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Partial coherence and quantum correlation with fidelity and affinity distances
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A fundamental task in any physical theory is to quantify a certain physical quantity in a meaningful way.
In this paper, we show that both fidelity distance and affinity distance satisfy the strong contractibility, and the
corresponding resource quantifiers can be used to characterize a large class of resource theories. Under two
assumptions, namely, convexity of “free states” and closure of free states under “selective free operations,” our
general framework of resource theory includes quantum resource theories of entanglement, coherence, partial
coherence, and superposition. In partial coherence theory, we show that fidelity of partial coherence of a bipartite
state is equal to the minimal error probability of a mixed quantum state discrimination task and vice versa, which
complements the main result in Xiong and Wu [J. Phys. A: Math. Theor. 51, 414005 (2018)]. We also compute
the analytic expression of fidelity of partial coherence for (2, n) bipartite X states. At last, we study the correlated
coherence in the framework of partial coherence theory. We show that partial coherence of a bipartite state, with
respect to the eigenbasis of a subsystem, is actually a measure of discord-type quantum correlation.
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I. INTRODUCTION

Quantum correlations [1,2] have been shown to be an
important resource in quantum information theory (QIT) [3]
since they often offer a remarkable advantage in information
processing tasks over classical theory. It has been argued
that there may be several independent resources that pro-
vide a quantum advantage, including quantum entanglement
[1], quantum coherence [4–7], asymmetry [8,9], athermality
[10,11], and quantum superposition [12], etc. Every resource
theory puts certain restrictions on quantum states and quantum
operations in the sense that what states and operations are
accessible “free of cost” and what are “assets” or resource.
This, however, does not mean that free states and free oper-
ations of a resource theory do not incur costs of preparation
and implementation.

Thus, any resource theory begins with the identification
of “free states” that do not possess resource, and “free op-
erations” that do not generate resource. We will denote the
set of free states by FS and the set of free operations by
FO. By definition, a state outside FS and an operation out-
side FO are regarded as resources. Quantifying the resource
for a given state is a fundamental problem in the resource
theory. Particularly, geometric entanglement and geometric
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coherence which characterize the minimal distance of the
state to the free states, have been proposed as measures of
entanglement and coherence, respectively [4–7,13]. Recently,
a common framework for characterization and quantification
of the convex quantum resources was proposed in [14]. It was
shown that, for generic resource theories, one can establish the
strong monotonicity of a family of resource quantifiers such as
robustness monotones and norm-based quantifiers, etc.

In this paper, we first prove that both fidelity distance and
affinity distance satisfy the strong contractibility condition
and can be used to characterize generic resource theories,
including entanglement, coherence, partial coherence, and
superposition.

Next, we focus on partial coherence theory which is an
extension of coherence theory [15,16]. From the viewpoint
of partial coherence, quantum discord can be regarded as
the minimal partial coherence over all local orthogonal basis
[17]. In Ref. [18], the authors linked quantum discord with
quantum state discrimination (QSD) for the first time. An
equivalence between pure state QSD task and coherence
theory was established in Ref. [19]. It is a difficult problem
to obtain this equivalence for general mixed states. However,
by constructing a QSD state for each QSD task, we will show
that the QSD task for mixed states just corresponds to partial
coherence. In this way, we offer the operational meaning for
both fidelity- and affinity-based partial coherence measures.
Our results thus establish a useful connection between partial
coherence theory and QSD. Finally, we compute the analytic
expression of fidelity of partial coherence for bipartite X
states.

In Sec. II, we provide a few definitions and notations.
Fidelity and affinity and the corresponding distance measures
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are defined in Secs. III A and III B, and prove the strong con-
tractibility of the distance measures in the latter. In Sec. III C,
we quantify resource based on fidelity and affinity, and prove
some of their properties. The formalism developed in these
sections is employed in Sec. IV to study the quantification of
partial coherence with fidelity distance and its connection with
QSD. The connection between affinity of partial coherence
and QSD is discussed in Sec. V. In Sec. VI, we study the
correlated coherence in the framework of partial coherence
theory. We present a conclusion in Sec. VII.

II. SETTING THE STAGE

In this paper, we consider a general framework of resource
theory for finite-dimensional quantum systems which is built
on two postulates: convexity of free states and closure of free
states under “selective” free operations.

Let ρ, σ ∈ FS and p ∈ (0, 1). Then it is natural to ask
whether pρ + (1 − p)σ ∈ FS . We adopt the following pos-
tulate for free states.

Postulate 1. FS is convex, meaning that linear convex
combinations of free states are also free states.

Free operations will transform free states to free states. In
practice, one may also demand that selective measurements
(measurements whose outcomes are separately accessible)
map free states to free ones. In such a case, there exists some
Kraus decomposition {Kn} of a free operation � ∈ FO such
that KnσK†

n ∈ FS for each n and σ ∈ FS . This means that
we have adopted the following postulate for free operations.

Postulate 2. Each free operation � ∈ FO admits a
Kraus representation �(·) = ∑

n �n(·) = ∑
n Kn(·)K†

n , such
that KnFSK†

n ⊆ FS for each n.
Remark 1. These two requirements are natural and prac-

tical, and resource theories satisfying these two postulates
include entanglement, quantum coherence, and superposition.
In case of Postulate 1, one may additionally demand that FS
is closed, i.e., it contains all its limit points.

A good resource quantifier must vanish for free states since
these states are regarded as no-resource states. Moreover, as
free operations can be executed generously, the resource of a
state should not increase under free operations. As a result,
these two conditions are fundamental for a resource quantifier
R and can be expressed mathematically as follows:

(R1) Faithfulness. R(ρ) � 0 and equality holds if and only
if ρ ∈ FS .

(R1′) Non-negativity. R(ρ) � 0 and R(ρ) = 0 for every
ρ ∈ FS .

Remark 2. Note that (R1′) is a weaker condition than
(R1). According to (R1′), resource measures must vanish, by
definition, for each state in FS . In addition, these resource
measures might also vanish for certain states that do not
belong to FS . This leaves room for operational measures like
distillable entanglement [20,21] which vanishes for certain
entangled states [1]. On the other hand, (R1) says that resource
measures will vanish only for states in FS .

(R2) Monotonicity. R(ρ) � R(�(ρ)) for any ρ and
� ∈ FO.

Parallel to Postulate 2, we may also require that the
resource of a state does not increase under selective

measurements. This translates into the strong monotonicity
condition below.

(R3) Strong monotonicity. R(ρ) � ∑
n pnR(ρn), where

pn = tr(KnρK†
n ) and ρn = KnρK†

n
pn

, for a free operation � ≡
{Kn} ∈ FO such that

∑
n K†

n Kn = I and KnFSK†
n ⊆ FS .

Implicit to the structure of a resource theory, there are two
natural ways to quantify resource. If the resource theory has a
“unit resource,” such as an ebit in entanglement theory [20]
and the maximally coherent pure state in coherence theory
[6], distillable resource and cost of resource can be considered
[22,23]. Irrespective of such possibilities of defining resources
via rates, distances in state space also provide excellent av-
enues to quantify resource. Supposing d is some distance in
the state space, the resource measure can be defined as

Rd (ρ) := min
σ∈FS

d (ρ, σ ). (1)

It is clear that Rd satisfies (R1), provided FS is closed.
Moreover, if the distance is contractive, i.e., d (ρ, σ ) �
d (�(ρ), �(σ )) for any completely positive and trace-
preserving (CPTP) map �, then Rd satisfies (R2) also. We
say a distance d satisfies strong contractibility if∑

i

pid (ρi, σi ) � d (ρ, σ ), (2)

for any pair of density matrices ρ and σ , a set of Kraus
operators {Ki} and pi = Tr(KiρK†

i ), qi = Tr(KiσK†
i ), ρi =

KiρK†
i

pi
, σi = KiσK†

i
qi

. Supposing distance d satisfies strong con-
tractibility, we have

Rd (ρ) = d (ρ, σ �)
Eq.(2)
�

∑
n

pnd (ρn, σ
�
n )

Eq.(1)
�

∑
n

pnRd (ρn),

where σ � is the free state for which minimum is achieved in
Eq. (1), σ �

n = Knσ
�K†

n /tr(Knσ
�K†

n ) ∈ FS and other notations
are as defined above. While the first inequality is due to
the strong contractibility of d , the second inequality follows
from the definition of Rd . We may also demand the resource
quantifier to obey convexity. That is, resource should not
increase under convex combination of quantum states.

(R4) Convexity. If the system is in state ρi with probability
pi, then R(

∑
i piρi ) �

∑
i piR(ρi ).

Similar to entanglement, a quantifier R in this general
resource theory is called (strong) resource monotone if it
satisfies (strong) monotonicity and faithfulness. In addition, if
R satisfies convexity also, we call it convex (strong) resource
monotone. A convex strong resource monotone is called a
resource measure.

III. QUANTIFYING RESOURCE

In this section, we review two distance measures using
which we can establish bona fide measures to quantify a
general resource.

A. Fidelity and affinity

Let H be an n-dimensional Hilbert space and E (H) be the
set of density matrices on H. For any ρ, σ ∈ E (H), the fidelity
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between ρ and σ is defined as [3]

F (ρ, σ ) := ||√ρ
√

σ ||1 = Tr
√√

σρ
√

σ . (3)

Similarly, quantum affinity is defined as follows [24]:

A(ρ, σ ) := Tr(
√

ρ
√

σ ). (4)

This definition is similar to the Bhattacharyya coefficient [25]
between two probability distributions (discrete or continuous)
in classical probability theory. Both fidelity and affinity char-
acterize the closeness of two quantum states in the state space.

As F (ρ, σ ) = maxU |TrU
√

ρ
√

σ |, with the maximization
being over all unitary operators on H, we have A(ρ, σ ) �
F (ρ, σ ). Moreover, since Tr(

√
ρ
√

σ ) = Tr(ρ1/4σ 1/2ρ1/4),
we have 0 � A(ρ, σ ) � 1, and A(ρ, σ ) = 1 if and only if
ρ = σ .

Let X be fidelity or affinity. Then, X satisfies the following
properties:

(P1) X (ρ, σ ) ∈ [0, 1] with X (ρ, σ ) = 1 iff ρ = σ .
(P2) X ( ρ

p , σ
q ) = X (ρ,σ )√

pq with p, q ∈ (0, 1).
(P3) X (ρ, σ ) obeys monotonicity under CPTP maps.
(P4) X (

∑
i PiρPi,

∑
i PiσPi ) = ∑

i X (PiρPi, PiσPi ) for mu-
tually orthogonal projectors {Pi}.

(P5) For a CPTP map � ≡ {Ki},
X (ρ, σ ) �

∑
i

X (piρi, qiσi ) =
∑

i

X (KiρK†
i , KiσK†

i ), (5)

where ρi = KiρK†
i

pi
and σi = KiσK†

i
qi

are the states after subselec-

tion with probabilities pi = Tr(KiρiK
†
i ) and qi = Tr(KiσiK

†
i ),

respectively.
Proof. (P4) Since {Pi} are mutually orthogonal projectors,

we have
√∑

i PiρPi = ∑
i

√
PiρPi and

A

(∑
i

PiρPi,
∑

i

PiσPi

)
= Tr

√∑
i

PiρPi

√∑
j

PjσPj

= Tr
∑

i

√
PiρPi

∑
j

√
PjσPj

=
∑

i

Tr
√

PiρPi
√

PiσPi

=
∑

i

A(PiρPi, PiσPi ).

Similarly, we can show that (P4) holds for fidelity F .
Property (P5) can be proven using the method in Ref. [26]

and exploiting properties (P3) and (P4) (see Ref. [27]). �

B. Distance measures using fidelity and affinity

Assuming X to be a function in E (H) ⊗ E (H) satisfying
(P1)–(P5), the distance given by

dX (ρ, σ ) := 1 − X 2(ρ, σ ) (6)

has the following two properties:
(D1) dX (ρ, σ ) � 0 with equality iff ρ = σ .
(D2) dX (ρ, σ ) is contractive, that is, dX (�(ρ),�(σ )) �

dX (ρ, σ ) for any CPTP map �.

With this, we arrive at our first main result in this paper:
dX (ρ, σ ) satisfies the strong contractibility. To prove this we
need the following lemma.

Lemma 1. For a probability vector {pi}n
i=1 and a vector of

positive real numbers {xi}n
i=1,

∑
i

x2
i

pi
�

(∑
i

xi

)2

. (7)

Proof. Suppose {pi}n
i=1 is a probability vector and {xi}n

i=1
are n positive real numbers. Then,

∑
i

x2
i

pi
=

∑
i

x2
i +

∑
i

∑
j 	=i

p j

pi
x2

i

=
∑

i

x2
i +

∑
i< j

(
p j

pi
x2

i + pi

p j
x2

j

)

�
∑

i

x2
i + 2

∑
i< j

xix j =
(∑

i

xi

)2

.

�
Theorem 1. dX (ρ, σ ) satisfies the strong contractibility

[see Eq. (2)] ∑
i

pidX (ρi, σi ) � dX (ρ, σ ) (8)

for any pair of density matrices ρ and σ , a set of Kraus
operators {Ki} and pi = Tr(KiρK†

i ), qi = Tr(KiσK†
i ), ρi =

KiρK†
i

pi
, σi = KiσK†

i
qi

.
Proof. We have∑

i

pidX (ρi, σi ) = 1 −
∑

i

piX
2(ρi, σi )

(P2)= 1 −
∑

i

q−1
i X 2(KiρK†

i , KiσK†
i )

Eq.(7)
� 1 −

(∑
i

X (KiρK†
i , KiσK†

i )

)2

(P5)
� 1 − X 2(ρ, σ )

= dX (ρ, σ ), (9)

where the second equality is due to property (P2), the first
inequality follows from Lemma 1, and the second inequality
is due to property (P5). �

It is not difficult to show that dX is also symmetric, i.e.,
Eq. (9) holds if we replace {pi} with {qi} (this statement will
not hold true for “asymmetric distances” like relative entropy
[28,29]). dX is also bounded.

We can choose X to be either fidelity and affinity, and
define fidelity distance

dF (ρ, σ ) := 1 − F 2(ρ, σ )

and affinity distance

dA(ρ, σ ) := 1 − A2(ρ, σ ).

Both dF and dA satisfy the strong contractibility condition.
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Remark 3. Relative entropy is a useful “distance” with sev-
eral nice properties including strong contractibility [26] and
joint convexity [30], which means that the corresponding re-
source quantifier will satisfy properties (R1)–(R4). In fact, as
a distance-based quantifier, relative entropy has been proven
to be a bona fide resource measure of entanglement, quantum
correlations beyond entanglement, quantum coherence, and
superposition, and the operational meanings associated with
them have been explored [6,31]. These resource theories can
be studied from a unified perspective when relative entropy is
employed to define a resource measure [32,33].

C. Quantifying resource with fidelity and affinity

We now employ the fidelity and affinity distances to define
the corresponding resource quantifiers as follows: (i) fidelity
of resource, also called geometric resource, based on fidelity
distance

RF (ρ) := min
σ∈FS

dF (ρ, σ ); (10)

(ii) affinity of resource based on affinity distance

RA(ρ) := min
σ∈FS

dA(ρ, σ ). (11)

Since both fidelity and affinity distances observe the strong
monotonicity condition, the above resource quantifiers are
strong resource monotones.

Theorem 2. Fidelity of resource RF satisfies (R1)–(R4).
Proof. RF inherits properties (R1)–(R3) from dF . Hence,

we need to prove only convexity (R4) here. As the maximum
of square fidelity between a state ρ and a convex state set is
equal to the maximum over mixture of ρ over the state set
[34], i.e.,

max
σ∈FS

F 2(ρ, σ ) = max
ρ=∑

i piρi

∑
i

pi max
σi∈FS

F 2(ρi, σi ), (12)

where the first maximization on the right-hand side is over all
ρ = ∑

i piρi, fidelity of resource can be expressed as follows
(see Ref. [35]):

RF (ρ) = min
ρ=∑

i piρi

∑
i

piRF (ρi ). (13)

Suppose ρi = ∑
j qi

jρ
i
j is the optimal state decomposition

for each ρi in the sense that Eq. (13) is satisfied. Then, for an
arbitrary mixed quantum state ρ = ∑

i piρi(=
∑

i, j piqi
jρ

i
j ),

we have

RF

(∑
i

piρi

)
= RF (ρ) = RF

⎛
⎝∑

i, j

piq
i
jρ

i
j

⎞
⎠

Eq.(13)
�

∑
i, j

piq
i
jRF (ρ i

j )

Eq.(13)=
∑

i

piRF (ρi ).

In conclusion, fidelity of resource RF satisfies (R1)–(R4). �
Remark 4. Affinity of resource RA also satisfies (R1)–(R3)

because of dA. But, since affinity does not satisfy Eq. (12)

and dA is not jointly convex, RA may not fulfill (R4). How-
ever, in coherence theory, the measure based on affinity dis-
tance satisfies convexity [36]. On the other hand, denoting
RCA(ρ) := min{pi,|ψi〉}

∑
i piRA(|ψi〉) with the minimum over

all pure state decompositions of ρ = ∑
i pi |ψi〉 〈ψi|, it can be

shown that RCA satisfies (R1)–(R4). Fidelity and affinity dis-
tances based resource measures have been proved to be bona
fide resource measures in entanglement [13] and coherence
[36–38] resource theories.

IV. FIDELITY OF PARTIAL COHERENCE AND QUANTUM
STATE DISCRIMINATION

A. Partial coherence theory

Consider a bipartite quantum system “ab” with Hilbert
space H = Ha ⊗ Hb, where Ha and Hb are the Hilbert spaces
of the subsystems “a” and “b” having finite dimensions na and
nb, respectively. Let {|i〉} be a fixed orthogonal basis of party
a, then �L = {|i〉 〈i| ⊗ Ib} is the Lüders measurement and the
notions for partial coherence respect to �L are as follows:

(1) The set of partial “incoherent” or free states are defined
by

Ia
P = {σ : �L(σ ) = σ },

where �L(σ ) = ∑
i(�

a
i ⊗ Ib)σ (�a

i ⊗ Ib). Denoting pi =
tr〈i|σ |i〉 and σi = p−1

i 〈i| σ |i〉 [here 〈i| σ |i〉 ≡ (〈i| ⊗ Ib)
σ (|i〉 ⊗ Ib) for brevity; we observe similar notation elsewhere
also], each partial incoherent state can be written as

σ =
∑

i

pi |i〉 〈i| ⊗ σi. (14)

(2) A CPTP map �a with Kraus operators {Kn} is called
partial incoherent if KnIa

PK†
n ∈ Ia

P , and the set of partial inco-
herent operations is denoted as Oa

P.
A functional Ca on the bipartite system, satisfying the

conditions (C1)–(C4) below, is called a measure of partial
coherence with respect to �L:

(C1) Non-negativity: Ca(ρab) � 0, and the equality holds
if and only if σ ∈ Ia

P .
(C2) Monotonicity under partial incoherent operations:

Ca(�a(ρab)) � Ca(ρab) for all �a ∈ Oa
P.

(C3) Monotonicity under selective partial incoherent op-
erations on average:

∑
i piCa(p−1

i Kiρ
abK†

i ) � Ca(ρab) with
probabilities pi = tr(Kiρ

abK†
i ) and partial incoherent Kraus

operators Ki.
(C4) Convexity: Ca(

∑
i piρ

ab
i ) � ∑

i piCa(ρab
i ) for any en-

semble {pi, ρ
ab
i } with pi � 0 and

∑
i pi = 1.

Based on (10) and (11), we define fidelity (geometric)
partial coherence by

Ca
F (ρab) := min

σ∈Ia
P

dF (ρab, σ ), (15)

and affinity of partial coherence by

Ca
A(ρab) := min

σ∈Ia
P

dA(ρab, σ ), (16)

respectively. Theorem 2 ensures that Ca
F is a partial coherence

measure and Ca
A is a strong partial coherence monotone.
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B. Quantum state discrimination

In QSD task, the sender chooses a state randomly from the
ensemble {ρi, ηi} and sends it to the receiver, whose job is
to determine the received state with maximal probability. To
do so, he performs a positive-operator-valued measurement
(POVM) {Mi : Mi � 0,

∑
i Mi = I} on each ρi and declares

the state is ρ j when the measurement reads as j. As the
probability to get the result j is p j|i = Tr(Mjρi ) when the
system is in the state ρi, the maximal success probability to
identify {ρi, ηi} is

Popt
S ({ρi, ηi}) = max

{Mi}

∑
i

ηiTr(Miρi ),

where the maximization is performed over all POVM {Mi},
and the minimal error probability is

Popt
E ({ρi, ηi}) = 1 − max

{Mi}

∑
i

ηiTr(Miρi ).

For an ensemble consisting of two states, the analytic for-
mula of maximal success probability is given by the Helstrom
formula [39]

Popt
S ({ρi, ηi}2

i=1) = 1
2 (1 − tr|
|), (17)

where 
 = η1ρ1 − η2ρ2 (= ∑
i λi |i〉 〈i|); |
| := ∑

i |λi|
|i〉 〈i|, and the corresponding optimal measurement is a von
Neumann measurement {�opt

1 , I − �
opt
1 } with �

opt
1 being the

projector onto the support of 
+ = (
 + |
|)/2. However,
no solution is known for the general case except some
symmetric cases [40–42].

As a suboptimal choice, the least-square measurement
(LSM) is an alternative to discriminate quantum states
[43–49]. In comparison to the optimal measurement, the LSM
has several nice properties. First, its construction is relatively
simple as it can be determined directly from the given ensem-
ble. Second, it is very close to the optimal measurement when
the states to be distinguished are almost orthogonal [45,50].
The construction of LSM is as follows.

For the ensemble {ρi, ηi}n
i=1, the least-square measure-

ments are given by

MLSM
i = ηiρ

−1/2
out ρiρ

−1/2
out , i = 1, 2, . . . , n (18)

where ρout = ∑
i λiρi. As a result, the minimal error probabil-

ity of this measurement is

PLSM
E ({ρi, ηi}) = 1 −

∑
i

ηiTr
(
MLSM

i ρi
)
. (19)

C. Fidelity of partial coherence

Assuming ρi = ∑m
j λi j |ψi j〉 〈ψi j | is the spectral decom-

position for each i, the density matrices {ρi, 1 � i � n} are
called linearly independent if {|ψi j〉 , 1 � i � n, 1 � j � m}
are linearly independent.

It is well known that POVMs can outperform von Neumann
measurements in quantum state discrimination task [48,51].
However, the von Neumann measurement has proved to be
the optimal one so far in discriminating a collection of linearly
independent states, both pure [52] and mixed [53]. With this
observation, we can establish the relation between fidelity of
partial coherence and QSD.

Theorem 3. For any bipartite state ρab, the fidelity of par-
tial coherence is given by

Ca
F (ρab) = Popt(vN )

E ({ωi, ηi}na
i=1), (20)

where ωi = η−1
i

√
ρab |i〉 〈i| ⊗ Ib

√
ρab with ηi = tr 〈i| ρab |i〉

and Popt(vN )
E ({ωi, ηi}na

i=1) is the minimal error probability to
discriminate {ωi, ηi}na

i=1 with von Neumann measurement. As
a result, fidelity of partial coherence provides an upper bound
for the minimum error probability to discriminate {ωi, ηi}na

i=1:

Ca
F (ρab) � Popt

E

({ωi, ηi}na
i=1

)
. (21)

In particular, if {ωi}na
i=1 are linearly independent, then Ca

F (ρab)
is exactly the minimum error probability.

Proof. First, we evaluate fidelity of partial coherence of
ρab. Based on Theorem 3 in Ref. [18], the fidelity between
ρab and the partial incoherent states is

F (ρab) : = max
σ∈Ia

P

F (ρab, σ )

= max
{πi}

√∑
i

tr[πi

√
ρab |i〉 〈i| ⊗ Ib

√
ρab]

=
√

Popt(vN )
S ({ωi, ηi}),

where ωi = η−1
i

√
ρab |i〉 〈i| ⊗ Ib

√
ρab with ηi = tr 〈i| ρab |i〉

and {πi}na
i=1 is a von Neumann measurement on Ha. Moreover,

the closest partial incoherent state (CPIS) of ρ is given by

σρ = 1

F 2(ρab)

∑
i

|i〉 〈i| ⊗ 〈i|
√

ρabπ
opt
i

√
ρab |i〉 , (22)

where {πopt
i }n

i=1 is the optimal von Neumann measurement on
system a.

We denote {ωi, ηi} as the QSD task of bipartite quantum
state ρab. Since Popt(vN )

S ({ωi, ηi}) � Popt
S ({ωi, ηi}), we have

Ca
F (ρab) = 1 − F 2(ρab)

= 1 − Popt(vN )
S ({ωi, ηi})

� 1 − Popt
S ({ωi, ηi}) = Popt

E

({ωi, ηi}na
i=1

)
.

Next, we consider the ensemble {ωi, ηi}na
i=1. If ηi 	= 0, for all

i, this means the ensemble contains na states. If {ωi}na
i=1 are

linearly independent, then the optimal measurement is the von
Neumann measurement [53], that is,

Popt
E

({ωi, ηi}na
i=1

) = Popt(vN )
E

({ωi, ηi}na
i=1

) = Ca
F (ρab).

If s number of ηi are zero then the ensemble is {ωi′ , ηi′ }na−s
i′=1 .

As above, if {ωi′ }na−s
i′=1 are linearly independent,

Ca
F (ρab) = 1 − max

{πi}

na∑
i=1

ηitr(πiωi )

= 1 − max
{πi′ }

na−s∑
i′=1

ηi′ tr(πi′ωi′ )

= Popt(vN )
E

({ωi′ , ηi′ }na−s
i′=1

)
,
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we have

Ca
F (ρab) = Popt

E

({ωi′ , ηi′ }na−s
i′=1

)
.

�
Remark 5. We have the QSD task ωi = η−1

i

√
ρab |i〉 〈i| ⊗

Ib
√

ρab with ηi = tr 〈i| ρab |i〉. If dim(Hb) = 1 (that is, ρab re-
duces to a single quantum system ρa), then the corresponding
ensemble constitutes a pure state discrimination task, which
is consistent with coherence theory [19]. In this sense, partial
coherence theory is a more general framework to investigate
QSD.

Corollary. If ρab > 0, the fidelity of partial coherence
is equal to the minimum error probability to discriminate
{ωi, ηi}na

i=1 [18], that is,

Ca
F (ρab) = Popt

E

({ωi, ηi}na
i=1

)
. (23)

Proof. If ρ > 0, then each ωi is full rank and ηi > 0. Sup-
posing every Hermitian matrix Ri := 〈i| ρab |i〉 has spectral
decomposition Ri = ∑

j λi jηi |ξi j〉 〈ξi j | where |ξi j〉 ∈ Hb, it is
easy to check that

|ζi j〉 := (λi jηi )
−1

√
ρab |i〉 ⊗ |ξi j〉 (24)

is an eigenvector of ωi with eigenvalue λi j > 0. Hence, for

∑
i j

xi j |ζi j〉 =
√

ρab

⎛
⎝∑

i j

xi j

λi jηi
|i〉 ⊗ |ξi j〉

⎞
⎠ = 0, (25)

the invertibility of ρ and orthogonality of {|i〉}, {|ξi j〉} indicate
that xi j = 0 for each i, j. As a result, {ωi, i = 1, . . . , na}
are linearly independent and we obtain the result (23) using
Theorem 3. �

D. Quantum state discrimination and partial coherence

We show that estimating fidelity of partial coherence of
a bipartite quantum state can be regarded as a QSD task. In
this connection we ask whether for a given QSD ensemble
there exists a quantum state whose fidelity of partial coherence
provides an upper bound for the minimum error probability of
QSD?

Let us consider a state discrimination task {ρi, ηi}n
i=1 where

each ρi is an m × m density matrix. Then, we consider an
mn × mn matrix ρ whose (i, j)th entry is a block which reads
as ρi j = √

ηiρi
√

η jρ j , 1 � i, j � n, that is,

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎝

η1ρ1
√

η1ρ1
√

η2ρ2 . . .
√

η1ρ1
√

ηnρn√
η2ρ2

√
η1ρ1 η2ρ2 . . .

√
η2ρ2

√
ηnρn

...
... . . .

...
...

... . . .
...√

ηnρn
√

η1ρ1
√

ηnρn
√

η2ρ2 . . . ηnρn

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(26)

Proposition 1. The matrix ρ is a density matrix.
Proof. Consider an m × mn matrix

A = (
√

η1ρ1,
√

η2ρ2, . . . ,
√

ηnρn), (27)

then ρ = A†A is positive semidefinite. As trρ = ∑
i tr(ηiρi ) =∑

i ηi = 1, we conclude that ρ is a density matrix. �

Therefore, we call state (26) the QSD state of {ρi, ηi}n
i=1.

Based on Theorem 3, the corresponding QSD ensemble of ρ

is {ωi, pi}n
i=1, where

pi = tr
√

ρ |i〉 〈i| ⊗ Im
√

ρ, ωi = p−1
i

√
ρ |i〉 〈i| ⊗ Im

√
ρ.

Using polar decomposition theorem, one can find an m ×
mn unitary matrix U such that A = U

√
ρ. As a result, for each

1 � i � n,

pi = tr
√

ρ |i〉 〈i| ⊗ Im
√

ρ

= trU †(A |i〉 〈i| ⊗ ImA†)U

= tr(ηiU
†ρiU ) = ηi,

and ωi = U †ρiU . Moreover,

Popt
S ({ρi, ηi}n

i=1) = max
{Mi}n

i=1

∑
i

ηitr(Miρi )

= max
{Mi}n

i=1

∑
i

ηitrMiU
†ωiU

= max
{Ni}n

i=1

∑
i

ηiTr(Niωi )

= Popt
S

({ωi, ηi}n
i=1

)
.

The last equality is due to the fact that if {Mi}n
i=1 is a

POVM on HA, then {UMiU †}n
i=1 is a POVM on HA ⊗ HB.

Therefore, {UMopt
i U †}n

i=1 is an optimal measurement for QSD
task {ωi, ηi}n

i=1 when {Mopt
i }n

i=1 is optimal to discriminate
{ρi, ηi}n

i=1.
Thus, we have the following result.
Theorem 4. Let Ha and Hb are Hilbert spaces of systems

a and b with dim(Ha) = n and dim(Hb) = m. For a set of
quantum states ρi, i = 1, . . . , n, of system a, the minimal
error probability to discriminate {ρi, ηi}n

i=1 is upper bounded
by the fidelity of partial coherence with respect to {|i〉 〈i| ⊗
Im, i = 1, . . . , n} of the corresponding QSD state ρ, that is,

Popt
E

({ρi, ηi}n
i=1

)
� Ca

F (ρ), (28)

where {|i〉}n
i=1 is the computational basis of Ha. The bound is

saturated when these states are linearly independent.
Proof. Using Theorem 3, we have

Ca
F (ρ) = Popt(vN )

E

({ωi, pi}n
i=1

)
,

where ωi = η−1
i

√
ρab |i〉 〈i| ⊗ Im

√
ρab and pi = ηi. Since

ωi = UρiU † for a unitary matrix U , then

Popt
E

({ρi, ηi}n
i=1

) = Popt
E

({ωi, ηi}n
i=1

)
.

Therefore, we have

Ca
F (ρ) � Popt

E

({ρi, ηi}n
i=1

)
,

and the equality holds for linearly independent states
{|ρi〉}n

i=1. �

E. Fidelity of partial coherence for (2, n) bipartite X states

In this section, we compute the analytic expression of
fidelity of partial coherence for X states. In the two-qubit case,
X states including Bell-diagonal states constitute an important
class of states which play a crucial role in the quantification

032305-6



PARTIAL COHERENCE AND QUANTUM CORRELATION … PHYSICAL REVIEW A 99, 032305 (2019)

and dynamics of entanglement, quantum correlations, and
coherence [54–59].

First, we consider the two-qubit case. The density ma-
trix of a two-qubit X state in the standard orthogonal basis
{|00〉 , |01〉 , |10〉 , |11〉} is of the general form

ρX =

⎛
⎜⎝

a 0 0 y
0 b x 0
0 x c 0
y 0 0 d

⎞
⎟⎠. (29)

Therefore,


 = η1ρ1 − η2ρ2 = √
ρX σz ⊗ I

√
ρX , (30)

where σz = |0〉 〈0| − |1〉 〈1| is the Pauli matrix. 
 has the
same eigenvalues as σz ⊗ IρX , whose eigenvalues and corre-
sponding eigenvectors are

λ1(2) = 1
2 [b − c ∓

√
(b + c)2 − 4|x|2], (31)

λ3(4) = 1
2 [a − d ∓

√
(a + d )2 − 4|y|2], (32)

and

|ψ1(2)〉 = (0, (b + c) ∓
√

(b + c)2 − 4|x|2,−2x, 0)T ,

|ψ3(4)〉 = ((a + d ) ∓
√

(a + d )2 − 4|y|2, 0, 0,−2y)T ,

respectively. Hence, we have

Popt
S ({ωi, ηi}) = 1

2 (1 + tr|
|)
= 1

2 [1 +
√

(b + c)2 − 4|x|2

+
√

(a + d )2 − 4|y|2].

If bc 	= |x|2, ad 	= |y|2, that is, ρX > 0, one has

Ca
F (ρX ) = Popt(vN )

E ({ωi, ηi})

= Popt
E ({ωi, ηi})

= 1
2 [1 −

√
(b + c)2 − 4|x|2 −

√
(a + d )2 − 4|y|2].

And the closest partial incoherent state is given by Eq. (22)
with optimal projectors

π
opt
1 = √

ρX (|ψ2〉 〈ψ2| + |ψ4〉 〈ψ4|)√ρX ,

π
opt
2 = I − π

opt
1 ,

where |ψ2(4)〉 are the normalized eigenvectors.
Next, we consider (2, n) bipartite quantum systems. Any

2n × 2n quantum state ρ is called X state if it can be repre-
sented as an X matrix in a fixed orthogonal basis {|i〉}2n

i=1 as

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 . . . 0 ρ1,2n

0 ρ22 . . . ρ2,2n−1 0
...

... . . .
...

...
...

... . . .
...

...
0 ρ2n−1,1 . . . ρ2n−1,2n−1 0

ρ2n,1 0 . . . 0 ρ2n,2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Similar to the n = 2 case, the fidelity of partial coherence of
invertible ρ is

Ca
F (ρ)= 1

2

[
1−

n∑
i=1

√
(ρii + ρ2n+1−i,2n+1−i )2 − 4|ρ2n+1−i,i|2

]
.

V. AFFINITY OF PARTIAL COHERENCE AND QUANTUM
STATE DISCRIMINATION

In this section, first we evaluate affinity of partial coherence
for a bipartite quantum state ρab ∈ Ha ⊗ Hb. Since each
partial incoherent state can be written as

σ =
∑

i j

pi j |i〉 〈i| ⊗ |ψ j|i〉 〈ψ j|i| , (34)

affinity between ρab and partial incoherent states σ ∈ Ia
P is

given by

A(ρab) : = max
σ∈Ia

P

A(ρab, σ ) = max
σ∈Ia

P

tr
√

ρab
√

σ

= max
{|ψ j|i〉}

∑
i j

√
pi, j 〈i ⊗ ψ j|i|

√
ρab |i ⊗ ψ j|i〉

� max
{|ψ j|i〉}

√∑
i j

〈ψ j|i| Bi |ψ j|i〉2

=
√∑

i

trB2
i ,

where Bi = 〈i| ⊗ Ib

√
ρab |i〉 ⊗ Ib. While the inequality is due

to the Cauchy-Schwarz inequality, the last equality holds
when |ψ j|i〉 is the eigenvector of Bi for each i. As a result,

Ca
A(ρab) = 1 −

∑
i

tr(〈i| ⊗ Ib

√
ρab |i〉 ⊗ Ib)2, (35)

and the corresponding CPIS is

σ =
∑
i, j

qi j |i〉 〈i| ⊗ |β j|i〉 〈β j|i| (36)

with

qi j = 〈i ⊗ β j|i|
√

ρab |i ⊗ β j|i〉2∑
i, j 〈i ⊗ β j|i|

√
ρab |i ⊗ β j|i〉2

and |β j|i〉 is the optimal eigenvector of Bi for each i.
Theorem 5. Ca

A is a partial coherence measure.
Proof. Earlier, at the end of Sec. IV A, we have seen that Ca

A
is a strong partial coherence monotone. Here, we just need to
prove the convexity of Ca

A. Let us consider the quantification
of partial coherence using Wigner-Yanase skew information
[17]

Ca
H (ρab) :=

∑
i

I (ρ, |i〉 〈i| ⊗ I ), (37)

where I (ρ, K ) := − 1
2 tr[

√
ρ, K]2. Since

Ca
H (ρab) =

∑
i

tr(ρ |i〉 〈i| ⊗ I − √
ρ |i〉 〈i| ⊗ I

√
ρ |i〉 〈i| ⊗ I )

= 1−
∑

i

tr(
√

ρ |i〉 〈i| ⊗ I
√

ρ |i〉 〈i| ⊗ I ) = Ca
A(ρab),
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and I (ρ, K ) is convex in ρ [60,61], one has

Ca
A

(∑
i

piρ
ab
i

)
= Ca

H

(∑
i

piρ
ab
i

)

�
∑

i

piC
a
H

(
ρab

i

) =
∑

i

piC
a
A

(
ρab

i

)
.

�
Now, we consider the quantum state discrimination of the

ensemble {ωi, ηi}na
i=1. As

∑
i ηiωi = ρab, the LSM are given by

MLSM
i = ηi(ρ

ab)−1/2ωi(ρ
ab)−1/2 = |i〉 〈i| ⊗ Ib, i = 1, . . . , n

where ρ−1/2 := ∑
i λ

−1/2
i Pi for the spectral decomposition

ρ = ∑
i λiPi. Hence, the success probability to discriminate

{ωi, ηi} with LSM is

PLSM
S ({ωi, ηi}) =

∑
i

ηitr
(
MLSM

i ωi
)

=
∑

i

〈i| ⊗ I
√

ρab |i〉 〈i| ⊗ I
√

ρab |i〉 ⊗ I

=
∑

i

B2
i = A2(ρab).

Thus, we have the following theorem.
Theorem 6. For a bipartite quantum state ρab ∈ Ha ⊗ Hb

with {|i〉}n
i=1 being a reference basis of Ha, the affinity of

partial coherence of ρab is equal to the error probability
to discriminate {ωi, ηi}n

i=1 with least-square measurement.
That is,

Ca
A(ρab) = PLSM

E

({ωi, ηi}n
i=1

)
, (38)

where ηi = tr 〈i| ρab |i〉 and ωi = η−1
i

√
ρab |i〉 〈i| ⊗ Ib

√
ρab.

On the other hand, for a state discrimination task {ρi, ηi}n
i=1

with QSD state ρ, one can find a unitary matrix U such that

ρi = UωiU
†, i = 1, . . . , n

where ηi, ωi are the same as above. Therefore, the LSM for
{ρi, ηi}n

i=1 are

Ni = U † |i〉 〈i| ⊗ IU,

and the error probability to discriminate this task with LSM is

PLSM
E ({ρi, ηi}) = 1 −

∑
i

ηitr(U † |i〉 〈i| ⊗ IUρi )

= 1 −
∑

i

ηitr(|i〉 〈i| ⊗ Iωi )

= PLSM
E ({ωi, ηi}) = Ca

A(ρ).

Hence, we arrive at the following result.
Theorem 7. Let Ha be an n-dimensional Hilbert space and

{|i〉}n
i=1 be the computational basis, that is, the ith entry of

vector |i〉 is 1 and rest are zero. For the ensemble {ρi, ηi}n
i=1

in the Hilbert space Hb, the error probability to discriminate
{ρi}n

i=1 with LSM is equal to the affinity of partial coherence
of the corresponding QSD state ρ, that is,

PLSM
E

({ρi, ηi}n
i=1

) = Ca
A(ρ), (39)

where the fixed Lüders measurements are {|i〉 〈i| ⊗ Ib}n
i=1.

VI. CORRELATED COHERENCE AND
QUANTUM CORRELATION

Let X be either fidelity or affinity below. We can define
quantum entanglement, quantum discord, coherence, and par-
tial coherence from a unified perspective as follows:

EX (ρab) := min
σ∈S

dX (ρab, σ ),

Da
X (ρab) := min

σ∈Ca

dX (ρab, σ ),

CX (ρ) := min
σ∈I

dX (ρ, σ ),

Ca
X (ρab) := min

σ∈Ia
P

dX (ρab, σ ),

where S , I, and Ca, respectively, are the sets of separable
states, incoherent states, and classical states on party a [18].
Using Theorem 2 and Remark 4, EA is a strong entanglement
monotone and EF (geometric entanglement) is a entanglement
measure [13].

We know that coherence is a more fundamental quantum
correlation than entanglement and discord [33]. Moreover,
partial coherence in a bipartite system may contain both
local coherence and correlated coherence. To characterize the
correlation between parties a and b, we define generalized
correlated coherence, following Refs. [62,63], as

Ca
X,gcc(ρab) := Ca

X (ρab) − CX (ρa). (40)

Remark 6. Similarly, we can define Cb
X,gcc(ρab) :=

Cb
X (ρab) − CX (ρb). However, the generalized correlated co-

herence is asymmetric, i.e., Ca
X,gcc 	= Cb

X,gcc. To see this,
consider a two-qubit state ρab = 1

4 (I ⊗ I + tσx ⊗ σz ) (in the
standard orthogonal basis {|00〉 , |01〉 , |10〉 , |11〉}) for which
ρa = ρb = 1

2 I are both incoherent states. Moreover, since
ρab = 1

2 [( 1
2 I + tσx ) ⊗ |0〉 〈0| + ( 1

2 I − tσx ) ⊗ |0〉 〈0|] is a par-
tial incoherent state in part b and not in part a, we conclude
that Ca

X,gcc(ρab) > Cb
X,gcc(ρab) for t 	= 0.

Theorem 8. The generalized correlated coherence Ca
X,gcc is

non-negative.
Proof. Since

Ca
X (ρab) = min

{pi,σi}
dX

(
ρab,

∑
i

pi |i〉 〈i| ⊗ σi

)

� min
{pi,σi}

dX

(
trbρ

ab, trb

(∑
i

pi |i〉 〈i| ⊗ σi

))

= min
{pi}

dX

(
ρa,

∑
i

pi |i〉 〈i|
)

= CX (ρab),

where the inequality is due to the contractibility of dX ,
the generalized correlated coherence Ca

X,gcc(ρab) is non-
negative. �

Our definition of correlated coherence is basis dependent.
However, we can also define basis-independent correlated
coherence in a natural way. For bipartite state ρab, the re-
duced density matrix ρa has eigenvectors {|αi〉}. Choosing the
local basis ρa has zero (local) coherence, and the correlated

032305-8



PARTIAL COHERENCE AND QUANTUM CORRELATION … PHYSICAL REVIEW A 99, 032305 (2019)

coherence reduces to the partial coherence with respect to the
eigenbasis of the corresponding reduced density matrix. In
this way, the partial coherence in the system is stored entirely
within the correlations.

Therefore, we define the correlated coherence as

Ca
X,cc(ρab) := min

Ba

Ca
X (ρab) − CX (ρa), (41)

where the minimization is performed over all the local bases
Ba satisfying CX (ρa) = 0.

Theorem 9. For a bipartite quantum state ρab,

Ca
X,cc(ρab) � Da

X (ρab). (42)

The equality holds if either ρa is a completely mixed state or
ρab is a pure state.

Proof. As Da
X (ρab) is the minimal partial coherence of ρab

[17], we have Ca
X,cc(ρab) � Da

X (ρab). Now, if ρa = 1
na

Ia, then
the eigenbasis of ρa can be any set of orthogonal basis in Ha.
As a result,

Ca
X (ρab) = min

Ba

Ca
X,cc(ρab)

= min
{pi,|αi〉,σi}

dX

(
ρab,

∑
i

pi |αi〉 〈αi| ⊗ σi

)

= Da
X (ρab).

And, for a pure bipartite state |ψ〉 with the Schmidt decompo-
sition

|ψ〉 =
∑

i

√
λi |xi〉 ⊗ |yi〉 , (43)

ρa
ψ := trb |ψ〉 〈ψ | = ∑

i λi |xi〉 〈xi|. Note that when some
Schmidt coefficients are equal, the Schmidt decomposition
in Eq. (43) is not unique. Without loss of generalization, we
assume that λ1 � λ2 � · · · � λn and the Schmidt decomposi-
tion in Eq. (43) satisfies Ca

A,cc(ρab) = Ca
A(ρab) (with respect to

{|xi〉}). Then,

max
σ∈Ia

P

A(|ψ〉 , σ ) = max
{pi,σi}

∑
i

√
pi 〈ψ | (|xi〉 〈xi| ⊗ σi ) |ψ〉

= max
{pi,σi}

∑
i

√
piλi 〈yi| σi |yi〉

= max
{pi}

∑
i

√
piλi �

√∑
i

λ2
i .

The third equality holds when we choose each σi = |yi〉 〈yi|.
The “ �” is due to the Cauchy-Schwartz inequality and the

maximum is reached for pi = λ2
i∑

j λ2
j
. Hence,

Ca
A,cc(|ψ〉) = 1 −

∑
i

λ2
i ,

with λi’s being the Schmidt coefficients of |ψ〉 and the closest
a classical state is

σ =
∑

i

λ2
i∑

j λ
2
j

|xi ⊗ yi〉 〈xi ⊗ yi| . (44)

On the other hand, if we assume that the Schmidt decompo-
sition in Eq. (43) satisfies Ca

F,cc(ρab) = Ca
F (ρab) (with respect

to {|xi〉}), then

max
σ∈Ia

P

F (|ψ〉 , σ ) = max
{pi,σi}

√∑
i

piλi 〈yi| σi |yi〉

= max
{pi}

√∑
i

piλi �
√

λ1

and

Ca
F,cc(|ψ〉) = 1 − λmax.

If the maximal Schmidt coefficient is unity, the closest a
classical state is a pure state |x1 ⊗ y1〉. If λ1 = · · · = λm, then
the closest a classical states are infinite, say

σψ =
m∑

i=1

pi |xi ⊗ yi〉 〈xi ⊗ yi| , (45)

with pi ∈ [0, 1] and
∑

i pi = 1. �
As we know today, there are quantum correlations beyond

quantum discord [33,64]. In the following theorem, we prove
that Ca

X,cc is a measure of discord-type quantum correlation in
a bipartite quantum system. We call it “discord type” because
of its connection established in Theorem 9.

Theorem 10. Ca
X,cc is a measure of discord-type quantum

correlation for a bipartite quantum state ρab. That is,
(1) Ca

X,cc(ρab) � 0; “=” holds if and only if ρab =∑
i pi |αi〉 〈αi| ⊗ σi.
(2) Ca

X,cc(ρab) is invariant under local unitary transforma-
tion.

(3) Ca
X,cc is monotonically nonincreasing under quantum

operations on b, i.e., Ca
cc(Ia ⊗ �b(ρab)) � Ca

cc(ρab) for any
quantum operation �b.

(4) Ca
X,cc reduces to an entanglement monotone for pure

states.
Proof. (1) Non-negativity is obvious, so we just need to

prove the second part. Ca
X,cc(ρab) = 0 indicates that ρab =∑

i pi |αi〉 〈αi| ⊗ σi with {|αi〉} being the eigenbasis of ρa.
On the other hand, if ρab = ∑

i pi |αi〉 〈αi| ⊗ σi, then ρa =∑
i pi |αi〉 〈αi|. As a result, the eigenbasis of ρa is {|αi〉} and

Ca
X,cc(ρab) = 0.

(2) Suppose the referred eigenbasis of ρa is {|xi〉}.
As trb(Ua ⊗ Ubρ

abU †
a ⊗ U †

b ) = Uaρ
aU †

a , the corresponding
eigenbasis is {Ua |xi〉}. Hence,

Ca
X,cc(Ua ⊗ Ubρ

abU †
a ⊗ U †

b )

= min
{pi,σi}

dX

(
Ua ⊗ Ubρ

abU †
a ⊗ U †

b ,
∑

i

piUa|xi〉〈xi|U †
a ⊗ σi

)

= min
{pi,σi}

dX

(
ρab,

∑
i

pi|xi〉〈xi| ⊗ σi

)
= Ca

X,cc(ρab).

(3) Assuming that σ � ∈ Ca is the CPIS of ρab, we have

Ca
X,cc(ρab) = dX (ρab, σ �)

� dX (Ia ⊗ �b(ρab), Ia ⊗ �b(σ �))

� Ca
X,cc(Ia ⊗ �b(ρab)),

032305-9
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where the first “ �” is due to the contractibility of dX and the
second “ �” follows from Ia ⊗ �b(σ �) ∈ Ca. In fact, if we
suppose that σ � = ∑

i pi |αi〉 〈αi| ⊗ σi, then Ia ⊗ �b(σ �) =∑
i pi |αi〉 〈αi| ⊗ �b(σi ) is also an a classical state.
(4) Let λi’s and μi’s be the Schmidt coefficients of bipartite

pure states |ψ〉 and |φ〉, respectively, where λ1 � λ2 � · · · �
λn and μ1 � μ2 � · · · � μn. Denote �λ = (λ1, . . . , λn)T and
�μ = (μ1, . . . , μn)T . If there is an LOCC channel which
maps |ψ〉 to |φ〉 then �λ ≺ �μ [65], and there exists a
doubly stochastic matrix A = (ai j )n×n such that �λ = A�μ.
Hence,

∑
i

λ2
i =

∑
i

⎛
⎝∑

j

ai jμ j

⎞
⎠

2

=
∑

i

⎛
⎝∑

j

a2
i jμ

2
j + 2

∑
j<k

ai jaikμ jμk

⎞
⎠

�
∑

i

⎡
⎣∑

j

a2
i jμ

2
j +

∑
j<k

ai jaik
(
μ2

j + μ2
k

)⎤⎦

=
∑

i

⎛
⎝∑

j

a2
i jμ

2
j +

∑
j 	=k

ai jaikμ
2
j

⎞
⎠

=
∑

j

μ2
j

⎛
⎝∑

i

a2
i j +

∑
i

∑
k 	= j

ai jaik

⎞
⎠

=
∑

j

μ2
j

⎡
⎣∑

i

ai j

⎛
⎝ai j +

∑
k 	= j

aik

⎞
⎠

⎤
⎦ =

∑
j

μ2
j .

Moreover, based on Eq. (44), one has Ca
A,cc(|ψ〉) � Ca

A,cc(|φ〉),
which means that Ca

A,cc is also an entanglement monotone.

Also, since Ca
F,cc(|ψ〉) = EF (|ψ〉), we conclude that Ca

X,cc
reduces to an entanglement monotone for pure states. �

VII. CONCLUSION

In summary, we prove that fidelity distance and affinity
distance satisfy the strong contractibility condition. Moreover,
under two assumptions, namely, convexity of free states and
closure of free states under selective free operations, we show
that resource quantifiers based on these distances are valid
resource measures for a generic resource theory including en-
tanglement, coherence, partial coherence, and superposition,
providing thereby a unified framework for different quantum
resources.

Next, we employ these two resource quantifiers to par-
tial coherence theory. By linking them to quantum mixed
state discrimination task, we offer operational interpretation
for these two partial coherence measures. Our results thus
establish a useful connection between partial coherence and
quantum mixed state discrimination task.

We also study correlated coherence under the framework of
partial coherence theory. We show that correlated coherence
is a kind of quantum discord. Our result, thus, reveals an
interesting relation between partial coherence and quantum
discord.
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