to O(2n/ log log n).

II. QUANTUM LEARNING MODEL

In this work, we use the model of exact learning under
the uniform distribution where the learner receives samples
according to the uniform distribution and outputs the exact
function with high probability. In the quantum setting, the
learning algorithm is given quantum samples, namely a uni-
form superposition of the inputs and function values,

∑
x∈X

1√|X | |x〉| f (x)〉.

In this work, we are interested in noisy samples, which
can be modeled by setting f (x) = g(x) + e(x, r), where g
and e are deterministic functions, x ∈ X and r ∈ R is the
randomness necessary to generate the noise. For defining the
quantum sample, we start with the superposition

1√|R|
∑
r∈R

|r〉
(

1√|X |
∑
x∈X

|x〉|g(x) + e(x, r)〉
)

,

and then by tracing out the register corresponding to the
randomness, the reduced density matrix is

1

|R||X |
∑
r ∈ R

x, x′ ∈ X

|x〉〈x′||g(x) + e(x, r)〉〈g(x′) + e(x′, r)|,

which can be seen as having the following quantum sample
with probability 1

|R| , for each r ∈ R:

1√|X |
∑
x∈X

|x〉|g(x) + e(x, r)〉.

We consider the noise model defined in Bshouty and
Jackson [13], where independent noise is added for each el-
ement in the superposition, in other words, r = (r1, . . . , r|X |)
and e(x, r) = e′(rx ). This model is a natural generalization
for quantum samples with noise since it can be seen as a
superposition of the classical samples.

In contrast, Cross et al. [14] proposed a noise function that
is independent of x. Although our noise model might require
exponentially more resources to implement quantum samples,
we show that this does not make the problem intractable. Also,
this is the kind of state we could get after solving the index
erasure problem1.

1See Sec. III B for a more detailed discussion.

III. OUR CONTRIBUTIONS

In this work we study quantum algorithms for solving
LWE with quantum samples. Let us be more explicit on the
definition of a quantum sample for the LWE problem. We
assume that the quantum learning algorithm receives samples
in the form

1√
qn

∑
a∈Fn

q

|a〉|a · s + ea (mod q)〉, (1)

where ea are iid random variables from some distribution χ

over Fq.
As expected, the performance of the learning algorithm,

both in the classical and quantum case, is sensitive to the noise
model adopted, i.e., to the distribution χ . When LWE is used
in cryptographic schemes, the distribution χ has support on a
small interval around 0, either uniform or a discrete Gaussian.
We prove that for such distributions, there exists an efficient
quantum learner for LWE.

Main Result (informal). For error distributions χ used in
cryptographic schemes, and for any η > 0, there exists a quan-
tum learning algorithm that solves LWE with probability 1 −
η using O(n log 1

η
) samples and running time poly(n, log 1

η
).

Another interesting feature of our quantum learner is that
it is conceptually a very simple algorithm based on one of
the basic quantum operations, the quantum Fourier transform.
Such algorithms have even started to be implemented, of
course for very small input sizes and for the binary case [15].
Nevertheless, as far as quantum algorithms are concerned, our
learner is quite feasible from an implementation point of view.

The approach to solve the problem is a generalization of
Bernstein-Vazirani algorithm [16]: we start with a quantum
sample, apply a quantum Fourier transform over Fq on each
qudit, and then we measure in the computational basis. Our
analysis shows that, when the last qudit is not 0, which hap-
pens with high probability, the value of the remaining registers
gives s with constant probability. We can then repeat this
process so that our algorithm outputs s with high probability.

Finally, the hardness of LWE has been proved to be equiv-
alent to several other problems, when considering classical
samples. Unfortunately, this does not imply equivalence of the
hardness of LWE and these problems with quantum samples.
This happens because the classical reduction can be random-
ized, which could cause problem when reducing a quantum
sample of LWE to a quantum sample of another problem. In
this work, we are able to show quantum learning algorithms
for three problems related to LWE.

First, we study the learning-parity-with-noise (LPN) prob-
lem with quantum samples. This problem is an instance of
LWE with q = 2, and the main difference with LWE is that the
noise model is different: while in LWE the noise is sampled
from a range, in an LPN sample, the value of the function is
flipped with some probability. LPN is also very important in
cryptography since since the security of several cryptographic
schemes is based on its hardness [17–20]. In our work we
extend the noise model of previous results [14,15], and we
show that our algorithm still works for LPN with quantum
samples in this extended noise model.

Second, we study the learning with rounding prob-
lem, which is a derandomized version of LWE. The LWR
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problem is used in cryptographic primitives where the ran-
domness needed by LWE samples is prohibitive, such as
pseudorandom-number generators [21]. We are able to show
that LWR samples can be seen as LWE samples, and then
we can also prove the correctness of our algorithm for this
problem.

At last, we study the shortest integer solution problem
(SIS), where we search a short integer solution of a linear
system. The hardness of SIS is a common cryptographic
assumption in postquantum cryptographic schemes [22,23].
The quantum algorithm that we propose for SIS is slightly
different and it is based on the entanglement between the input
and the function registers.

A. Related work

We now review some results on quantum algorithms for
learning problems. For a more extended introduction, see the
survey by Arunachalam and de Wolf [24].

The first approach on trying to solve learning problems
with quantum samples was proposed by Bshouty and Jackson
[13], where they prove that DNFs2 can be learned efficiently,
even when the samples are noisy. No such efficient learners
are known classically.

Despite not presenting it as a learning problem, Bernstein
and Vazirani [16] show how to learn parity using a single
quantum sample, while classically we need a linear number
of samples.

Some years later, Servedio and Gortler [25] showed that
classical and quantum sample and query complexity of learn-
ing problems are polynomially related, but they showed that
for time complexity there exist exponential separations be-
tween classical and quantum learning (assuming standard
computational hardness assumptions).

Then, Ambainis et al. [26], Atici and Servedio [27], and
Hunziker et al. [28] provided general upper bounds on the
query complexity for learning problems that depend on the
size of the concept class being learned.

On specific problems, Atici and Servedio [29] and Belovs
[30] provided quantum algorithms for learning juntas and
Cross et al. [14] proposed and implemented quantum algo-
rithms for LPN in a different noise model. Arunachalam and
de Wolf [31] proved optimal bounds for the quantum sample
complexity of the quantum PAC model.

B. Relation to LWE-based cryptography

As we have mentioned, LWE is used in cryptography for
many different tasks. Let us briefly describe how one can build
an encryption scheme based on LWE [2]. The key generation
algorithm produces a secret key s ∈ Fq, while the public key
consists of a sequence of classical LWE samples (a1, a1 · s +
e1 (mod q)), . . . , (am, am · s + em (mod q)), where the error
comes from a distribution with support in a small interval

2A boolean formula is called a DNF if it is described as ORs (∨)
of ANDs (∧). An example of a DNF over the variables x1, . . . x4

would be x1 ∨ (x2 ∧ x4) ∨ (x2 ∧ x3 ∧ x4), where y is the negation of
a variable y.

around 0. For the encryption of a bit b, the party picks a subset
S of [m] uniformly at random and outputs(∑

i∈S

ai (mod q), b
⌈q

2

⌉
+

∑
i∈S

ai · s + ei (mod q)

)
.

For the decryption, knowing s allows one to find b. On the
other hand, Regev showed that if s is unknown and it is
possible to distinguish encryptions of 0 from encryptions of
1, i.e., to break the encryption scheme, then it is possible to
solve the LWE problem [2].

The algorithm we present here does not break the above
LWE-based encryption scheme. Nevertheless, it has interest-
ing implications for cryptography.

First, if quantum samples could be approximated from
classical samples, our algorithm could then be used for attack-
ing LWE-based encryption. One potential way for this would
be to start with m classical samples and create the following
superposition∑

S⊆[m]

|S〉
∣∣∣∣∣
∑
i∈S

ai (mod q)

〉∣∣∣∣∣
∑
i∈S

ai · s + ei (mod q)

〉
.

This operation is in fact efficient: from the super-
position of all subsets

∑
S⊆[m] |S〉, we can use, in

a coherent way, the classical algorithm that creates
| ∑i∈S ai (mod q)〉|∑i∈S ai · s + ei (mod q)〉 from the classi-
cal samples for a fixed S. Then, in order to approximate
the quantum sample state, one would need to forget the
register containing the index information about which subset
of the m classical samples. In the most general case, such an
operation of forgetting the index of the states in a quantum
superposition, known as index erasure (see Aharonov and
Ta-Shma [32] and Ambainis et al. [26]), is exponentially hard,
and a number of problems, such as graph nonisomorphism,
would have an efficient quantum algorithm, if we could do
it efficiently. Therefore, if the structure of LWE allows such
operation to be performed efficiently, then one could combine
it with our learning algorithm to solve LWE with classical
samples, which would have a major impact in postquantum
cryptography.

A second concern that our algorithm raises is that when
building an LWE-based scheme, the access to a particular
superposition of quantum states could make the scheme in-
secure. It is well known that for example, even in the classical
case, if the adversary can ask classical queries to the LWE
oracle, then he can easily break the scheme: by asking the
same query many times one can basically average out the
noise and find the secret s. However, if we just assume that the
public key is given as a box that an agent has passive access to
it, in the sense that he can request a random sample and receive
one, then the encryption scheme is secure classically as long
as LWE is difficult. However, imagine that the random sample
from LWE is provided by a device that creates a superposition

1√
qn

∑
a∈Fn

q
|a〉|a · s + ea (mod q)〉 and then measures it. Then

a quantum adversary that has access to this quantum state can
break the scheme by using our quantum algorithm to learn
the secret s, and therefore being able to decrypt any encrypted
message of the proposed scheme. Again, our claim is, by no
means, that our algorithm breaks the proposed LWE-based
encryption schemes, but more that LWE-based schemes,
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which are secure classically (assuming the hardness of LWE)
may stop being secure against quantum adversaries if the
access to the public key generation algorithm becomes also
quantum.

A similar situation has also appeared in the symmetric
key cryptography with the so-called superposition attacks
[33–36]. There, the attacker has the ability to query the
encryption oracle in superposition, and in this way, she can
in fact break many schemes that are assumed to be secure
classically. While in the case of symmetric cryptography,
the attacker must have quantum access to the encryption
oracle in order to break the system, our results show that in the
case of LWE-based public-key encryption, the attacker must
have quantum access to the public-key generation algorithm.

Recently, Alagic, Jeffery, Ozols, and Poremba [37] pro-
posed quantum attacks to LWE encryption schemes where
the attacker has quantum access to encryption and decryption
oracles.

IV. ALGORITHM FOR LWE

In this section we present the extension of the Bernstein-
Vazirani algorithm for higher-order fields and analyze its
behavior with LWE samples. We describe now the Field
Bernstein-Vazirani algorithm [16], whose main component
is the quantum Fourier transform over Fq, QFT | j〉 =

1√
qn

∑qn−1
k=0 ω jk|k〉.

Field Bernstein-Vazirani algorithm
Input: |ψ〉 ∈ (C2)⊗n+1

Output: s̃ ∈ Fn
q ∪ {⊥}

Apply QFT ⊗n+1 on |ψ〉.
Measure in the computational basis
Let | j〉| j∗〉 be the output
If j∗ �= 0, return −( j∗)−1 j (mod q)

Else, return ⊥

For warming up, we show the behavior of Field Bernstein-
Vazirani for learning linear functions without noise in
Sec. IV A and then in Sec. IV B we analyze it for LWE
samples.

A. Quantum algorithm for learning a linear function
without error

If the input |ψ〉 is a noiseless quantum sample of a linear
function, namely

|ψ〉 = 1√
qn

∑
a∈Fn

q

|a〉|a · s (mod q)〉. (2)

Then the Field Bernstein-Vazirani algorithm outputs the cor-
rect value with probability q−1

q : after applying the QFT on
each qudit of Eq. (2), we get the state

1

qn+ 1
2

∑
a, j∈Fn

q

∑
j∗∈Fq

ωa·( j+ j∗s)| j〉| j∗〉.

It is not hard to see that the probability that for all i ∈ [n], we
have j = − j∗s (mod q) and j∗ �= 0 is∥∥∥∥∥∥

1

qn+ 1
2

∑
j∗∈F∗

q

∑
a∈Fn

q

ω0| − j∗s (mod q)〉| j∗〉
∥∥∥∥∥∥

2

= 1

q2n+1

∑
j∗∈F∗

q

⎛
⎝∑

a∈Fn
q

1

⎞
⎠

2

= q − 1

q
.

Therefore, if j∗ �= 0, we can retrieve s by outputting
−( j∗)−1 ji (all operations mod q).

B. Analysis of the algorithm for noisy samples

In this section we show that the Field Bernstein-Vazirani
algorithm works even if the input is noisy. Instead of the
superposition of all elements in Fn

q, we prove our result here
for a more general case where the quantum sample has the
form

|ψ〉 = 1√
v

∑
a∈V

|a〉|a · s + ea(mod q)〉,

where v ∈ [qn] is a fixed value, V be a random subset of Fn
q of

size v and ea is a random noise. In this case, for every quantum
sample, a new subset V of size v is picked independently at
random. This model could be useful, for instance, to learn s
on quantum samples generated from classical samples3 and it
also allows us to understand the tradeoff between the quality
of the quantum sample and the probability that the algorithm
outputs the correct answer.

Theorem 1. Fix v ∈ [qn]. Let V ⊆ Fn
q be a random subset

of Fn
q such that |V | = v, and let

|ψ〉 = 1√
v

∑
a∈V

|a〉|a · s + ea(mod q)〉,

where the ea are random variables with absolute value at
most k. The Field Bernstein-Vazirani (|ψ〉) outputs s with
probability v

20kqn .
Proof. If we apply QFT on the state |ψ〉, we have

1√
qn+1v

∑
a∈V

∑
j∈Fn

q, j∗∈Fq

ωea j∗+a·( j+ j∗s)| j〉| j∗〉.

From the last equation, we have that the probability that
j = − j∗s (mod q) and j∗ �= 0 is:

1

qn+1v

∥∥∥∥∥∥
∑
a∈V

∑
j∗∈F∗

q

ωea j∗ | − j∗s (mod q)〉| j∗〉
∥∥∥∥∥∥

2

= 1

qn+1v

∑
j∗∈F∗

q

(∑
a∈V

Re(ωea j∗ )

)2

+
(∑

a∈V

Im(ωea j∗ )

)2

� 1

qn+1v

∑
j∗ ∈ F∗

q
j∗ � γ q

k

(∑
a∈V

Re(ωea j∗ )

)2

� γ v cos (2πγ )2

kqn
,

(3)

3See Sec. III B for a more detailed discussion on such approach.
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where γ ∈ (0, 1
4 ) will be fixed later and Re(z) and Im(z) are

the real and imaginary part of z, respectively. The first equality
holds since∥∥∥∥∥

∑
x

αx|x〉
∥∥∥∥∥

2

=
∑

x

|αx|2 =
∑

x

Re(αx )2 + Im(αx )2.

For the first inequality, we have removed some positive
quantities, and the last inequality follows from the fact that
Re(ωea j∗ ) � cos (2πγ ) for j∗ � γ q

k and |ea| � k.
By maximizing it over all γ ∈ (0, 1

4 ), we have that Eq. (3)
can be upper-bounded by v

20kqn , proving the statement. �
We now propose an algorithm that tests a candidate solu-

tion.

Test Candidate
Input: s̃ ∈ Fn

q, M ∈ Z+

Output: Accept/reject
Repeat M times.
Pick sample |ψ〉 = 1√

v

∑
a∈V |a〉|a · s + ea mod q〉.

Measure the sample in the computational basis
Let (a′, a′ · s + ea′ ) be the output
If |a′ · s + ea′ − a′ · s̃| > k, reject
Accept

Lemma 1. For s̃ = s, Test Candidate (s̃, M ) accepts with
probability 1, while for s̃ �= s, Test Candidate (s̃, M ) accepts
with probability probability at most ( 2k+1

q )
M

.
Proof. Since |a′ · s + ea′ − a′ · s| = |ea′ | � k by the noise

distribution, it follows that the test passes with probability 1
when s̃ = s.

For a value a′ picked uniformly random from Fn
q, it follows

that a′ · (s − s̃) + ea′ mod q is uniformly distributed over Fq

if s̃ �= s. Therefore, the probability that it lies in the interval
[−k, k] is 2k+1

q . Since the probability is independent for every
iteration, the probability that s̃ is accepted on M iterations is
( 2k+1

q )
M

. �
We show now how to use Theorem 1 and Lemma 1 in

order to solve solve LWE with quantum samples using noise
distributions proposed in Brakerski and Vaikuntanathan [3].
There, the field order q is subexponential in the dimension n,
generally in [2nγ

, 2 · 2nγ

) for some constant γ ∈ (0, 1), while
the noise distribution χ produces samples with magnitude at
most polynomial in n (for instance linear).

LWE Algorithm(L, M)
Input: L, M ∈ Z+

Output: s̃ ∈ Fn
q ∪ {⊥}

Repeat L times:
Pick a quantum sample |ψ〉
Run the Field Bernstein-Vazirani (|ψ〉) to get output s̃
Run Test Candidate (s̃, M )
If s̃ passes the test, return s̃
Return ⊥.

Theorem 2. For dimension n, let q be a prime in the interval
[2nγ

, 2 · 2nγ

). Let

|ψ〉 = 1√
qn

∑
a∈Fn

q

|a〉|a · s + ea〉,

where the ea are random variables drawn from a noise distri-
bution with noise magnitude at most k = poly(n). There is an
algorithm that outputs s with probability 1 − η with sample
complexity O(k log 1

η
) and running time poly(n, log 1

η
).

Proof. We start the proof by analyzing the LWE
Algorithm(L, M ) and then we choose the parameters L and
M in order to prove the statement.

LWE Algorithm(L, M ) does not output s if either Test
Candidate (s̃, log 1

η
) accepts some s̃ �= s before an iteration

where Field Bernstein-Vazirani outputs s, or LWE algorithm
outputs ⊥. We can upper bound the probability of this event by
the probability that at least one of L independent calls to Test
Candidate (s̃, log 1

η
) accepts some s̃ �= s or that L independent

calls to Field Bernstein-Vazirani do not output s.
From Lemma 1 and using the union bound, the probability

that at least one of L independent calls to Test Candidate
(s̃, log 1

η
) accepts some s̃ �= s is at most(

2k + 1

q

)M

L �
(

3k

q

)M

L.

From Theorem 1, the probability that s is not the output of
L independent calls to Field Bernstein-Vazirani is at most(

1 − v

20kqn

)L

.

By union bound, LWE algorithm(L, M ) does not output s with
probability at most(

1 − v

20kqn

)L

+
(

3k

q

)M

L. (4)

Finally, by picking v = qn, L = 20k ln 1
η

and M = 1, the
statement follows from Eq. (4). �

We show in Appendix B how to extend the result to
related problems: the learning parity with noise problem, the
learning with rounding problem, and the short integer solution
problem.4

V. OPEN PROBLEMS

A. Generalizing from linear functions

Learning linear functions can be seen as finding a hidden
subgroup H = a|a · s = 0 of Zn

q. Efficient algorithms for gen-
eral Abelian hidden subgroup problem are known [38,39],
and we leave as an open question if these algorithms are also
tolerant to noise.

B. LWE over rings

Due to technical reasons regarding the representation of
polynomials in Ring-LWE instances (see Appendix B 2 for

4See Sec. III for a discussion on such problems.
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more details), our LWE algorithm cannot be used to solve
Ring-LWE with quantum samples and we leave this question
as an open problem.

ACKNOWLEDGMENTS

Most of this work was done when A.B.G. and T.Z. were
supported by IRIF, Université Paris Diderot, Paris, France.
A.B.G. and I.K. thank Ronald de Wolf for helpful discussions.
A.B.G. thanks also Lucas Boczkowski, Brieuc Guinard, Fra-
nois Le Gall, and Alexandre Nolin for helpful discussions.
Supported by ERC QCC Grant No. 306537 and French Pro-
gramme d’Investissement d’Avenir RISQ P141580. A.B.G.
was also supported by ERC Consolidator Grant No. 615307-
QPROGRESS.

APPENDIX A: NOTATION

For n ∈ N, we define [n] := {1, . . . , n}. For a complex
number x = a + ib, a, b ∈ R, we define its norm |x| by√

a2 + b2, its real part Re(x) = a, and its imaginary part
Im(x) = b. We denote ω as the qth root of unity, where q will
be clear by the context. For a field Fq and element a ∈ Fq,
we denote |a| as the unique value b ∈ [−(q−1)

2 ,
q−1

2 ] such that
b ≡ a (mod q).

We remind now the notation for quantum information and
computation. For readers not familiar with these concepts we
refer to Ref. [40]. Let {ei} be the standard basis for the q-
dimensional Hilbert space Cq. We denote here |i〉 = ei and a
q-dimensional qudit is a unit vector in this space, i.e., |ψ〉 =∑

i∈Fq
αi|i〉, for αi ∈ C and

∑
i∈Fq

|αi|2 = 1. We call the state
a qubit when q = 2. A k-qudit quantum state is a unit vector
in the complex Hilbert space Cqk

and we shorthand the basis
states for this space |i1〉 ⊗ . . . ⊗ |ik〉 with |i1〉 . . . |ik〉.

APPENDIX B: QUANTUM LEARNING COMPLEXITY
OF RELATED PROBLEMS

In this Appendix we present learning algorithms for prob-
lems that are related to LWE.

1. Learning parity with noise

We show here our result for learning parity with noise
(LPN) problem, which is the LWE problem for q = 2.

Here, the parity bit is flipped independently for each ele-
ment in the superposition with probability η. This is the same
noise model proposed by Bshouty and Jackson [13]. Note that
Cross et al. [14] studied LPN with different noise models.
In the first, all parities in the superposition are flipped at the
same time with probability η. In the second one, each qubit
passed through a depolarizing channel. Our algorithm and
analysis also works for both of the noise models proposed
by Cross et al. [14]. The algorithm is the same as in the
previous section, where now the QFT is over F2 (also called
the Hadamard transform H).

Lemma 2. Let 1√
2n

∑
a∈{0,1}n |a〉|a · s + ea (mod 2)〉 be a

quantum sample where ea are iid random variables with value
0 with probability 1 − η and 1 with probability η. There
exists a quantum algorithm that outputs s with probability

exponentially close to 1 with sample complexity O(n log 1
η

)

and running time poly(n, log 1
η

).
Proof. Let us analyze the behavior of the Bernstein-

Vazirani algorithm on the previous state.
If we apply Hadamards on each qubit of the sample state,

we have

1

2n+ 1
2

∑
a∈{0,1}n

∑
j∈{0,1}n+1

(−1)ea j∗+a·( j+ j∗s)| j〉| j∗〉

We now calculate the probability that j∗ = 1 and the first
qubits are in the state |s〉:∥∥∥∥∥∥

1

2n+ 1
2

∑
a∈{0,1}n

(−1)ea+a·(s+s)|s〉
∥∥∥∥∥∥

2

= 1

22n+1
(

∑
a∈{0,1}n

(−1)ea )2

From the distribution of each ea, we have that (−1)ea

is 1 w.p. 1 − η and −1 w.p. η, independently. Therefore
E[(−1)ea ] = 1 − 2η and using Hoeffding’s bound we have
that for every 0 < δ < 1

Pr

⎡
⎣ ∑

a∈{0,1}n

(−1)ea � (1 − δ)(1 − 2η)2n

⎤
⎦ < eδ2(1−2η)222n/4.

Therefore, with probability exponentially close to 1, the
probability that j = s is at least

1

22n+1
[(1 − δ)(1 − 2η)2n]2 = 1

2 (1 − δ)2(1 − 2η)2.

We bound now the expected probability that the output is a
fixed s̃ �= s.

Let Y = ∑
a(−1)ea+a·(s+s̃) be a random variable and then

we can calculate that E[Y ] = 0 and Var[Y ] = 2n(4η − 4η2).
It follows that the probability of outputting s̃ is

E

⎡
⎣

∥∥∥∥∥∥
1

2n+ 1
2

∑
a∈{0,1}n

(−1)ea+a·(s+s̃)|s̃〉
∥∥∥∥∥∥

2⎤
⎦ = 1

22n+1
E[Y 2]

= 1

22n+1
(Var[Y ] + E[Y ]2) = 4η − 4η2

2n+1
.

If we repeat the process O(n log 1
η

) times, by Chernoff bounds,
s is the most common string among all outputs with probabil-
ity exponentially close to 1. �

2. LWE over rings

The ring-LWE problem [41], a variant of LWE over the
ring of polynomials, has been proposed in order to improve
the performance of cryptographic constructions using LWE,
at the cost of stronger hardness assumptions.

The ring-LWE problem uses the structure of the ring
Rq = R/qR for a prime q, R = Z[x]/ f (x) and a cyclotomic
polynomial f (x). As in LWE, a ring-LWE sample is the pair
(a, as + e (mod q)) for random s, a ∈ Rq and e is picked
according to some error distribution χ .
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Unfortunately, our algorithm cannot be used to solve ring-
LWE with the noise model proposed by Bshouty et al. [13],
due to technical issues on representing the polynomials. In
order to use the quantum learning algorithm for LWE, we need
to find an isomorphism φ from Rq to Zn

q, where n = ϕ(m)
is the number of invertible elements modulo m. With this
isomorphism, we can consider a sample (a, as + e) ∈ R2

q as
two vectors in Zn

q, and a superposition of quantum states
representing these vectors can be written as:

|ψ〉 = 1√
qn

∑
a∈Rq

|φ(a)〉|φ(as + ea)〉,

and applying the QFT over every register of this state results
in

QFT ⊗2n|ψ〉 (B1)

= 1√
q3n

∑
a∈Rq

∑
x,y∈Zq

ωφ(a)·x|x〉 ⊗ ωφ(as+ea )·y|y〉

= 1√
q3n

∑
a∈Rq

∑
x,y∈Zq

ωφ(a)·(x+yφ(s))+y·φ(ea )|x〉|y〉, (B2)

where the second equality holds because φ is a homomor-
phism.

We consider two ways of representing elements in Rq

as integer vectors. The first one consists of identifying a
polynomial in Rq with the vector containing its coefficients.
However, this coefficient embedding is not a homomorphism
to Zn

q, and the following identity, used in Eq. (5), does not
hold

φ(a) · x + φ(a · s + ea)y = φ(a)(x + yφ(s)) + yφ(ea).

Therefore, this representation of polynomials cannot be used
within our learning algorithm.

The second way of representing a polynomial is through
the map

φ(p(x)) = [p(ωm), . . . , p(ωm−1
m )],

where ωm ∈ Zq be a primitive mth root of unity. This map
is particularly interesting since multiplication Zn

q is done
componentwise [42] and therefore it can be used in imple-
mentations of ring-LWE with efficient multiplication [43].
However, in these constructions, the error is sampled from
a distribution over polynomials with small coefficients and
when after applying the isomorphism, φ(ea) can be arbitrarily
large in Zn

q, which cannot be handled by our algorithm if the
error is independent for each element in the superposition.
Finally, we show now how to do solve ring-LWE for the error
model presented in Cross et al. [14], namely, the noise is the
same for all elements in the superposition.

Let φ be any isomorphism from Rq to Zn
q. We can map the

original quantum sample using φ resulting in

1√
qn

∑
a∈Rq

|φ(a)〉 ⊗ |φ(as + e)〉,

and using the Field-Bernstein-Vazirani algorithm on this state
we have

QFT ⊗2n|ψ〉 = 1√
q3n

∑
a∈Rq

∑
x,y∈Zq

ωφ(a)·x|x〉 ⊗ ωφ(as+e)·y|y〉

= 1√
q3n

∑
y∈Zq

ωy·φ(e)
∑
a∈Rq

∑
x∈Zq

ωφ(a)·(x+yφ(s)))|x〉|y〉.

By measuring the last register, the error becomes a global
phase and we are able to retrieve s as shown in Sec. IV A.

3. Learning with rounding

LWE has been used in the construction of several crypto-
graphic primitives. However, its usage sometimes is limited.
For instance, in the implementation of pseudorandom func-
tions, the output must use little or no randomness, which does
not correspond to the inherent randomness in LWE’s input.

For this purpose, Banerjee, Peikert, and Rosen [21] pro-
posed a derandomized version of LWE called learning with
rounding (LWR), which does not compromise hardness. LWR
has been used in the construction of pseudorandom functions
[21] and deterministic public-key encryption [44].

The main idea of LWR consists in replacing a · s + ea by
the rounding of a · s with respect to some modulus p � q,
which can be seen as a deterministic noise. More precisely,
the rounding function is defined as follows:

�·�p : Zq → Zp, with�x�p =
⌊

p

q
x

⌉
(mod p).

An LWR sample is then given by (a, �a · s�p) for some a
sampled from the uniform distribution on Fn

q.
Corollary 1. Let

|ψ〉 = 1√
qn

∑
a∈Fn

q

|a〉|�a · s�p〉,

be a quantum LWR sample. Let |φ〉 be the state when we
multiply the last register of |ψ〉 with q

p . The Field Bernstein-
Vazirani (|φ〉) outputs s with probability at least p

12(q−1) .
Proof. For a fixed a, we have that

q

p
�a · s�p = a · s +

(
q

p
�a · s�p − a · s

)
(mod q).

Since −q
2p � q

p�a · s�p − a · s � q
2p (mod q), the result fol-

lows by Theorem 1 for k = q
2p . �

4. Quantum samples for SIS problem

We present in this section a learning algorithm for another
relevant problem in cryptography, the short integer solution
problem. As the name indicates, the short integer solution
problem (SIS) consists in finding a short integer solution for
a system of linear equations, and we present now its formal
definition.

Definition 1 (short integer solution). Given a random ma-
trix A ∈ Fm×n

q , a random vector z ∈ Fm
q , the SISn,m,q,β problem

is to find a vector x ∈ Fn
q such that Ax = z (mod q) with

‖x‖ < β.

032314-7



GRILO, KERENIDIS, AND ZIJLSTRA PHYSICAL REVIEW A 99, 032314 (2019)

As in the LWE case, the hardness of SIS is also proved
through the reduction of (expected to be) hard lattice problems
[7,45–47]. We remark that if we drop either the constraint
of having an integer solution or having a short solution, the
problem can be easily solved using Gaussian elimination.

The SIS problem and its variants have been used to prove
security of constructions of signature schemes [22,48], and
hash functions [49]. In these schemes, samples in the form
(A, Av) are public, where v is a small random vector and A is
a random matrix.

Inspired in the LWE case, we can define a quantum sample
for SIS problem as

|ψ〉 = 1√
qnm

∑
A∈Fm×n

q

|A〉|Av〉 (mod q),

and we are interested in the sample complexity of finding
the (fixed) short solution v. Using Field Bernstein-Vazirani
brings the same problem of Gaussian elimination: there is no
guarantee of finding a short solution instead of an arbitrary
one.

We notice that tracing out m − 1 rows of A and the corre-
sponding positions of Av, we remain with

1√
qn

∑
a∈Fn

q

|a〉|a · v〉,

and we show an algorithm that works even for this type of
quantum sample.

The algorithm consists by testing all possible values j ∈
{−k, . . . , k} of −vi. The test on j = −vi passes with prob-
ability 1, while the test rejects with constant probability for
j �= −vi. By repeating the test L times, the probability of
finding the correct value is amplified.

SIS Algorithm(L)
Input: L ∈ Z+

Output: ṽ ∈ Fn
q

For i ∈ [n] do:
For j ∈ {−k, . . . , k} do:

For l ∈ [L]:
Pick a quantum sample 1√

qn

∑
a∈Fn

q
|a〉|a · v〉.

Add jai to the last register
Apply QFT on the ith qudit of a and measure it
Test next value of j if outcome is not |0〉

Set ṽi = − j and continue with the next value of i.
Output ṽ

Theorem 3. Let v ∈ Fn
q whose coefficients are all smaller

in absolute value than some bound k. Given the quantum
samples in the form

|ψ〉 =
∑
a∈Fn

q

|a〉|a · v〉,

SIS Algorithm(L) outputs v with probability 1 − 2km
qL .

Proof. We start by doing the analysis of SIS algorithm for
i = 1. After adding ja1 to the last register of the quantum
sample, we have

1√
qn

∑
a∈Fn

q

|a〉|a · v + a1 j〉

= 1√
qn

∑
a1∈Fq

∑
a∈Fn−1

q

|a1〉|a〉|a1(v1 + j) + a · v〉.

If j = −v1, then the previous state is the product state

1√
q

∑
a1∈Fq

|a1〉 ⊗ 1√
qn−1

∑
a∈Fn−1

q

|a〉|a · v〉.

and since QFT
∑

a1∈Fq
|a1〉 = |0〉, the test passes for all l ∈

[L].
On the other hand, if j �= −v1, then the state is entangled,

and the reduced density matrix of the first register is

1

q

∑
a1∈Fq

|a1〉〈a1|.

In this case, after applying the QFT on the first register and
measuring it, the output is |0〉 with probability 1

q . Therefore,
we have ṽ1 = − j if for all L independent samples the mea-
surement outcome after the QFT is |0〉, and this happens with
probability 1

qL . By the union bound, the probability that the

test passes for any value j �= −vi is at most 2k
qL .

Finally, the previous analysis holds for every i ∈ [n]. Since
v �= ṽ if and only if there exists an i ∈ [n] such that ṽi �= vi,
we can use union bound again to show that this happens with
probability at most 2km

qL . �

By picking L = max{1,
log 2km

η

log q }, the algorithm outputs the
correct v with probability at least 1 − η.
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