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Weak-value amplification has been used to enhance the sensitivity of a linear detector response to small
interaction parameters. However, the generation of a large weak value gives rise to reduction in postselection
probability, which restricts the feasibility of the weak-value amplification technique. Recently, theoretical works
have shown that the use of entanglement can increase the efficiency of the weak-value amplification method.
Specifically, it is proven that by entangling n particles of a system, the maximum postselection probability
scales quadratically with n [Pang, Dressel, and Brun, Phys. Rev. Lett. 113, 030401 (2014)]. In this work,
we demonstrate an experimental realization of entanglement-assisted weak-value amplification in a photonic
system, which shows that importing quantum entanglement can indeed improve the efficiency of weak-value
amplification.
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I. INTRODUCTION

Measurement is one of the most important foundations
in physics. In quantum mechanics, it is deemed that any
average of a measurement operator must range in the smallest
and largest of its eigenvalues. Afterwards Aharonov, Albert,
and Vaidman found the exceptions to this conclusion by
introducing the concept of weak value [1]. They designed
a Gedanken experiment to measure a spin-1/2 particle and
obtain the average spin far beyond the eigenvalue range of the
spin operator. Such an average spin, i.e., weak value, describes
the mean effect of the postselected system ensemble that
would largely shift the intercoupled pointer states designed
to measure the target operator; hence, the weak value does not
really reflect the measurement operator. Generally, in order
to realize this effect, people must carry out the procedure as
follows: (1) preparation of an initial quantum system state;
(2) a weak interaction that couples an observable of the system
with a variable of the meter; and (3) postselection on a final
quantum system state.

Since weak values possess many interesting features that
have been studied extensively both theoretically and experi-
mentally [2–6], they serve as a powerful tool to explore funda-
mental questions in quantum mechanics [7–11]; in particular,
they aid the discovery of many counterintuitive quantum
results [12,13]. The peculiar feature of weak value leads to its
active exploitation of quantum technology, for example, in the
direct measurement of quantum states [14–17], and for its role
in the methods that help resolve paradoxes, such as Hardy’s
paradox [12,18], and more general counterfactual quantum
problems, such as the three-box problem [9,19].
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The fact that a weak value can be far beyond the eigenvalue
spectrum of measurement observable has led directly to an
important applications of weak values, i.e., weak-value am-
plification [20,21], to improve the sensitivity of measurement.
By this scheme, one can amplify the apparent strength of a
signal in measurement, thus enabling the detection or mea-
surement of tiny physical quantities that would be impractical
to measure with traditional methods [22–30]. One dramatic
achievement of weak-value amplification is the observation
of the spin Hall effect of light demonstrated by Hosten and
Kwiat [22]. Unfortunately, this sensitivity increase comes
at the expense of a reduction in the sample size due to
postselection. Thus, there is much controversy about the ef-
fectiveness of weak-value amplification acting as a parameter
estimation technique [31–35], and some studies have shown
that weak-value amplification may reduce the potential es-
timation precision and nullify any potential improvement in
the signal-to-noise ratio (SNR) in most scenarios [33,36–41].
Despite these concerns, several theoretical and experimen-
tal works have shown that weak measurement can provide
a practical advantage over conventional measurement when
various kinds of noise are presented [22,24,27]. One further
theoretical study has shown that weak-value amplification can
surpass conventional measurement when detector saturation
is coupled with intrinsic pixel noise and/or pixel digitization
[42].

Recently, it has been shown by Pang et al. [43] that the
utilization of entanglement can increase the efficiency of
the weak-value amplification method. More specifically, it is
demonstrated that by entangling n single-system states, the
maximum postselection probability Pmax can be increased by
a factor of n while keeping the weak value fixed compared to
n uncorrelated attempts with a single system, i.e., Pmax can be
increased by a factor of n2 compared to one attempt with a
single system. In this paper, we experimentally demonstrate
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entanglement-assisted weak-value amplification in a photonic
system with genuine single photons. We show that by entan-
gling two degrees of freedom of a system, the postselection
probability can be increased approximately by a factor of
4 while keeping the weak value fixed (compared to one
attempt with one single system), which shows that importing
quantum entanglement can effectively increase the efficiency
of weak-value amplification. Therefore, here, the essence of
the quantum resources in our case is entanglement of two path
qubits instead of entanglement of two photons, and there is no
nonlocality for the entanglement. The results shown here also
demonstrate the greater usefulness of entanglement, which
can encourage further development in quantum measurement
and metrology.

This paper is organized as follows. In Sec. II we give
a brief review of the theory of entanglement-assisted weak-
value amplification. In Sec. III, we illustrate the principle and
proposal of our experiment. In Sec. IV, we show the results of
our experiment. In Sec. V, we discuss and conclude our work.

II. REVIEW OF THEORY

In this section, we review the derivation of Pang et al.
[43]. Later, we will adopt their notation in the derivation
of the weak value for our experimental system, shown in
the Appendixes. Pang et al. begin by defining an interaction
Hamiltonian that couples the system to the pointer variable,
and the interaction Hamiltonian of the form can be written as

Ĥint = h̄gÂ ⊗ F̂δ(t − t0), (1)

where Â is an observable of the system, F̂ is a meter observ-
able, and g is the small coupling parameter that estimates the
coupling strength of the system and meter. The time factor
δ(t − t0) manifests that the interaction is impulsive. Suppose
that one prepares the system in a pure initial state |ψi〉, weakly
couples it using the above interaction Hamiltonian, and then
postselects the system into a pure final state |ψ f 〉. The weak
value of observable Â is defined as Aw = 〈ψ f |Â|ψi〉/〈ψ f |ψi〉
[1]. A large Aw can effectively amplify the small parameter
g to be estimated. It also has the disadvantage of the low
efficiency of weak-value amplification, since the postselection
probability approximates Ps ≈ |〈ψ f |ψi〉|2, for small g.

Now consider an uncorrelated case that Â = σ̂z, in which
the system is preselected in the state |ψi〉 = |+〉 = 1√

2
(|0〉 +

|1〉) and postselected in the state |ψ f 〉 ∝ (1 + ε)|0〉 − (1 −
ε)|1〉, where ε should be considered to be relatively small.
(This postselected state is different from the corresponding
state shown in [43] which has used postselected state |ψ f 〉 =
(e−iε |0〉 − eiε |1〉)/

√
2.) In this case, we can obtain the weak

value of Aw = 〈ψ f |Â|ψi〉/〈ψ f |ψi〉 = 1/ε with an approxi-
mate probability Ps ≈ ε2.

We then consider the correlated case in which the meter
is coupled to n identical single-system observables with the
interaction of Eq. (1). Such an operation couples the meter to
a joint system observable,

Â = Â1 + · · · + Ân, (2)

where Âk = Î ⊗ · · ·â · · · ⊗Î is the shorthand for observable â
of the kth single system. If one prepares the entangled system

of n identical single systems in a joint state |ψi〉 and then
postselects it in a joint state |ψ f 〉 to produce a joint weak-
value amplification with the factor of Aw, there can be an
optimal choice that maximizes the postselection probability,
which can be realized by setting the preparation states and the
postselection states as follows [43]:

|ψi〉 = 1√
2

(|λmax〉⊗n + eiθ |λmin〉⊗n),

|ψ f 〉 ∝ −(nλmin − A∗
w )|λmax〉⊗n

+ eiθ (nλmax − A∗
w )|λmin〉⊗n, (3)

where λmax and λmin are the maximum and the minimum
eigenvalues of â respectively, while |λmax〉 and |λmin〉 are the
corresponding eigenstates, and θ is an arbitrary relative phase
and here will be chosen as θ = 0. Both the above forms
explicitly depend on the chosen value of Aw. Furthermore we
can verify that 〈ψ f |Â|ψi〉/〈ψ f |ψi〉 = Aw and, in the case of
|Aw| � nλmax, |〈ψ f |ψi〉|2 ≈ n2(λmax − λmin)2/4|Aw|2, which
shows that introducing quantum entanglements to the sys-
tem can increase postselection probability while keeping the
amplification factor of the weak value Aw unchanged. Such
nontrivial improvements scale quadratically with the number
of entangled single systems. In our work, we experimentally
demonstrate that using even two entangled single systems can
make a notable improvement.

Corresponding to our experimental proposal, we des-
ignate the identical single-system observable â = σ̂z and
use two entangled single systems. In addition, the pre-
pared joint state and postselected joint state are |ψi〉 =

1√
2
(|00〉 + |11〉) and |ψ f 〉 ∝ −(1 + 2ε)|00〉 + (1 − 2ε)|11〉,

respectively. [This postselected state is different from the
corresponding state shown in Fig. 4 of [43], where the post-
selected state is |ψ f 〉 = 1√

2
(e−inε |0〉⊗n − einε |1〉⊗n, but that

doesn’t violate the principle because our choosing of the
postselected state fits the form of Eq. (3)] In this case, we can
easily derive the weak value of Aw = 1/ε and approximate
probability Ps ≈ |〈ψ f |ψi〉|2 ≈ 4ε2, which is approximately
four times that of the case of no entanglement. Furthermore,
we set a series of discrete parameters ε for the uncorrelated
and correlated cases to keep the amplification factor of the
weak value Aw the same, and compare their postselection
probabilities. More contrasts are shown in Table I, which
clearly verify that adding quantum entanglement can improve
weak-value amplification efficiency.

TABLE I. Contrasts of uncorrelated and correlated cases.

Uncorrelated case Correlated case

|ψi〉 |0〉 + |1〉 |00〉 + |11〉
|ψ f 〉 (1 + ε)|0〉 (1 + 2ε)|00〉

−(1 − ε)|1〉 −(1 − 2ε)|11〉
Â |0〉〈0| − |1〉〈1| I ⊗ (|0〉〈0| − |1〉〈1|)

+(|0〉〈0| − |1〉〈1|) ⊗ I
Aw = 〈ψ f |Â|ψi〉/〈ψ f |ψi〉 1/ε 1/ε

Ps ≈ |〈ψ f |ψi〉|2 ε2 4ε2
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(a)

(b)

FIG. 1. (a) Experimental setup in correlated case. IF denotes interference filter, BD denotes beam displacer, H denotes half-wave plate,
Q denotes quarter-wave plate, and PBS denotes polarizing beam splitter. The single photons, which are produced by generating a pair of
photons via spontaneous parametric down conversion (SPDC) with idler photons used as triggers, are prepared into the initial state |ψi〉 =
(|H〉 + |V 〉)/

√
2 and sent to BD1. Imagine that we look at this setup from the top down; the solid lines represent the upper paths while the

dashed lines represent the lower paths. After weak interaction and measurements on the meter observables are performed, postselection and
coincidence counting are performed subsequently. H1, H5, H8 are rotated at π/4, H2 is rotated at 1◦, while H3 is rotated at −1◦. Q and H4
combining PBS1 after them are used to make projective measurements on the pointer. (b) The corresponding quantum circuit for realizing
weak measurements.

III. EXPERIMENTAL REALIZATION
OF WEAK-VALUE AMPLIFICATION

A schematic of the weak-value amplification experiment
for the correlated case is shown in Fig. 1(a), and the quantum
circuit in Fig. 1(b), which simulates the entanglement-assisted
weak-value amplification of a small parameter γ , can be
compared with that in the theoretical scheme [43]. The meter
observables adopted in [43] is the Pauli Z operator σ̂z while in
our work we adopt the Pauli Y operator σ̂y. The meter qubit
is prepared in the state |0〉, while two coupled single systems
are prepared in an entangled state |ψi〉. Each single system
is then used as a control for a Y rotation Ry(2γ ) of the meter,
simulating the unitary U = eγ Â⊗σ̂y/2, Â being the sum of single
system observables σ̂z and we use the natural unit such that
h̄ ≡ 1 in this paper. The entangled state of two coupled single
systems is then postselected in an entangled state |ψ f 〉, and
the meter qubit is measured in the eigenstates of pointer
observables σ̂+ and σ̂R, yielding the response relation (6),

which is related to the amplified factor of the weak value Aw.
The rotation Ry(2δ) is used to transform state 1√

2
(|0〉 − |1〉)

to state (1 + 2ε)|0〉 − (1 − 2ε)|1〉. The relation between the
δ and the ε is δ = arctan(2ε) (the deduction can be found in
Appendix A).

The source of single photons is realized by heralding the
coincidence of pairs of photons. Pairs of photons are gener-
ated via a spontaneous parametric down-conversion (SPDC)
process by pumping a 1-cm-long type-II degenerate PPKTP
crystal with a 404-nm continuous-wave laser, the power of
which is approximately 15.9 mW. The maximum coincidence
counting rate is about 5.3 × 103 per second, and the duration
of integration to record the coincidences in our measurement
is 30 s. After coupling to a single-mode fiber (SMF), the idler
photons are directly sent to a silicon single-photon avalanche
detector (SPD) while the signal photons are connected to
a launcher and then emitted along the free-space path. The
quantum efficiency of the single photon detectors at 808 nm
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is about 65% . The extinction ratios of the beam displacers
is about 100 000 : 1, and for the polarizing beam splitters is
about 103 : 1. We used an interference filter (IF; the central
wavelength is 808 nm and the bandwidth is 3 nm) before
BD1. The signal photons are prepared into the initial state
|ψi〉 = (|H〉 + |V 〉)/

√
2 by using a polarizing beam splitter

(PBS) and a half-wave plate (HWP) after the PBS. The signal
photons, after initial-state preparation, are sent to a beam
displacer (BD1) for the single-photon state evolution. The
beam displacers BD1, BD3, and BD5 are placed in such a way
that the vertically polarized (V) component is refracted in the
vertical plane while the horizontally polarized (H) component
is transmitted directly. BD2, BD4, and BD6 are placed in
such a way that the horizontally polarized (H) component is
refracted in the horizontal plane while the vertically polarized
(V) component is transmitted directly.

The meter and system qubits are encoded on the po-
larization and path modes of a single photon respectively.
We designate horizontal and vertical polarization states as
the computational basis {|H〉, |V 〉} for the polarization qubit.
When photons are sent to BD1, they are split into two paths,
in which the V component is shifted down while the H
component is transmitted directly. When the photons are sent
to BD2, the V component is transmitted directly which is
labeled as |down, left〉, while the H component is shifted
laterally right which is labeled as |up, right〉. Considering the
extinction ratio for beam displacers, there are two very weak
light beams which are labeled as |down, right〉 and |up, left〉.
For the path qubit, we designate up (right) and down (left) path
modes as the computational basis {|0〉, |1〉}, i.e., |up (right)〉 ≡
|0〉, |down (left)〉 ≡ |1〉. Specifically, the path coding is shown
in the schematic of Fig. 1(a), i.e., |00〉, |01〉, |10〉, and |11〉 cor-
respond to the path modes of |up, right〉, |up, right〉, |up, left〉,
|down, right〉, and |down, left〉, respectively.

For weak-value amplification of the correlated case, we
designate Â as follows:

Â ≡ (|up〉〈up| − |down〉〈down|) ⊗ I

+ I ⊗ (|right〉〈right| − |left〉〈left|)
≡ (|0〉〈0| − |1〉〈1|) ⊗ I + I ⊗ (|0〉〈0| − |1〉〈1|). (4)

We couple the entangled joint system to the meter according
to the interaction Hamiltonian

Ĥint = γ Â ⊗ σ̂yδ(t − t0)/2, (5)

which is the key of our setup to perform weak measurement.
This weak interaction is implemented with two beam displac-
ers (BD1 and BD2) and several wave plates, which are set as
follows: H1 is rotated at π/4, H2 at γ /2, and H3 at −γ /2. The
parameter γ , which represents the strength of the coupling
interaction, can be continuously adjusted within the accuracy
of the experiment. We can couple the entangled joint system to
the meter based on the fact that different eigenstates of observ-
able Â cause different rotations of the pointer depending on the
eigenvalue of Â and the coupling strength γ . For convenience,
here we define |ϕ〉 ≡ cos ϕ|H〉 + sin ϕ|V 〉. Supposing that
photons prepared in the polarization state α|H〉 + β|V 〉 are
sent into BD1, and after weak interaction, the composite state
of photons becomes α|00〉 ⊗ |γ 〉 + β|11〉 ⊗ | − γ 〉, which is

the same state as that of the interaction Hamiltonian Ĥint

acting on the initial composite state (α|00〉 + β|11〉) ⊗ |H〉.
Therefore, our experimental setup can realize the interaction
Hamiltonian Ĥint entirely. We can see that we use the entan-
glement of two path qubits instead of entanglement of two
photons, and there is no nonlocality for the entanglement.

We perform measurements on the meter observables via
a quarter-wave plate Q, half-wave plate H4, and polarizing
beam splitter PBS1. The reason to do this is that the posts-
election of the entangled joint system state causes the meter
state to rotate at some angle relative to ϕAw, so that Aw can
be extracted by measuring the conjugate observables of the
meter. Aw can be solved from the equations of the expectation
value of pointer observables σ̂+ and σ̂R. Specifically, we have

〈σ̂+〉 = 1
2 Re(Aw ) sin 2γ /

(
cos2 γ + 1

4 |Aw|2 sin2 γ
)
,

(6)
〈σ̂R〉 = 1

2 Im(Aw ) sin 2γ /
(

cos2 γ + 1
4 |Aw|2 sin2 γ

)
,

where σ̂+ = |+〉〈+| − |−〉〈−|, σ̂R = |R〉〈R| − |L〉〈L|, and
|±〉 = (|0〉 ± |1〉)/

√
2, |R〉 = (|0〉 + i|1〉)/

√
2, |L〉 = (|0〉 −

i|1〉)/
√

2 (more details appear in Appendix B). Such exact
expressions establish the condition that the joint system states
are superposition states of the orthogonal basis |00〉 and |11〉.
Our setup can naturally satisfy that condition.

After measurements on meter observables, we postselect
the joint system states encoded in path information. The core
of our method is to transform the path information into the
polarization information. Specifically, we recombine light of
both |00〉 (|up, right〉) and |11〉 (|down, left〉) modes via H5
rotated at π/4 and two BDs (BD3 and BD4). Note that H1
and H5 transfer the polarization states of the corresponding
paths to their opposite polarization states. Therefore, we rotate
H6 at π/4 to recover the state correctly, i.e., if we postselect
the polarization state to |ψ〉 = α|H〉 + β|V 〉, this operation
is equal to postselecting the joint state of system to the path
mode state |ψ f 〉 = α|00〉 + β|11〉.

For a weak-value amplification, we should set a postselec-
tion state nearly orthogonal to the initial system state |ψi〉 =

1√
2
(|00〉 + |11〉). Note that in our experimental proposal we

postselect the system into state |ψ f 〉 ∝ −(1 + 2ε)|00〉 + (1 −
2ε)|11〉, which is orthogonal to the following basis states:

|ψ⊥
f 〉0 ∝ (1 − 2ε)|00〉 + (1 + 2ε)|11〉,

|ψ⊥
f 〉1 = |01〉, (7)

|ψ⊥
f 〉2 = |10〉,

where |ψ⊥
f 〉0 is in the state space spanned by {|00〉, |11〉}

and is the only state which is orthogonal to |ψ f 〉 in this
space. To measure the probability that we postselect the
system into state |ψ f 〉, we choose our measuring basis as
{|ψ f 〉, |ψ⊥

f 〉0, |ψ⊥
f 〉1, |ψ⊥

f 〉2}. In the experiment, we detect
coincidence not only for basis {|ψ f 〉, |ψ⊥

f 〉0} with detectors
in the transmission channel of PBS1, but also for basis
{|ψ⊥

f 〉1, |ψ⊥
f 〉2} with detectors in the reflection channel of

PBS1.
To make a direct comparison with the uncorrelated case,

we also realize weak measurements for the observable â of
a single system. The experimental setup of the weak-value
amplification measurement for observable Â is described
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FIG. 2. Experimental results. Correlated and uncorrelated cases are compared using weak values in (a) and (b). For every ε, the weak
values of the two cases are set to be the same in theory. In (c), we compare the postselection probability of the two different cases in the
experiment. Black and gray points correspond to the probability of correlated and uncorrelated cases, black and gray lines correspond to
the exact probability of correlated and uncorrelated cases, and black dashed line and gray dotted-dashed line correspond to the approximate
probability of correlated and uncorrelated cases. Error bars for (a)–(c) are evaluated on the basis of statistical and system errors, and the
statistical errors are evaluated on the basis of Poissonian counting statistics. Here, we consider that system errors are mainly caused by various
wave-plate errors, and every wave plate has an alignment error of 0.2◦. For the system errors, we calculate them by use of error transfer
formula. The wave-plate alignment error results in an error for ε; as a result, there are error bars in the horizontal direction for each data point.
(The quantities which we study, such as the ε, the weak value, and the probability, are dimensionless, so we have not used units in the above
figures.)

in Appendix C. Here, we designate Â as Â ≡ |up〉〈up| −
|down〉〈down| ≡ |0〉〈0| − |1〉〈1|. The interaction Hamiltonian
of this uncorrelated case is Ĥint = γ Â ⊗ σ̂yδ(t − t0). The set-
ting of meter and its coding scheme are the same as mentioned
above. The principles and procedures of measurement in
the uncorrelated case are analogous to the aforementioned
correlated case, and so we will not explore it here (more
details can be found in Appendix C).

IV. RESULTS

In our experiment, we perform the weak measurement
with Â = |0〉〈0| − |1〉〈1| for the uncorrelated case and Â =
(|0〉〈0| − |1〉〈1|) ⊗ I + I ⊗ (|0〉〈0| − |1〉〈1|) for the corre-
lated case such that the weak values of the two observables can
be obtained. The parameter γ , which determines measurement
strength, is taken with a value of γ = 2◦ for the two cases. We
postselect the single system into state (1 + ε)|0〉 − (1 − ε)|1〉
(unnormalized) for the uncorrelated case and (1 + 2ε)|00〉 −
(1 − 2ε)|11〉 (unnormalized) for the correlated case, so for
every ε, the weak values of the two cases are the same in
theory, and we compare them in experiment result. For ε <

0.1, the postselected states are nearly orthogonal to the initial
state for both cases, so the weak values of both observables are
far beyond the observables spectrum. In Figs. 2(a) and 2(b),
the theoretical predictions are represented by the red dashed
line (real part of Aw) and blue dotted-dashed line (imaginary
part of Aw). It can be seen that, for ε � 0.1, our results fit
well with theoretical predictions. For ε < 0.1, the results of
the experimental measurement show a large deviation from
the theoretical predictions, but we deem it reasonable for the
following reasons: (1) In our setup and the single-photon
system, when ε is very small, the rates of single-photon counts
will be very low and so our results will be susceptible to the
low rates of dark counts and the small difference in the rates
of different meter states; and (2) the systematic factors, such
as imperfections of polarization extinction of optical elements

and the wave-plate errors, contribute to the degradation of the
weak value significantly for small ε.

After comparing the weak values for every ε in two cases,
we next contrast their postselection probabilities in Fig. 2(c).
We also deduce the exact solution for postselection probability
in the two cases (the deduction can be found in Appendix D),
as shown by the black line (correlated case) and gray line
(uncorrelated case). It can be seen that when ε is small enough
(especially for ε � 0.15 in the uncorrelated case and for ε �
0.3 in the correlated case), the approximate probability, which
has been shown in Table I, fits the exact solution of probability
well, but for the rest of the values of ε, considerable variation
exists between the approximate and exact solutions. More-
over, the larger ε is, the larger the variation. This is because
the approximation is the first-order approximation of the exact
postselection probability and should therefore deviate at larger
ε. Considering the system errors from imperfections of optical
elements, our postselection probability results are in good
agreement with theoretical predictions.

V. DISCUSSION AND CONCLUSIONS

We have proposed a concrete experimental scheme for
the realization of entanglement-assisted weak-value amplifi-
cation, and demonstrated it experimentally. We have shown
that by introducing quantum entanglement, the postselection
probability can be improved effectively compared to the case
of no entanglement. The enhancement in postselection effi-
ciency by using entanglement partly offsets the shortcoming
of low efficiency in weak-value amplification technology.
Furthermore, our scheme and concise experimental setup may
provide an intuitive physical picture by which to comprehend
the essence of entanglement-assisted weak-value amplifica-
tion. The theoretical scheme [43] that we have experimentally
demonstrated has proposed an improvement that using entan-
glement can increase the efficiency of weak-value amplifica-
tion. Our work shows that, to increase the efficiency, one can
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use entanglement in system variables, and not necessarily the
entanglement of multiple particles and nonlocality. Our work
as presented here proves the more extensive application of
weak-value amplification, and would promote wider and more
profound studies in quantum measurement and metrological
techniques [44]. This method can be extended to other experi-
mental systems, such as atomic systems, to measure magnetic
fields.
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APPENDIX A: RELATION BETWEEN δ AND ε

The rotation Ry(2δ) can be expressed as

Ry(2δ) =
[

cos δ − sin δ

sin δ cos δ

]
. (A1)

After the rotation operator R†
y (2δ) function on state |ψ〉 =

1√
2
(|0〉 − |1〉), the state |ψ〉 will become

|ψ ′〉 = Ry(2δ)|ψ〉 =
[

cos δ − sin δ

sin δ cos δ

]
1√
2

(
1

−1

)
= 1√

2

(
cos δ + sin δ

sin δ− cos δ

)
. (A2)

|ψ ′〉 is corresponding to our postselection state (1 + 2ε)|0〉 −
(1 − 2ε)|1〉, and it is requested that

cos δ + sin δ

sin δ − cos δ
= 1 + 2ε

−(1 − 2ε)
. (A3)

The calculation result of the relation between the δ and the ε

can be expressed as

δ = arctan(2ε). (A4)

APPENDIX B: WEAK VALUE OF OBSERVABLE Â

We now deduce Eq. (6) in the main text, which shows
the relationship between the weak value and the expectation
value of pointer observables in the correlated case. In the
main text, we designate Â as Â ≡ (|0〉〈0| − |1〉〈1|) ⊗ I + I ⊗
(|0〉〈0| − |1〉〈1|). So Â|0, 0〉 = 2|0, 0〉, Â|0, 1〉 = 0, Â|1, 0〉 =
0, Â|1, 1〉 = −2|1, 1〉. We consider the case in which the
initial system states are superposition states of the orthogo-
nal basis |0, 0〉 and |0, 0〉, i.e., |ψi〉 = α|0, 0〉 + β|1, 1〉. We
deduce Eq. (6) from the following Taylor expansion:

e−iÂ⊗ϕσ̂y = I + (−iÂ ⊗ ϕσ̂y) + 1

2!
(−iÂ ⊗ ϕσ̂y)2

+ 1

3!
(−iÂ ⊗ ϕσ̂y)3 + · · ·

+ 1

n!
(−iÂ ⊗ ϕσ̂y)n + · · · , (B1)

where I is an identity operator. After interaction between
the system and pointer, whose effect can be described as
a unitary evolution, the state |T 〉 of the composite system
becomes

|T 〉 = e−iÂ⊗ϕσ̂y |ψi〉|0〉p

= [I − iÂ ⊗ ϕσ̂y + (−iÂ ⊗ ϕσ̂y)2

2!
+ (−iÂ ⊗ ϕσ̂y)3

3!
+ · · · + (−iÂ ⊗ ϕσ̂y)n

n!
+ · · · ](α|0, 0〉 + β|1, 1〉)|0〉p

= α[I + (−i2ϕσ̂y) + 1

2!
(−i2ϕσ̂y)2 + 1

3!
(−i2ϕσ̂y)3 + · · · + 1

n!
(−i2ϕσ̂y)n + · · · ]|0, 0〉|0〉p

+ β[I + (2i)ϕσ̂y) + 1

2!
(2iϕσ̂y)2 + 1

3!
(2iϕσ̂y)3 + · · · + 1

n!
(2iϕσ̂y)n + · · · ]|1, 1〉|0〉p. (B2)

Using (σ̂y)2 = I , we have

e−iÂ⊗ϕσ̂y |ψ〉|0〉p

= α

(
I + (−i2ϕσ̂y) + 1

2!
(−i2ϕ)2 + 1

3!
(−i2ϕ)3σ̂y + · · · + 1

(2k)!
(−i2ϕ)2k + 1

(2k + 1)!
(−i2ϕ)2k+1σ̂y . . .

)
|0, 0〉|0〉p

+ β

(
I + [−i(−2)ϕσ̂y] + 1

2!
[−i(−2)ϕ]2 + 1

3!
[−i(−2)ϕ]3σ̂y + ... + 1

(2k)!
[−i(−2)ϕ]2k

+ 1

(2k + 1)!
[−i(−2)ϕ]2k+1σ̂y...

)
|1, 1〉|0〉p. (B3)
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We thus have

|T 〉 = α[cos 2ϕ − i(sin 2ϕ)σ̂y]|0, 0〉|0〉p + β[cos 2ϕ + i(sin 2ϕ)σ̂y]|1, 1〉|0〉p

= α

(
cos 2ϕ − i

Â

2
⊗ (sin 2ϕ)σ̂y

)
|0, 0〉|0〉p + β

(
cos 2ϕ − i

Â

2
⊗ (sin 2ϕ)σ̂y

)
|1, 1〉|0〉p

=
(

cos 2ϕ − i
Â

2
⊗ (sin 2ϕ)σ̂y

)
|ψi〉|0〉p. (B4)

The state of the pointer, after the system is postselected into
state |ψ f 〉, becomes (unnormalized)

|̃ϕp〉 = 〈ψ f ||T 〉

= 〈ψ f |
(

cos 2ϕ − i
Â

2
⊗ sin 2ϕσ̂y

)
|ψi〉|0〉p

=
(

cos 2ϕ〈ψ f |ψi〉 − i sin 2ϕ〈ψ f | Â

2
|ψi〉σ̂y

)
|0〉p. (B5)

Using the definitions of 〈Â〉w = 〈ψ f |Â|ψi〉/〈ψ f |ψi〉 and iσ̂y =
|0p〉〈1p| − |1p〉〈0p|, we obtain

|̃ϕp〉 = [(cos 2ϕ〈ψ f |ψi〉 − i sin 2ϕAw〈ψ f |ψi〉σ̂y/2)|0〉p]

= [cos 2ϕ〈ψ f |ψi〉|0〉p + sin 2ϕAw〈ψ f |ψi〉/2)|1〉p].

(B6)

The norm of |̃ϕp〉 is

√|〈̃ϕp|̃ϕp〉| = |〈ψ f |ψi〉|
√(

cos2 2ϕ + 1
4 |Aw|2 sin2 2ϕ

)
. (B7)

In our representation, σ̂+ = [0 1
1 0], σ̂R = [0 −i

i 0 ], so

〈̃ϕp|σ̂+|̃ϕp〉

= |〈ψ f |ψi〉|2
(

cos 2ϕ, 1
2 A∗

w sin 2ϕ
)
σ̂+

(
cos 2ϕ

1
2 Aw sin 2ϕ

)

= |〈ψ f |ψi〉|2
(

cos 2ϕ, 1
2 A∗

w sin 2ϕ
)( 1

2 Aw sin 2ϕ

cos 2ϕ

)
= |〈ψ f |ψi〉|2 cos 2ϕ sin 2ϕ(A∗

w + Aw )/2

= |〈ψ f |ψi〉|2 sin 4ϕRe[Aw]/2. (B8)

Finally, the expectation value of pointer observable σ̂+ is

〈σ̂+〉p = 〈̃ϕp|σ̂+|̃ϕp〉/〈̃ϕp|̃ϕp〉
= 1

2 sin 4ϕRe[Aw]/
(

cos2 2ϕ + 1
4 |Aw|2 sin2 2ϕ

)
. (B9)

By the same method, the expectation value of the pointer
observable σ̂R can be deduced as

〈σ̂R〉p = 〈̃ϕp|σ̂R |̃ϕp〉/〈̃ϕp|̃ϕp〉
= 1

2 sin 4ϕIm[Aw]/
(

cos2 2ϕ + 1
4 |Aw|2 sin2 2ϕ

)
. (B10)

In the main text, Ĥint = γ Â ⊗ σ̂yδ(t − t0)/2, so the unitary
evolution can be described as

U = eγ Â⊗σ̂y/2, (B11)

We set ϕ = γ /2, and Eq. (6) in the main text can be easily
deduced. Above, we deduce the equations for the weak value
Aw and the expectation value of pointer observables in the
correlated case, from which we can measure Aw by measuring
the expectation value of pointer observables σ̂++ and σ̂R and
then solving the related equations.

We now discuss the analogous equations for the uncor-
related case. In this case, Ĥint = ϕÂ ⊗ σ̂yδ(t − t0) and Â =
σ̂z = |0〉〈0| − |1〉〈1|. One can use similar methods as above
to deduce the following equations [6]:

〈σ̂+〉p = 〈̃ϕp|σ̂+|̃ϕp〉/〈̃ϕp|̃ϕp〉
= sin 2ϕRe[Aw]/(cos2 ϕ + |Aw|2 sin2 ϕ). (B12)

〈σ̂R〉p = 〈̃ϕp|σ̂R |̃ϕp〉/〈̃ϕp|̃ϕp〉
= sin 2ϕIm[Aw]/(cos2 ϕ + |Aw|2 sin2 ϕ). (B13)

APPENDIX C: EXPERIMENTAL SETUP FOR REALIZING
WEAK MEASUREMENTS IN UNCORRELATED CASE

In Fig. 3, BD1 and BD2 are placed in such a way that
the vertically polarized (V) component is refracted in the
vertical plane, while the horizontally polarized (H) component
is transmitted directly. In this schematic, BD denotes the beam
displacer, H is the half-wave plate, Q is the quarter-wave plate,
and PBS is the polarizing beam splitter. Path coding is shown
in the schematic, i.e., |0〉 and |1〉 correspond, respectively, to
path modes of |up〉 and |down〉.

FIG. 3. Experimental setup for realizing weak measurements in
the uncorrelated case.
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APPENDIX D: DEDUCTION OF POSTSELECTION
PROBABILITY IN CURRENT EXPERIMENT

We still first deduce the postselection probability for the
correlated case. From Eq. (A3), we deduce that

|T 〉 = α(cos 2ϕ|0〉p + (sin 2ϕ)|1〉p)|0, 0〉
+β(cos 2ϕ|0〉p − sin 2ϕ|1〉p)|1, 1〉

= α|2ϕ〉|0, 0〉 + β| − 2ϕ〉|1, 1〉. (D1)

Then, the state of the pointer, after the system is postselected
into state |ψ f 〉, becomes (unnormalized)

|̃ϕp〉 = 〈ψ f ||T 〉. (D2)

In our experiment, |ψ f 〉 = (1 + 2ε)|0, 0〉 − (1 − 2ε)|1, 1〉
(unnormalized), |ψ⊥

f 〉 = (1 − 2ε)|0, 0〉 + (1 + 2ε)|1, 1〉, and
|ψi〉 = |0, 0〉 + |1, 1〉 (unnormalized), so

|̃ϕp〉=〈ψ f ||T 〉
= [(1 + 2ε)〈0, 0| − (1 − 2ε)〈1, 1|]|T 〉
= [(1+2ε)〈0, 0|−(1−2ε)〈1, 1|][|2ϕ〉|0, 0〉+|−2ϕ〉|1, 1〉]
= (1 + 2ε)|2ϕ〉 − (1 − 2ε)| − 2ϕ〉, (D3)

and by the same method, we have

|̃ϕ⊥
p 〉 = 〈ψ⊥

f ||T 〉
= (1 − 2ε)|2ϕ〉 + (1 + 2ε)| − 2ϕ〉. (D4)

Note that we perform measurements on the meter observables
σ̂+ using bases |+〉p and |−〉p, so the postselection probability
is calculated as follows:

P = N0

N0 + N1
, (D5)

while N0 = |〈+|̃ϕp〉|2 + |〈−|̃ϕp〉|2 and N1 = |〈+|̃ϕ⊥
p 〉|2 +

|〈−|̃ϕ⊥
p 〉|2. We further deduce that

P = 4ε2 cos2 2ϕ + sin2 2ϕ

1 + 4ε2
. (D6)

By the same method, we deduce that the postselection
probability for the uncorrelated case is

P = ε2 cos2 ϕ + sin2 ϕ

1 + ε2
. (D7)
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