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Eigenenergies and quantum transport properties in a non-Hermitian quantum-dot chain with
side-coupled dots
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We study the eigenenergies of a one-dimensional quantum-dot chain with its each dot side coupling to two
additional dots. It is found that when the PT -symmetric complex potentials are introduced to the side-coupled
dots, the eigenlevel degeneracy is broken. However, further increasing the complex potentials induces a kind
of two-degree degeneracy of the eigenlevels. This is accompanied by the PT -symmetry breaking, with the
appearance of the complex part of the eigenlevels. These changes exactly affect the quantum transport properties
of the chain. First, in the case of weak PT -symmetric complex potentials, a group of transmission function
peaks arise at the center of the transmission function spectrum. When the eigenlevel degeneracy takes place, the
degenerated eigenlevels decouple from the leads and the corresponding peaks disappear in the transmission
function spectra. We believe that this work provides helpful information for a better understanding of the
eigenenergies and quantum transport properties in non-Hermitian systems.
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I. INTRODUCTION

In the past decades, parity-time (PT ) symmetry has
been studied in many fields, such as optics [1–6], matter
waves [7,8], electronics [9,10], acoustics [11], and magnon-
ics [12]. The theoretical basis of this research progress
originates from the fact that PT -symmetric non-Hermitian
Hamiltonians can exhibit real eigenenergy spectra [13,14].
It has also been demonstrated that one important feature of
PT -symmetric Hamiltonians is the existence of spontaneous
symmetry breaking, which has been observed in many pho-
tonic structures, including directional couplers [15], switching
devices [16,17], plasmonic structure [18], and topological
insulators [19]. Accordingly, the special properties of the PT -
symmetric systems have attracted considerable attention from
both theoretical and experimental aspects [20–22]. Recently,
Chitsazi et al . fabricated the Floquet PT -symmetric system
that consists of two ultrahigh frequency oscillators coupled by
a time-dependent capacitance. They found that a cascade of
PT -symmetric broken domains are bounded by exceptional
point degeneracies [23].

The experimental developments motivate more researchers
to explore the PT -symmetric systems of non-Hermitian
Hamiltonians. And then, the physics properties of these
systems have become one important concern in this
field [20,24–27]. Recently, Rivolta et al . investigated the
topological features of a one-dimensional photonic quasicrys-
tal within the context of PT symmetry, especially the pres-
ence of interface modes in the band gaps [28]. It has been
found that the mix of order and disorder of this system gives
a useful basis for exploring how the PT -symmetry-related
effects are interrelated. Besides, some other groups have
dedicated themselves to the research about the PT -symmetric
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systems of non-Hermitian Hamiltonians, and some interesting
phenomena have been reported [29–33], e.g., the special band
structure and quantum states. One of the attractive conclusions
is that the PT -symmetric complex potentials play nontrivial
roles in modulating the quantum interference that governs the
quantum transport process [34,35]. For instance, in a non-
Hermitian triple-quantum-dot structure, the PT -symmetric
complex potentials are able to induce the shift of antireso-
nance, changes from antiresonance to resonance, and occur-
rence of new antiresonance [36].

In view of the above results, one can ascertain that the PT -
symmetric non-Hermitian systems indeed exhibit interesting
properties, whereas more discussions should be performed,
for further understanding these systems. In the present work,
we would like to pay attention to one PT -symmetric non-
Hermitian system and study the effect of PT -symmetric com-
plex potentials on its eigenenergies and transport properties.
This system is composed of a one-dimensional quantum-dot
(QD) chain with each QD connecting with two additional
QDs laterally. It shows that when the PT -symmetric com-
plex potentials are introduced to the side-coupled QDs, the
degeneracy of the eigenlevels is broken. Instead, a kind of
two-degree eigenlevel degeneracy comes into being with the
further increase of these potentials. At the same time, one can
find the breaking of the PT symmetry, with the appearance of
the complex part of the eigenlevels. Next, we can readily find
that such changes influence the quantum transport properties
of the chain. In the case of weak PT -symmetric complex po-
tentials, a group of the transmission function spectrum arises.
When the eigenlevel degeneracy takes place, the degenerated
eigenlevels decouple from the leads, and then the correspond-
ing peaks disappear in the transmission function spectra.

II. THEORETICAL MODEL

The QD chain that we consider is shown in Fig. 1, in
which each QD couples to two QDs additionally which are

2469-9926/2019/99(3)/032119(10) 032119-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.032119&domain=pdf&date_stamp=2019-03-22
https://doi.org/10.1103/PhysRevA.99.032119


ZHANG, LI, ZHAN, YI, AND GONG PHYSICAL REVIEW A 99, 032119 (2019)

lead−L lead−R

FIG. 1. Schematic of a non-Hermitian QD chain, whose terminal
QDs of the chain couple to lead-L and lead-R, respectively. In addi-
tion, each QD in the chain couples to two QDs laterally, which are
affected by the PT -symmetric complex on-site chemical potentials.

affected by the PT -symmetric complex potentials. In order
to investigate its transport properties, the terminal QDs are
assumed to connect with two leads, i.e., lead-L and lead-R,
respectively. The Hamiltonian of this system can be written as

H = HL + HR + Hd + HT , (1)

with its each part given by

HL =
∞∑

n=−1

t0c†
ncn−1 + H.c.,

HR =
∞∑

n=1

t0c†
ncn+1 + H.c.,

Hd =
N∑

l=1

εl d
†
l dl +

(
N−1∑
l=1

tld
†
l+1dl + H.c.

)

+
N∑

l=1

2∑
j=1

ξl jb
†
l jbl j +

⎛
⎝ N∑

l=1

2∑
j=1

vl jb
†
l jdl + H.c.

⎞
⎠,

HT = tLc†
−1d1 + tRc†

1dN + H.c.. (2)

c†
n (cn) is to create (annihilate) a fermion at the nth site of the

two semi-infinite leads with t0 being the hopping amplitude
between the nearest sites. d†

l (dl ) is the creation (annihilation)
operator for QD-l of the QD chain with energy level εl , and tl
denotes the interdot coupling between QD-(l + 1) and QD-l .
b†

l j (bl j) is the operator to create (annihilate) a fermion at the
jth QD that couples to QD-l in the QD chain with energy
level ξl j , and vl j represents the interdot coupling. Next, tL(R)

is the tunneling amplitude between the terminal QDs in the
QD main and lead-L(R).

In order to study the quantum transport through this struc-
ture, the transmission function in this system should be calcu-
lated. According to the previous works, the calculation can be
performed via a variety of methods [37,38]. In this work, we
would like to choose the transfer-matrix method to study the
transport properties of this system, by deriving the analytical
formula of the transmission coefficient.

To begin with, we would like to write out the wave func-
tion of the system as |ψ〉 = ∑

n cn(τ )|φn〉 + ∑
l (dl (τ )|dl〉 +∑

j bl j (τ )|bl j〉) with |φn〉 = c†
n|0〉, |dl〉 = d†

l |0〉, and |bl j〉 =
b†

l j |0〉. By substituting expression of |ψ〉 into the Schrödinger
equation i∂τ |ψ〉 = H |ψ〉, the following coupled-mode equa-
tions can be obtained for the expansion coefficients cn and dl :

iċn = t0cn−1(1 − δn,1) + t0cn+1(1 − δn,−1)

+ tLd1δn,−1 + tRdNδn,1, (3)

iḋl = εl dl + t∗
l dl+1(1 − δl,N ) + tl−1dl−1(1 − δl,1)

+
2∑

j=1

vl jbl j + t∗
L c−1δl,1 + t∗

Rc1δl,N , (4)

iḃl j = ξl jbl j + vl jdl , (5)

where t0 has been assumed to be real. The stationary solution
can be expressed in the following form: cn(τ ) = Ane−iwτ ,
dl (τ ) = Ble−iwτ , and bl j (τ ) = Cl je−iwτ . And then, we can
obtain the algebraic relationship of the amplitudes on each
site:

ωAn = t0An−1(1 − δn,1) + t0An+1(1 − δn,−1)

+ tLB1δn,−1 + tRBNδn,1, (6)

ωBl = εlBl + t∗
l Bl+1(1 − δl,N ) + tl−1Bl−1(1 − δl,1)

+
2∑

j=1

v∗
l jCl j + t∗

L A−1δl,1 + t∗
RA1δl,N , (7)

ωCl j = ξl jCl j + vl jBl . (8)

Substituting Eq. (8) into Eq. (7), one can write out an
equation that includes An and Bl , i.e.,

(ω − ε̃l )Bl = t∗
l Bl+1(1 − δl,N ) + tl−1Bl−1(1 − δl,1)

+ t∗
L A−1δl,1 + t∗

RA1δl,N , (9)

where ε̃l = εl + ∑
j

|vl j |2
ω−ξl j

. With the help of Eq. (6) and
Eq. (9), one can get the matrix equation that

D

⎡
⎢⎢⎢⎢⎣

B1

B2
...

BN−1

BN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

t∗
L A−1

0
...
0

t∗
RA1

⎤
⎥⎥⎥⎥⎦, (10)

in which D is a tridiagonal matrix, defined as

D =

⎡
⎢⎢⎢⎢⎣

ω − ε̃1 −t∗
1 0 · · · 0

−t1 ω − ε̃2 −t∗
2 · · · 0

...
. . .

...
0 ω − ε̃N−1 −t∗

N−1
0 · · · −tN−1 ω − ε̃N

⎤
⎥⎥⎥⎥⎦. (11)

After solving the tridiagonal matrix (See Appendix A), we can
express B1 and BN in terms of A−1 and A1:

B1 = 1

det D [D11t∗
L A−1 + (−1)N+1DN1t∗

RA1],

BN = 1

det D [(−1)N+1D1Nt∗
L A−1 + DNNt∗

RA1],

in which D jl is the algebraic cofactor of determinant det D.
This allows us to construct the equations that relate to A−1

and A1, i.e.,

(ω − μ−1,−1)A−1 = t0A−2 + μ−1,1A1,

(ω − μ1,1)A1 = t0A2 + μ1,−1A−1, (12)
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with

μ−1,−1 = D11

det D |tL|2,

μ−1,1 = (−1)N+1 DN1

det D tLt∗
R,

μ1,−1 = (−1)N+1 D1N

det D t∗
LtR,

μ1,1 = DNN

det D |tR|2.

Such two equations are important to describe the scattering
properties in this system.

Next, we evaluate the scattering properties in this system.
To do so, it is necessary for us to write out the trial wave

function as

An =
{

eikn + re−ikn (n < 0),

τeikn (n > 0).

By substituting the expression of An into Eq. (12), we can get
the equations that include r and τ , i.e.,[

(ω − μ−1,−1)eik − t0e2ik −μ−1,1eik

−μ1,−1eik (ω − μ1,1)eik − t0e2ik

]
.

[
r
τ

]
=

[−(ω − μ−1,−1)eik + t0e−2ik

μ1,−1e−ik

]
. (13)

Via a straightforward deduction, the analytical form of the
transmission amplitude can be expressed, i.e.,

τ = t0μ1,−1(eik − e−ik )

(ω − μ−1,−1)(ω − μ1,1) − μ1,−1μ−1,1 − t0eik (2ω − μ−1,−1 − μ1,1) + t2
0 e2ik

. (14)

Surely, the transmission function (TF), defined as T (ω) =
|τ |2, can be discussed with the help of the transmission-
amplitude expression.

In discrete systems, P and T are defined as the space-
reflection (parity) operator and the time-reversal operator. If a
Hamiltonian obeys the commutation relation [PT , H] = 0, it
will be said to be PT symmetric. In our considered structure,
the effect of the P operator is to let PdN+1−lP = dl and
Pbl1P = bl2, and the effect of the T operator is T iT = −i.
Thus, it is not difficult to find that the Hamiltonian is invari-
ant under the combined operation PT , under the condition
of tl = tc, vl j = vc, εl = ε∗

N+1−l , and ξl1 = ξ ∗
l2 for uniform

QD-lead couplings. In this work, we would like to add the
PT -symmetric complex potentials to the two side-coupled
QDs to investigate their effects on the quantum transport
process. Thus, we take εl = ε0 and ξl1(l2) = ξ ± iγ to perform
discussion. In practice, ±iγ represent the physical gain or loss
during the interacting processes between the environment and
the side-coupled QDs.

III. NUMERICAL RESULTS AND DISCUSSIONS

In the following, we would like to first investigate the
eigenenergies of the one-dimensional QD chain and then
focus on its quantum transport properties by introducing two
leads to couple to the chain. For the structural parameters, we
take εl = ξl j = 0 and vc = tc = 0.5, respectively. Surely, the
QD in the chain and its side-coupled QDs can be viewed as
one cell. And then, we are allowed to view the QD chain as
one N-cell geometry.

A. Eigenenergies of the PT -symmetric
non-Hermitian QD chain

It is known that in the absence of PT -symmetric com-
plex potentials, the QD chain is Hermitian, and its the
eigenenergies can be analytically solved, i.e., e j = tc cos k ±√

t2
c cos2 k + 2v2

c with k = j
N+1π ( j = 1 → N), whereas the

other N eigenlevels degenerate at the energy zero point.
When PT -symmetric complex potentials are applied, the
eigenenergies are certain to be modified. In order to present
a detailed analysis, we would like to discuss the eigenener-
gies by increasing the cell number from one. In the case of
ε0 = ξ = 0, the three eigenenergies of the N = 1 chain can
be analytically written out, i.e., ẽ1 = −√

2v2
c − γ 2, ẽ2 = 0,

and ẽ3 = √
2v2

c − γ 2, respectively. One can readily find that
the PT -symmetric complex potentials indeed modulate the
eigenenergies in a substantial way. As γ increases to its criti-
cal point γ = √

2vc, ẽ1 and ẽ3 will degenerate, equal to ẽ2 as
well. This point is the so-called exceptional point (EP). Next
when γ further increases, ẽ1 and ẽ3 will become imaginary,
leading to the occurrence of PT -symmetry breaking. The
numerical results are shown in Figs. 2(a) and 2(b), from which
the variation of the eigenenergies can be well clarified.

We then increase the number of the cells in the quantum
chain to observe the changes of its eigenenergies. The relevant
calculation can refer to Appendix A, and the results of N from
2 to 5 are shown in Fig. 3. Figures 3(a) and 3(b) show the
real and imaginary parts of the eigenenergies of the N = 2
structure. One can find that in the case of γ = 0, there are five

FIG. 2. Spectra of the eigenenergies of the PT -symmetric chain
with N = 1, affected by the presence of PT -symmetric complex
potentials. Relevant parameters are taken to be εl = ξl j = 0 and
vc = 0.5. (a) and (b) Description of the real and imaginary parts of
the eigenenergies.
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FIG. 3. Real and imaginary parts of the eigenenergies of the QD
chain with its cell number from 2 to 5, affected by the presence of
PT -symmetric complex potentials. Relevant parameters are taken to
be εl = ξl j = 0 and tc = vc = 0.5. (a) and (b) Real and imaginary
parts of N = 2; (c) and (d) results of N = 3; (e) and (f) N = 4; (g)
and (h) N = 5.

eigenenergies of double-cell chain, i.e., ẽ1 = −ẽ5 = −1.0,
ẽ2 = −ẽ4 = 0.5, and ẽ3 = 0. Once the nonzero γ is taken
into account, e3 splits into two, i.e., ẽ(1)

3 and ẽ(2)
3 . And the

values of these two levels increase with the increment of γ .
In this process, however, the magnitudes of the other levels
decrease. At the EP of γ ≈ 0.27, level degeneracy takes place
between ẽ2 and ẽ(1)

3 , as well as ẽ4 and ẽ(2)
3 . Thus, in this

geometry, the PT -symmetric complex potentials first induce
the breaking of the level degeneracy at the energy zero point
and then lead to the occurrence of new level degeneracy [see
Fig. 3(a)]. In addition, it shows that when the new degeneracy
occurs, the imaginary part of the eigenenergies begins to
come into being. This exactly indicates that the PT sym-
metry of the quantum chain is spontaneously broken in this
situation.

As for the triple-cell structure, from Figs. 3(c) and 3(d)
we see that similar to the double-cell case, one small γ can
induce the level splitting around the energy zero point, i.e.,
from ẽ4 to ẽ( j)

4 ( j = 1 → 3). Also, the increase of γ to γ = 0.2
gives rise to the occurrence of level degeneracy of ẽ3 and
ẽ(1)

4 (and ẽ5 and ẽ(3)
4 ). Note that since the QD number is

odd, the eigenlevel at the energy zero point is robust with
the increase of γ . Next when γ increases to 0.7, the other
level degeneracy takes place, with ẽ2 = ẽ6 = 0 in this case.
This level degeneracy is accompanied by the appearance of
the imaginary part of the chain’s eigenenergies, as shown in
Fig. 3(d). The eigenenergies of the structure of N = 4 and 5
are exhibited in Figs. 3(e)–3(h), respectively. By comparing
these results with those of N = 2 and 3, we can conclude
that the influence of γ on the eigenenergies of the quantum
chain is tightly dependent on the parity of N . To be specific,
for the N-cell structure (N ∈ even), there will occur N pairs
of level degeneracy with the increase of γ . In this process,
the two levels ẽN and ẽ(1)

N+1 first show degeneracy, then ẽN−1

and ẽ(2)
N+1 degenerate, and so on. And then, N

2 EPs appear.
For the case of odd cells, the other two levels ẽ 1

2 (N+1) and
ẽ 3

2 (N+1)
can also degenerate with the further increase of γ .

As a consequence, N+1
2 EPs exist and N eigenlevels do not

degenerate at last. When the level degeneracy takes place, the
new imaginary part of the eigenenergies comes into play at
the same time. It is certain that the level degeneracy of the
real part of the eigenenergies is one signature of the breaking
of the PT symmetry of this QD chain.

In Fig. 4, we take the triple-cell and four-cell structures
to present the eigenenergy variation behaviors, by supposing
the PT -symmetric potentials to act on the partial side-coupled
QDs. We here would like to concentrate on two cases, i.e.,
these potentials acting on the ending and nonending cells,
respectively. To be concrete, Figs. 4(a)–4(d) describe the
results of the triple-cell structure, and the four-cell results
are shown in Figs. 4(e)–4(h), respectively. It can be found
that similar to those in Fig. 3, the existence of γ can lead
to the eigenlevel degeneracy, and the imaginary part of the
eigenenergies appear at the same time. However, the original
degeneracy at the energy zero point cannot be destroyed by the
complex potentials in these cases. As shown in Fig. 4(a), the
eigenlevel degeneracy takes place between the levels ẽ3 and
ẽ7 in the former case of the triple-cell structure. In its latter
case, two extra levels, i.e., e′

2 and e′
8, emerge simultaneously

with the increase of γ . Next, they get closer to each other
and degenerate in the situation of γ = 0.7. With respect to the
four-cell structure, it can be found in Figs. 4(e)–4(f) that in the
former case, the two pairs of eigenlevels that are symmetric
about the energy zero point, i.e., ẽ4 and ẽ9 (ẽ3 and ẽ10), degen-
erate when γ increases to 0.6. Instead, in the latter case, when
the PT -symmetric potentials are introduced, the degeneracy
at the energy zero point is broken partially. One then finds the
degeneracy between ẽ4 and ẽ(1)

5 in Fig. 4(g), similar to that in
Fig. 3(e). Therefore, when PT -symmetric complex potentials
are introduced to the sid-coupled QD partially, the eigenlevel
degeneracy and the imaginary part of the eigenenergies occur
in an alternative manner.
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FIG. 4. Real and imaginary parts of the eigenenergies of the
N = 3 and N = 4 chains due to PT -symmetric complex potentials
applied on the side-coupled QDs partially. (a)–(d) Results of N = 3
structure when the potentials applied on the ending and nonending
cells. (e)–(h) Corresponding results of the structure of N = 4.

The above result arouses us to pay attention to the influ-
ence of the PT -symmetric complex potentials on the band
structure of one infinitely long QD chain with side-coupled
QDs. In the presence of PT -symmetric complex potentials,
the band structure of the infinitely long QD chain obeys the
equation that

E3 − ω0E2 + (
γ 2 − 2v2

c

)
E − ω0γ

2 = 0, (15)

with ω0 = 2tc cos k. According to the result in Appendix B,
E1 is always real, and it changes continuously with the
increase of γ [see Fig. 5(a)]. On the other hand, E2 and
E3 have an opportunity to become complex in this process.
As a result, they are mutually conjugate with each other, as
shown in Figs. 5(b) and 5(c). This reflects the spontaneous
breaking of the PT symmetry of this system. In Fig. 5(c), it
shows that increasing γ indeed gives rise to the appearance
of the imaginary part of E2, with the clear critical position
of EP. Then, Eq. (B3) allows us to write out the critical

FIG. 5. (a) Spectrum of the real eigenenergy (i.e., E1) of the
infinitely long QD chain. (b) and (c) Real and imaginary parts
of E2.

condition, i.e.,

6vc
2 − 3γ 2 + ω2

0 = [
9ω0

(
vc

2 + γ 2) + ω3
0

]2/3
. (16)

This further helps us to clarify the influences of PT -
symmetric complex potentials on the eigenenergies of our
considered QD chain.

B. Quantum transport properties of the
PT -symmetric QD chain

In this subsection, we introduce two leads to couple to the
ending cells and evaluate the influence of the PT -symmetric
complex potentials on the quantum transport properties in the
QD chain. The TF obeys the relationship of T (ω) = |τ |2 with
τ expressed in Eq. (14). Prior to calculation, we take t0 = 1.0.
The structural parameters of the QD chain are the same as in
the above subsection, respectively.

Without loss of generality, we first choose the triple-cell
structure as an example to present the influence of the PT -
symmetric potentials on the quantum transport behaviors. The
numerical results are shown in Fig. 6. In Fig. 6(a), it can
be found that in the absence of PT -symmetric potentials,
six resonant peaks appear in the TF spectrum, distributing
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FIG. 6. Spectra of the TF of the triple-cell system, following
the increase of PT -symmetric complex potentials. The chain-lead
coupling is taken to be tα = 0.1.

at the points of ω =
√

2
4 (±1 ± √

5) and ±
√

2
2 , respectively,

which are completely consistent with the eigenenergies of the
chain. When the complex potentials are applied, three new
peaks emerge around the energy zero point. And increasing
the potentials can widen the three peaks, with the enlargement
of their distance, as shown by the line of γ = 0.25 in Fig. 6(b).
Meanwhile, the peaks at the points of ω = ±

√
2

4 (
√

5 − 1)
shift to the energy zero point. This change exactly originates
from the shift of the eigenenergies of the QD chain [see
Fig. 3(c)]. Next, one can observe that with the increase of
γ , the peaks beside the energy zero point merge to one and
then are suppressed, until their disappearance. As a result,
only five peaks survive in the TF spectrum. Thus we know
that the level degeneracy induces the decoupling mechanism,
which leads to the disappearance of the corresponding TF
peaks. If the complex potentials are further increased, the
two peaks beside the energy zero point get closer and merge
to one, corresponding to the second level degeneracy. This
further verifies the relationship between the level degeneracy
and decoupling. The more visual change of the TF peaks can
be observed in Fig. 6(d). Accordingly, we can understand
the role of the PT -symmetric potentials in modifying the TF
spectrum.

Next, in Figs. 7(a)–7(c) we plot the TF spectra of the
structure of N = 2, 3, and 5, by considering the presence
of PT -symmetric potentials. It is evident that the relation
between the TF peaks and the eigenenergies is well defined, as
shown in Figs. 7(a)–7(c). Taking the TF spectrum of N = 2 as
an example, four TF peaks appear at the points of ω = ±0.5
and ±1.0 in the case of γ = 0. In the presence of the complex
potentials, two new peaks generate near the energy zero point,
and their distance is proportional to the value of γ . Following
the increase of γ , the peaks at the points of ω = ±0.5 get
closer to the two split peaks, respectively, until the occurrence
of the level degeneracy. Similar to those in Fig. 6, when
the level degeneracy takes place, the corresponding peaks
will disappear. Such a phenomenon can also observed in

FIG. 7. (a)–(c) TF spectra of the systems of N = 2, 3, and 5, due
to the increase of PT -symmetric complex potentials. The chain-lead
coupling is taken to be tα = 0.1. (d) Results of the triple-cell structure
when the complex potentials are applied on the ending cells.

Figs. 7(b) and 7(c). And then, the influence of PT -symmetric
complex potentials can be further clarified. Note, also, that
when N is odd, the TF peak at the energy zero point is robust
for the case of nonzero γ . However, in Fig. 7(d) it shows
that when the complex potentials are applied on the partial
cells, an alternative result will come into being. Here for the
triple-cell structure with the complex potentials on the ending
cells, no TF peak appears at the energy zero point, despite the
occurrence of level degeneracy.

We next consider the case of strong QD-lead coupling to
calculate the TF, i.e., T (ω). The left column of Fig. 8 shows
the TF spectra for the structures with N = 1–4. From this
figure we can see that in the case of N = 1, one antiresonance
point (i.e., the zero value of the TF) occurs at the position
of ω = 0. Such a result is easy to understand based on the ex-

pression of ε̃l , i.e., ε̃l = εl + 2v2
c

ω−ξ
. In the case of ω = ξ , ε̃l will

be equal to infinity, which inevitably eliminates the quantum
transport in this system. According to the previous works, this
antiresonance point arises from the destructive interference
induced by the side-coupled QDs [39,40]. It is evident that
the two peaks coincide with the first and third eigenstates
of the triple QDs, respectively. When N increases from 1 to
3, one can find that both edges of the antiresonance valley
become steep rapidly. As a result, one well-defined insulating
band forms around the antiresonance point in the region of
−0.4 < ω < 0.4. This means that in such a QD chain with
side-coupled QDs, the antiresonance valley changes into a
well-defined insulating band when N � 3. Accordingly, the
TF spectrum is divided into two groups with an insulating
band in between. With the expression of the band structure,
i.e., Ek = tc cos k ± √

t2
c cos2 k + 2v2

c , we can obtain the gap
between the two groups as 
Eg = 2(

√
t2
c + 2v2

c − tc). One
can clearly find that the insulating band in the TF spectrum is
well consistent with the value of 
Eg. However, note that such
a result arises from the antiresonance effect in the quantum
transport process, as explained in our previous works [40].
Since each cell induces the antiresonance phenomenon, we
can know that the serially coupling of identical cells inevitably
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FIG. 8. Spectra of the TF of our considered system, in the ab-
sence and presence of PT -symmetric complex potentials. Relevant
parameters are taken to be εl = ξl j = 0 and tc = vc = tα = 0.5.

enhances the destructive quantum interference around the
antiresonance point, leading to the early appearance of the in-
sulating band. Next, we introduce the PT -symmetric complex
potentials to the side-coupled QDs, to investigate the change
of the insulating band in the TF spectra. The numerical results
are shown in the right column of Fig. 7, where the magnitude
of the potentials is supposed to be γ = 0.1. It shows that for
the structure of N = 1, the antiresonance at the energy zero
point is replaced by one resonant peak, as the PT -symmetric
potentials are taken into account. Next, with the lengthening
of the QD chain, resonant peaks can also appear at the energy
zero point, however, the insulating band in the TF spectrum
still survives.

As the PT -symmetric complex potentials are enhanced,
the resonant peak in the insulating band will undergo a clear
change, as shown in Fig. 9. In this figure, we take the cases
of N = 3 and N = 4 to present the influence of increasing
γ . It can be found that if N = 3 with γ = 0.2, the three
resonant peaks in the insulating band are widened obviously.
This certainly destroys the insulating band in the TF spectrum.
Meanwhile, the two peaks beside the insulating band are also
widened, so the band edges become less sharp. All these
changes cause the TF spectrum to exhibit a simple three-
group structure in this case. Next, if the magnitude of the

FIG. 9. TF spectra of the N = 3 and N = 4 systems, influenced
by the increase of PT -symmetric complex potentials. The other
parameters are the same as those in Fig. 2.

PT -symmetric potentials increases to γ = 0.3, the mark of
the insulating band will disappear completely, with the three-
group structure of the TF spectrum alike. Furthermore, when
γ = 0.5, the TF spectrum exactly exhibits the single-group
result with five peaks. A similar process can be observed
in the right column of Fig. 9 where N = 4. Therefore, even
by a little increase of PT -symmetric complex potentials,
the insulating band in the TF spectrum can be destroyed
seriously.

In order to further understand the effect of the PT -
symmetric complex potentials, we take the cases of N = 3 and
N = 4 to investigate the TF spectrum when such potentials act
on the side-coupled QDs partially. First, we consider the case
of N = 3 where these potentials act on the side-coupled QDs
of the ending cells, with the results shown in Fig. 10(a). One
can find that in such a case, the increase of γ suppresses the
peaks beside the insulating band, leading to the smoothness
of the insulating-band edges. However, no peak appears in
the insulating band. Next, in Fig. 10(b), the PT -symmetric
potentials are applied on the nonending cell. It can be seen that
the weak complex potentials can only narrow the insulating
band, whereas the shape of the insulating band almost holds.
Accordingly, the insulating band can be eliminated with the
increase of γ . We can clearly find that when γ increases
to 0.5, one resonant peak appears at the energy zero point.
This result can be explained by analyzing the expression of

T (ω). In such a case, g−1
1 = ω − 2v2

c
w

− �L and g−1
3 = ω −

2v2
c

w
− �R where �α = |tα|2g0 and gα = g0 = ω

2t2
0

− ρ0

2 i with

ρ0 =
√

4t2
0 − ω2/t2

0 [41,42]. Consequently, at the low-energy
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FIG. 10. Spectra of the TF of our considered system, influenced
by the increase of PT -symmetric complex potentials. (a) and (b)
N = 3 results of the potentials applied on the ending and nonending
cells, respectively. (c) and (d) Corresponding results of the N = 4
structure.

limit it can be simplified as

T (ω)|N=3

= ω2�L�Rt4
c∣∣4v2

c

[
v2

c
γ 2−2v2

c
γ 2 + t2

c

] + (�L + �R)ω
[
2v2

c
γ 2−2v2

c
γ 2 + t2

c

]∣∣2 ,

in which �α = i(�α − �†
α ). It is not difficult to find that in

the critical case of tc = vc = γ , T (ω = 0)|N=3 = �L�R

|�L+�R|2 ,
which will be equal to 1.0 for the symmetric QD-lead cou-
pling. However, when γ further increases, e.g., γ = 0.8, the
insulating band comes into being at the energy zero point
again. However, its edges become rather smooth. Next for
the chain of N = 4, it shows in Figs. 10(c) and 10(d) that in
the former case, the TF peaks decrease and the antiresonance
valley becomes apparently widened, with the increase of γ .
Instead, in the latter case, the insulating band is stable when
the PT -symmetric potentials are presented, regardless of the
decrease of the TF peaks.

IV. SUMMARY

To sum up, in this work we have investigated the eigenen-
ergies and transport properties of a one-dimensional QD chain

with each QD side coupling to two additional QDs. It has been
found that when the PT -symmetric complex potentials are in-
troduced to the side-coupled QDs, the eigenlevel degeneracy
at the energy zero point is broken. However, further increasing
the complex potentials induces a kind of two-degree degener-
acy of the eigenlevels, with the appearance of the complex part
of the eigenlevels. This exactly corresponds to the breaking of
the PT symmetry. It shows that when the cell number of the
QD chain N is even, N

2 EPs can be observed, whereas N+1
2

EPs exist for the odd N . As a consequence, these degeneracy
changes modify the quantum transport properties of the chain.
On the one hand, in the case of weak PT -symmetric complex
potentials, a group of TF peaks arises at the center of the TF
spectrum. On the other hand, when the additional eigenlevel
degeneracy takes place, the degenerated eigenlevels decouple
from the leads and the corresponding peaks disappear in the
TF spectra. In addition, for the strong chain-lead coupling,
the insulating band in the TF spectrum can be efficiently
destroyed by the complex potentials. All the results have been
analyzed in detail. It can be certain that this work is helpful
for understanding the PT symmetry and the corresponding
quantum transport properties in non-Hermitian systems.

ACKNOWLEDGMENT

Our work was financially supported by the Fundamen-
tal Research Funds for the Central Universities (Grant No.
N180503020).

APPENDIX A: PROPERTY OF TRIDIAGONAL MATRIX

Here we give an analytical treatment of the determinant of
a N × N tridiagonal matrix, which is written as

D =

⎡
⎢⎢⎢⎢⎣

ε1 t∗
1 0 · · · 0

t1 ε2 t∗
2 · · · 0

...
. . .

...
0 εN−1 t∗

N−1
0 · · · tN−1 εN

⎤
⎥⎥⎥⎥⎦. (A1)

By using a relation as det D j = ε jdet D j+1 −
|t j |2det D j+2, where det D j is a submatrix of D, we can
obtain an analytical expression about the determinant det D.
After a straightforward deduction, we can write it in terms of
a product of the inversed continued fractions,

det D = det D
det D2

det D2

det D3
· · · det DN−1

det DN
det DN

= [X1X2 · · · XN−1]−1εN , (A2)

where the continued fraction Xj is defined as

Xj = 1

ε j − |t j |2
ε j+1− |t j+1 |2

ε j+2−
... |tN−2 |2

εN−1− |tN−1 |2
εN

. (A3)

Surely, as a special case where ε j = ε0 and t j = tc, the eigen-
values of such a tridiagonal matrix take a simple analytical
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form, i.e.,

em = ε0 + 2|tc|2 cos
mπ

N + 1
. (A4)

APPENDIX B: SOLUTION OF THE CUBIC EQUATION

For Eq. (15), one can obtain its solutions with the help of
the mathematical knowledge. To be concrete, its real solution
is given by

E1 = 1

3
ω0 −

3
√

2A

3
3
√

B + √
4A3 + B2

+ 1

3 3
√

2

3

√
B +

√
4A3 + B2, (B1)

and the complex solutions are

E2 = E∗
3 = 1

3
ω0 + (1 + i

√
3)A

3 3
√

4
3
√

B + √
4A3 + B2

− (1 − i
√

3)

6 3
√

2

3

√
B +

√
4A3 + B2, (B2)

with A and B defined as A = −6vc
2 + 3γ 2 − ω2

0 and B =
18ω0(vc

2 + γ 2) + 2ω3
0, respectively. Based on the expression

of E2(3), we can get the critical condition that its nonzero
imaginary part begins to appear. Via a straightforward deduc-
tion, one can find that in such a case, there will be

A = −
(

B

2

) 2
3

. (B3)
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