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We experimentally demonstrate a fundamental relationship between the weak value of an observable and
the complex zero of the response function of a system by employing weak measurement on spin Hall shift of
a Gaussian light beam. Using this relationship, we show that extremely large weak values far beyond its upper
bound in the conventional linear-response regime can be experimentally obtained from the position of the minima
of the pointer intensity profile corresponding to the real part of the complex zero of the response function. The
imaginary part of the complex zero, on the other hand, is related to the spatial gradient of the geometric phase
of light, which in this particular scenario evolves due to the weak interaction and the pre- and postselections
of the polarization states. These relationships between the weak value and the complex zeros of the response
function may provide new insights on weak measurements in a wide class of physical systems. Extraction of
large weak values outside the usual domain of its validity and quantification of small interaction parameters
using a physically meaningful and experimentally accessible system property such as the response function may
open up a new paradigm of weak measurement.
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I. INTRODUCTION

Weak measurement, after being discovered by Aharonov,
Albert, and Vaidman (AAV) [1], remains a rather enigmatic
and hotly debated topic in physics [2–7]. A weak measure-
ment process involves weak coupling between the system of
interest and a pointer or measurement device. Preselection
in a definite initial state and subsequent postselection in a
final state which is nearly orthogonal (small parameter ε

off from the orthogonal state) to the initial state lead to
the outcome of the so-called weak value of an observable.
Contrary to ideal “strong” measurement, the weak value can
lie outside the eigenvalue spectrum of the observable and can
also assume complex values. These extraordinary features of
weak measurement have attracted much attention in quantum
measurements, e.g., for probing quantum paradoxes and for
direct measurement of quantum states [8–15]. This concept
can be understood using the wave interference phenomena
and is therefore equally applicable to interference of quantum
matter waves and classical electromagnetic waves. Indeed,
the first experimental observation of spin Hall (SH) effect
of light was achieved using weak-value amplification [16].
Despite criticisms based on sophisticated statistical analysis
on the effectiveness of pre- and postselected (PPS) weak mea-
surements [2–4], the weak-value amplification scheme has
proven to be useful in numerous experiments to quantify small
physical parameters, enabling its metrological applications in
the optical domain and beyond [16–25]. The applications in-
clude detection of ultrasensitive beam deflections [16,18,26],
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high-precision measurements of angular rotation [19], phase
shift [22], temporal shift [17,21], frequency shift [20], and
so forth. A number of studies have accordingly presented
rigorous arguments on the potential benefits of weak-value
amplification in realistic experimental situations [5,27–31].

The weak values (AW ) are usually extracted from the shift
of the pointer profile, which is conventionally taken to be
Gaussian [1,16,32]. However, in AAV’s approximation or in
the linear-response regime, even though the measurement may
remain weak, there is an upper bound of AW for sufficiently
small overlap (corresponding to the minimum of the offset
parameter εmin) of the pre- and postselected states [33–35].
Efforts have therefore been delivered to extend the theory
of weak PPS measurements beyond the conventional linear-
response regime and to provide a more generalized theory
by taking into account relevant higher-order terms in the
expansion of the coupling parameter and higher-order weak
values [30,36–38]. Under certain conditions ensuring suffi-
ciently weak system-pointer coupling, the analytical formula
for the pointer deflection has been derived that explicitly
involves AW and holds for its arbitrary large values [36,37].
In this paper, we supplement these efforts by developing and
experimentally demonstrating a conceptually interesting yet
remarkably simple approach of extracting arbitrarily large
weak values across the entire regime of the small parameter
ε and outside the usual domain of its validity from the com-
plex zero of the response function of the system. Taking an
example of the spin Hall shift of a Gaussian light beam [16],
we first establish a relationship between the weak value of the
polarization observable and the complex zero of the spatial
response function of the system. The relationship between
the weak value and the real part of the complex zero of the
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response function allows one to extract large weak values
beyond the conventional limit from the position of the minima
of the pointer intensity profile. The imaginary part of the
complex zero of the response function, on the other hand,
is related to the inverse spatial gradient of the geometric
phase of light, the quantification of which also provides direct
information on the weak value. The intriguing relationships
between the weak values and the complex zeros of the system
response function may provide insights and understanding
on weak measurements through physically meaningful and
experimentally accessible system properties.

II. THEORY

We consider the weak interaction case of spin Hall (or
Imbert-Fedorov) shift of a fundamental Gaussian beam due to
partial reflection at a dielectric interface. The corresponding
polarization operator for the SH shift is defined as [39,40]

ASH =
[

0 i(1 + rp/rs) cot θi

−i(1 + rs/rp) cot θi 0

]
. (1)

Here, θi is the angle of incidence and rp and rs are the angle-
dependent amplitude reflection coefficients for p (parallel)
and s (perpendicular) linear polarizations, respectively. In
order to avoid the interplay of the other variant of the beam
shift, namely, the Goos-Hänchen (GH) shift in the weak-
value amplification, we chose the input or the preselected
polarization state to be |ψin〉 = |ψpre〉 = [1, 0]T (p linear
polarization), which is the eigenstate of the GH shift [41]. The
postselections are done at linear polarization states |ψpost〉 =
[±sin(ε), cos(ε)]T . Here, ε is a small angle by which the
postselected state is away from the orthogonal to the input

state. The corresponding expression for the weak value of the
SH shift can be written as [39]

ASH
W = 〈ψpost|ASH|ψpre〉

〈ψpost|ψpre〉 = ±iRcotε, (2)

where R = (1 + rs/rp) cot θi [39,42]. Note that the eigen-
states of the SH shift are left and right circular (elliptical)
polarizations, which yield real eigenvalues corresponding to
shift in the coordinate (y) space (spatial shift). Weak-value
amplification [Eq. (2)], on the other hand, yields an imaginary
weak value representing shift in the conjugate transverse
momentum (py) space (angular shift). This angular shift is
detected as a shift of the centroid (�y) of the Gaussian beam
at the detection plane, which can be related to the weak value
as [42]

�y = λ

2π

z

z0
Im

(
ASH

W

)
. (3)

Here, λ is the wavelength, z is the propagation distance, z0

is the Rayleigh range (z0 = πw2
0

λ
), and w0 is the beam waist.

The above expression for the weak-value amplified shift of
the Gaussian beam centroid is bounded by a minimum value
of the small offset angle (εmin ∼ δp

w0
, where δp = λ

2π
R) [16].

Beyond this limit (ε < εmin), extraction of the weak value
from the shift of the beam centroid does not follow the
prediction of Eq. (2) [33].

In order to establish a connection between the weak value
of the polarization observable and the zero of the system
response function, we use the generalized expression for the
reflected field vector from a dielectric interface for an incident
Gaussian beam with linear polarization state [ap, as]T [42]

−→
E r ∝ exp

[
k

(
iz − x2 + y2

2(z0 + iz)

)](
rp

(
1 − i x

z0+iz
∂ ln rp

∂θi

)
i y

z0+iz (rp + rs) cot θi

−i y
z0+iz (rp + rs) cot θi rs

(
1 − i x

z0+iz
∂ ln rs
∂θi

)
)(

ap

as

)
. (4)

Here, x is the coordinate in the plane of incidence, while
y is perpendicular to this plane. As previously noted, here,
weak measurement is performed exclusively on transverse
(along the y direction) spin Hall shift by nullifying the in-
plane (along the x direction) GH shift. Thus, the reflected
field amplitude relevant to the weak-value amplification of
spin Hall shift for postselection states ±ε can be obtained by
setting x = 0 as

EW
r (y) ∝ exp

[
− ky2

2(z0 + iz)

]
× G(y),

G(y) =
[

1 ± i
y

z0 + iz
R cot ε

]
. (5)

The first term can be interpreted as the Gaussian field ampli-
tude of the reflected virtual beam and the second term [G(y)]
encodes information on the change in the field distribution due
to the weak interaction and postselection. G(y) may thus be
treated as the effective spatial response function. Note that
this spatial response function for momentum domain spin
Hall shift is in precise analogy with the frequency response

corresponding to time delay or frequency shifts of Gaussian
temporal pulse [43,44]. The root of the response function can
be obtained as

y0 = ∓ z − iz0

R cot ε
, (6a)

yreal
0 = ∓ z

R cot ε
= − z

Im
(
Aw

SH

) , (6b)

yimag
0 = ± z0

R cot ε
= z0

Im
(
Aw

SH

) . (6c)

Clearly, for ε �= 0, the root is complex. The weak PPS mea-
surement is performed around this complex zero or in other
words postselection at ±ε moves the zero from the upper
to the lower half complex position (y) plane. A complex
root also implies that the amplitude (or intensity) of the
reflected wave never becomes zero; rather it reaches a finite
minimum. The spatial position of this intensity minimum is
defined by the real part of the root. As ε is reduced to zero,
the response function meets a real zero at y0 = 0 and the
pointer intensity profile becomes double humped Gaussian.
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This is in conformity with the results of previous studies
on weak measurements when the PPS measurements are
exactly orthogonal [36]. With increasing ε within the familiar
linear-response regime (ε > εmin ∼ δp

w0
), the intensity distri-

bution turns out to be a Gaussian with its centroid shifted by
�y proportional to the weak value (∝ cotε ∼ 1

ε
in the limit

of small ε) as per Eq. (3). However, in the limit ε < εmin,
the linear-response results are not applicable and the shape
of the pointer distribution changes [33,34]. The real part of
the complex zero of the response function [Eq. 6(b)] may
then be used in place of the shift of the pointer distribution
to extract the weak value. This provides a simple yet unex-
plored avenue of experimentally extracting arbitrarily large
weak values that may lie far beyond its upper bound (cor-
responding to ε 	 εmin) in the conventional linear-response
regime.

The imaginary part of the root is related to the geomet-
ric phase of light that evolves during weak measurements.
In this particular scenario, the pre- (|ψpre〉 = [1, 0]T ) and
postselected states (|ψpost〉 = [±sin(ε), cos(ε)]T ) are homo-
geneous states. In contrast, the intermediate state following
the weak interaction (reflection) is inhomogeneous (space
varying) and can be obtained from Eq. (4) as |ψint〉 =
[rp, −i y

z+z0
(rp + rs)cotθi]T . This sequential evolution of the

polarization state leads to the generation of Pancharatnam-
Berry (PB) geometric phase (�PB) that can be formulated
using Pancharatnam’s connection [45,46]. In the limit z 	 z0,
the corresponding expression becomes

�PB = Arg(〈ψpost|ψpre〉〈ψpre|ψint〉〈ψint|ψpost〉)

≈ ±yRcotε

z0
,

d�PB

dy
= Im

(
ASH

W

)
z0

= 1

yimag
0

. (7)

The transverse spatial (y) gradient of PB geometric phase
leads to a large shift in the transverse momentum (py) dis-
tribution of the Gaussian beam, manifesting as weak-value
amplified momentum domain beam shift [47]. Importantly,
Eqs. (6c) and (7) provide an interesting way of quantifying
the weak value using interferometric measurement. In what
follows, we provide experimental demonstration of the above
two concepts.

Note that Eqs. (6) and (7) are derived for the case of
weak measurements on momentum domain spin Hall shift
of the Gaussian light beam, where the weak value is purely
imaginary. Accordingly, the zero of the response function
and the spatial gradient of geometric phase are related to the
imaginary weak value of the polarization operator. While the
exact algebraic expressions connecting these entities depend
upon the specific problem, such relationships are universal
and may be formulated for a wide class of weak measure-
ment systems with appropriate considation of the relevant
parameter space, observables, choice of the pointer (Gaussian
or non-Gaussian), and the general complex nature of weak
values [1,19,24,48].

FIG. 1. (a) A schematic of the setup for weak-value amplification
of spin Hall shift of a light beam undergoing partial reflection at the
air-glass interface. P1 and P2, rotatable linear polarizers; L1, lens.
The prism acts as the weak measuring device. (b) Transverse (along
y) shift in the beam’s centroid between two postselected states +ε

(left panel) and −ε (right panel) away from the orthogonal state for
the preselected state |ψpre〉 = [1, 0]T , shown for two values of ε :
ε = 0.018 rad (top panel) and ε = 0.035 rad (bottom panel). (c) The
shift in the beam’s centroid with varying ε (open circles). The shape
of the reflected beam at two different regimes, (ε > εmin) and (ε <

εmin), is displayed. (d) The experimental weak values extracted from
the centroid shifts (open circles) and the corresponding theoretical
predictions [solid line, Eq. (2)] as a function of varying ε within the
conventional limit (ε > 0.015 rad). The error bars represent standard
deviations.

III. RESULTS AND DISCUSSIONS

For probing the real part of the complex zero of the
response function, we employed weak PPS measurement
on spin Hall shift of the Gaussian light beam undergo-
ing partial reflection at the air-glass interface [Fig. 1(a)].
The fundamental Gaussian mode of the 632.8-nm line of a
He-Ne laser was used to seed the system. A rotatable lin-
ear polarizer (P1) mounted on a high-precision rotational
mount was used to preselect the state at p-linear polarization.
The beam was then focused by a lens (L1, focal length =
20 cm) to a spot size of w0 = 300 μm (z0 = 45 cm). The
polarization state of light reflected from a 45◦−90◦−45◦
BK2 prism (refractive index n = 1.516) was postselected by
another linear polarizer (P2). The exact orthogonal config-
uration of the pre- and postselected state was located by
rotating P2 to obtain the minimum intensity. Postselections
were then performed by rotating the polarization axis of P2
to ± ε angle away from this position. The resulting beam
shift was detected by a CCD camera (2048 × 1536 square
pixels, pixel dimension 3.45 μm). The measurements were
performed for angle of incidence θi = 45◦, for a propaga-
tion distance z = 50 cm (z > z0), and for varying small angle
ε (0.0017 < ε < 0.035 rad).

The minimum value of ε corresponding to the upper
bound of the weak value in the conventional linear-response
regime for the specifics of our experimental parameters is
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FIG. 2. (a) Observation of intensity minima in the spatial profile
of the pointer beam for postselections at ε < εmin (ε = ± 0.001 and
0 rad). (b) Systematic shift of the minima of the pointer intensity
profile along the transverse y direction with varying ε. (c) The
experimental weak values extracted [using Eq. (6b)] from the po-
sition of the intensity minimum (solid circles) and the corresponding
theoretical predictions (solid line) with varying ε. The inset shows
the ∼ ε scaling of the spatial position of the intensity minimum. The
error bars represent standard deviations.

theoretically estimated using standard Fresnel reflection co-
efficients of the air-glass interface (for θi = 45◦) to be εmin =
δp

w0
∼ 0.015 rad. Within this limit (ε > εmin), the Gaussian

shape of the pointer is retained and systematic transverse
shift in the reflected beam’s centroid is observed between the
postselected states at ±ε [shown for two different ε values in
Fig. 1(b), ε ∼ 0.018 and 0.035 rad]. For values of ε below
the conventional limit (ε < 0.015 rad), the pointer spatial
intensity profile deviates from Gaussian shape with the ap-
pearance of a pronounced “dip” [inset of Fig. 1(c)]. In this
regime, the shift of the beam centroid does not yield the
expected weak value with decreasing ε [Fig. 1(c)]. For the
familiar regime of ε > 0.015 rad, on the other hand, the weak
values extracted from the centroid shifts [using Eq. (3); see
Fig. 1(d)] show reasonable agreement with the corresponding
theoretical predictions [Eq. (2)]. Figure 2 demonstrates extrac-
tion of large weak values beyond the conventional limit using
the real part of the complex zero of the response function.
As ε is reduced far below this limit, a prominent intensity
minimum is observed in the spatial profile of the pointer
[Fig. 2(a), shown for ε = ± 0.001 rad], which corresponds
to the real part of the complex zero of the response function.
As ε is reduced further to zero, the intensity profile becomes
double humped Gaussian, yielding a real zero of the response
function at y0 = 0 [Fig. 2(a)]. Systematic shift of the minima

FIG. 3. (a) A schematic of the setup employing weak measure-
ment on spin Hall shift in one arm of a Mach-Zehnder interferometer.
P1 and P2, pre- and postselecting linear polarizers, respectively;
L1 and L2, lenses; BS1 and BS2, beam splitters; M, mirror; NDF,
variable neutral density filter. The experimental parameters are w0 =
300 μm, z = 5 cm, and θi = 45◦. (b) The transverse spatial (y) gra-
dient of geometric phase manifested as opposite tilt of the fringe
patterns for typical postselected states at ±ε (shown for a typical
ε = 0.004 rad in the top panel). The corresponding theoretical sim-
ulations are shown in the bottom panel. The estimates for tilt angle,
geometric phase gradient, and weak value ASH

W [using Eq. (7)] are
noted.

of the pointer intensity profile can be observed in this regime
of ε (0 < ε < εmin) [Fig. 2(b)]. In agreement with Eq. 6(b),
the position of the intensity minimum scales as ∼ 1

cotε (∼ ε in
the limit of small ε) [inset of Fig. 2(c)]. The weak values
extracted from the position of the intensity minimum show
satisfactory agreement with the corresponding theoretical es-
timates [Fig. 2(c)]. These results provide conclusive evidence
of the relationship between the real part of the complex zero of
the response function and the weak value and demonstrate that
using this one can quantify small interaction parameters (tiny
spin Hall shift here) from weak values that may lie outside the
usual domain of its validity.

In order to probe the imaginary part of the complex zero
of the response function, we adopted weak PPS measurement
on spin Hall shift in one arm of a Mach-Zehnder interfer-
ometer [Fig. 3(a)]. Measurements were performed in a sim-
ilar manner as in Fig. 1(a) (w0 = 300 μm, z0 = 45 cm, θi =
45◦). However, as apparent from Eq. (7), in order to observe
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the PB geometric phase one has to be sufficiently close to
the weak interaction plane (z 	 z0). The CCD camera used
to record the interference pattern was therefore placed at a
distance z = 5 cm. In agreement with Eq. (7), the transverse
spatial (y) gradient of the PB geometric phase is mani-
fested as opposite tilt of the fringe patterns for postselected
states at ±ε [ε = 0.004 rad shown in Fig. 3(b) top panel].
The geometric phase gradient extracted from the tilt of the
experimental fringe pattern (0.167 rad/μm) is in agreement
with the corresponding estimate for the simulated results
(0.197 rad/μm) using parameters identical to the experimen-
tal situation [Fig. 3(b) bottom panel]. The extracted PB phase
gradient is subsequently used to determine the weak value of
spin Hall shift using Eq. (7). The weak value estimated from
the interferometric experiment (ASH

W = 2.1 × 103) agrees well
with the corresponding theoretical estimate [using Eq. (2),
ASH

W = 2.5 × 103]. Once again the weak value is estimated
for the regime of ε lying outside the conventional limit (ε <

εmin, εmin = 0.015 rad) for the Gaussian pointer. These results
establish the relationship between the weak value, geometric
phase gradient, and imaginary part of the complex zero of
the response function, making it possible to experimentally
extract weak values from the geometric phase gradient using
interferometric measurements.

IV. SUMMARY

In summary, we have presented experimental demonstra-
tion of a fundamental relationship between the weak value of

an observable and the complex zero of the response function
of a system by employing weak measurement on spin Hall
shift of a Gaussian light beam. The relationship between the
weak value and the real part of the complex zero of the
response function offered a remarkably simple experimental
approach of obtaining extremely large weak values beyond its
upper bound in the conventional linear-response regime. The
imaginary part of the complex zero of the response function is
shown to be related to the gradient of the geometric phase that
evolves during weak PPS measurements. This also offered
an interferometric approach of extracting extremely large
weak values through quantification of the geometric phase
gradient. Use of the complex zero of the system response
function to extract arbitrarily large weak values and to extract
small interaction parameters beyond the conventional limit
of validity of weak values may open up a new paradigm of
weak measurement. The relationship between the weak values
and the complex zeros of the response function may also
bear fundamentally interesting consequences in the general
scenario of weak measurements.
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