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Dynamical symmetries hidden in the form of the potential
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A general approach to conserved physical quantities originating from dynamical symmetries is presented for
quantum-mechanical systems. It is illustrated that a general ansatz for the Hamiltonian leads to a differential
equation for the central potential that can be solved analytically. This indicates that additional integrals of
motion are closely connected to the functional form of the potential. In nonrelativistic three-dimensional quantum
mechanics, we show that, besides the trivial case of a constant potential, the Coulomb and harmonic potentials
are the only two examples that give rise to additional integrals of motion known as the Runge-Lenz-Laplace
vector and the Demkov-Fradkin second-rank tensor, which is in agreement with earlier results. Tensors of rank
higher than 2 are only conserved quantities for a constant potential and basically denote a generalization of
momentum conservation for higher ranks. We also consider the relativistic case by studying the Hamiltonian
form of the Dirac equation. Here we show that only a constant and the Coulomb potential lead to conserved
quantities. In the case of a Coulomb potential, this is the pseudoscalar Johnson-Lippmann-Biedenharn operator,
which reduces to a spin projection of the Runge-Lenz-Laplace vector in the nonrelativistic limit.
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I. INTRODUCTION

It is well known in both classical and quantum mechanics
that continuous global symmetries are connected to conserved
integrals of motion according to Noether’s theorem [1]. In
quantum mechanics, these conserved observables (i.e., the
Noether charges) are the generators of a Lie group that span
the corresponding (Lie) algebra. However, there are specific
cases in which a higher symmetry than anticipated is present
that is not directly related to the geometrical symmetry of
the system. These continuous and dynamical symmetries give
rise to additional constants of motion and are typically related
to the specific form of a given potential in the Hamiltonian.
A very instructive example in this sense is the nonrela-
tivistic two-body problem. In classical mechanics, Bertrand’s
theorem [2] states that only the gravitational (or Coulomb)
[V (r) ∝ −1/r] and the harmonic potential [V (r) ∝ r2] give
rise to closed orbits with no perihelion shift. In the case
of the gravitational or Coulomb potential, the corresponding
integral of motion for this constraint is the well-known Runge-
Lenz-Laplace vector directing from the focal point to the
perihelion [3–5]. For the harmonic oscillator, this additional
conserved quantity is the symmetric second-rank Demkov-
Fradkin tensor [6–9]. Struckmeier and Riedel illustratively
showed for classical mechanics that the underlying dynami-
cal symmetry transformation does not leave the Lagrangian
itself invariant, but rather the action δS = L(q, q̇, t )dt and
thus derived the connected dynamical Noether currents from
the invariance of time-dependent Hamiltonian systems [10].
A similarly general approach to time-dependent systems in
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quantum mechanics was demonstrated earlier by Castaños
et al. by the correspondence principle [11].

The previously described dynamical quantities retain their
meaning in quantum mechanics and can be basically trans-
lated by means of the correspondence principle. In quantum
mechanics, the Runge-Lenz-Laplace vector has gained special
attention since it has been noticed that it may be used to con-
struct a simple algebraic solution of the Schrödinger equation
of the hydrogen atom by Pauli [12], Fock [13], and Bargmann
[14]. Moreover, it turned out to be related to the exceptionally
high degeneracy of the hydrogenic energy eigenstates.

In complete analogy, the extraordinarily high symmetry of
the three-dimensional isotropic harmonic oscillator gives rise
to the Demkov-Fradkin tensor operator [6–8]. Once special
relativity is included, both the Runge-Lenz-Laplace vector
and the Demkov-Fradkin tensor are no longer conserved
quantities and thus lead to a precession of the elliptical orbits
in the Kepler problem. Fradkin also derived the corresponding
dynamical constants of motion for relativistic mechanics [9].
Moving to quantum theory, we will discuss the Hamiltonian
form of the Dirac equation, which is often used to evaluate
relativistic effects in an expansion in v/c, the ratio of a
typical velocity v of the particles and the speed of light c.
For the Dirac equation with a Coulomb potential, Johnson and
Lippmann reported a dynamical constant of motion [15] that
was later derived by Biedenharn in a more explicit manner
[16,17]. The corresponding pseudoscalar Johnson-Lippmann-
Biedenharn operator is also responsible for the extraordinary
degeneracy of the relativistic hydrogen atom where levels with
equal total angular momentum number j but different � =
j ± 1

2 are degenerate in the absence of radiative corrections.
However, due to the implicit presence of spin-orbit coupling
in the Dirac equation, the degeneracy is not as high as for the
nonrelativistic hydrogen atom. It turns out that the Johnson-
Lippmann-Biedenharn operator reduces to a spin projection
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of the Runge-Lenz-Laplace vector in the nonrelativistic limit
[16–19].

The Johnson-Lippmann-Biedenharn operator has gained
special attraction due to its role as one of the supercharges
connecting the doubly degenerate excited states in the
relativistic hydrogen atom for a given j in an S(2)
supersymmetry [18,20–22]. As a similar dynamical quantity
for a relativistic harmonic oscillator, which is basically related
to the linear energy-momentum relation in the Dirac equation,
had not been described, Moshinsky and Szczepaniak therefore
suggested a Dirac oscillator model, which is also linear in
position and shows an exceptionally high degeneracy [23,24].
Nonetheless, no conserved dynamical quantity had been
discussed in relation to that feature, although it was shown to
exhibit supersymmetric features [25–27]. Also, a connection
to pseudospin symmetry was suggested [28,29].

Since the previously described dynamical symmetries
are related to specific potentials, this raises the question
whether there is a fundamental connection between the
specific functional form of a potential and the corresponding
dynamical symmetry generator. We will restrict ourselves
to the case of central potentials V (x) = V (|x| = r). For a
general nonrelativistic Hamiltonian, Truax could show by
means of group algebra that only the cases of a constant,
Coulomb, and harmonic potential give rise to additional
dynamical symmetries [30]. Our approach presented here
starts from a physically more intuitive point of view and has
the advantage that it can also be easily extended to relativistic
Hamiltonians. By a very general ansatz for the additionally
conserved observable, a constraining differential equation for
the potential can be derived, which is typically analytically
solvable. Thus, the generators of the dynamical quantities are
shown to be clearly connected to the explicit functional form
of a central potential V (r).

This paper is organized as follows. After a brief review of
the appearance and properties of the dynamical constants of
motion in quantum mechanics, their general derivation and
connection to the central potential is presented for both the
nonrelativistic and relativistic cases. In the case of relativistic
quantum mechanics, we will restrict ourselves to the Dirac
equation as the equation of motion for spin- 1

2 particles. Our
presented approach is however easily extendable to any other
equation of motion as well.

II. DYNAMICAL SYMMETRIES IN QUANTUM
MECHANICS

A. Nonrelativistic quantum mechanics

We start with a nonrelativistic Hamiltonian Ĥnr for a single
particle moving in a potential

Ĥnr = p̂2

2m
+ V (r), (1)

where p̂ is the momentum operator of a single particle, m is its
respective mass, and V (r) is a general central potential. Due to
rotational invariance of the Hamiltonian (1), the total orbital
angular momentum L̂ is conserved and its components span
an so(3) Lie algebra of the SO(3) rotational group. If V (r) is
a Coulomb-type potential [V (r) = −k/r, k ∈ R], there exists
an additional integral of motion, the Runge-Lenz-Laplace

vector Q̂. For the given Hamiltonian (1) with V (r) = −k/r,
it reads

Q̂ = 1

2m
( p̂ × L̂ − L̂ × p̂) − k

r
x̂, (2)

where x̂ is the position operator.
It can be shown that its square is related to the Hamiltonian

(1) and may be written as (see the Supplemental Material [31])

Q̂
2 = k2

[
2Ĥnr

mk2
(L̂

2 + h̄2) + 1

]
. (3)

Since Q̂ commutes with Ĥnr, the Hamiltonian in Eq. (3) may
also be replaced by the energy eigenvalues. For bound states
(like in the hydrogen atom), the Runge-Lenz-Laplace vector
may therefore be normalized to

Q̂0 = Q̂√−2E
, E < 0. (4)

Together with the three components L̂i of the orbital angular
momentum, the components of Q̂0i span an so(4) Lie algebra
for the bound states of the hydrogen atom given by the
algebraic relations (see the Supplemental Material [31]) [32]

[L̂ j, L̂k] = ih̄ε jkl L̂l , (5a)

[L̂ j, Q̂0k] = ih̄ε jkl Q̂0l , (5b)

[Q̂0 j, Q̂0k] = ih̄ε jkl L̂l , (5c)

which are the generators of a dynamical SO(4) symmetry of
the bound states of the hydrogen atom. The operators L̂

2
and

Q̂
2
0 are the two Casimir operators of this SO(4). Moreover, the

Runge-Lenz-Laplace vector is orthogonal to L̂,

Q̂0 · L̂ = L̂ · Q̂0 = 0, (6)

and thus lies in the plane spanned x̂ and p̂, i.e., Q̂0 is also a
vector with odd parity. Equations (3)–(6) lay the foundations
for an algebraic solution of the Schrödinger equation of the
hydrogen atom by Pauli [12], Fock [13] and Bargmann [14].
Thus, the Hamiltonian Ĥnr with V (r) = −k/r is invariant
under global SO(4) transformations, which include SO(3) as
a subgroup. This higher symmetry is also the reason for the
exceptionally high degeneracy of the hydrogenic energy levels
of n2 instead of the anticipated 2� + 1 eigenstates only. For
the specific case of an electrostatic Coulomb potential, it is
k = Zαh̄c and the energy eigenvalues of the hydrogenlike
system then read

En = −mc2

2

(Zα)2

n2
, n ∈ N, 0 � � � n − 1, (7)

where α = e2

4πε0 h̄c is the electromagnetic fine-structure con-
stant. The higher degeneracy is related to the fact that, ac-
cording to Eq. (3), the Hamiltonian of the hydrogen atom may
be constructed by both the pseudovector L̂ and vector Q̂0 such
that states with both even and odd parity (represented by even
or odd values of �) are degenerate for a given quantum number
n ∈ N.

Initially, Jauch and Hill [33,34] and later on especially
Demkov [6,7] and Fradkin [8] independently showed that
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also a dynamical symmetry exists in the case of the three-
dimensional isotropic harmonic oscillator. Alliluev [35] and
McIntosh [36] indicated the connection to the high degree
of degeneracy found in this quantum-mechanical system.
For the three-dimensional isotropic harmonic oscillator, it is
V (r) = mω2

2 r2, with ω the eigenfrequency of the oscillator.
The corresponding dynamical constant of motion turns out
to be the symmetric second-rank Demkov-Fradkin tensor Q̂i j

[6–8], which may be defined by (i, j = {1, 2, 3})

Q̂i j = 1

2m
p̂i p̂ j + mω2

2
x̂ix̂ j, (8)

with its trace being the Hamiltonian Ĥnr. Together with the
three components L̂i of the orbital angular momentum, its five
other independent components span a closed su(3) algebra
(see the Supplemental Material [31]) [32]

[L̂ j, L̂k] = ih̄ε jkl L̂l , (9a)

[L̂ j, Q̂kl ] = 2ih̄ε jkrQ̂rl , (9b)

[Q̂ jk, Q̂lr] = ih̄
ω2

4
(δ jlεkrs + δ jrεkls + δklε jrs + δkrε jls)L̂s,

(9c)

where j, k, l, r, s = {1, 2, 3}. The dynamical SU(3) symmetry
is not directly evident from the algebraic relations (9a)–(9c).
They can, however, be rewritten in the standard form; the
Cartan subalgebra of the SU(3) group is obtained by the linear
combinations [8]

L̂± = L̂1 ± iL̂2, (10a)

Q̂± = ∓ 1

ω
(Q̂13 ± iQ̂23), (10b)

Q̂±2 = 1

ω
(Q̂11 − Q̂22 ± 2iQ̂12), (10c)

Q̂3 = 1

ω
(2Q̂33 − Q̂11 − Q̂22), (10d)

while the Cartan generators are

Ĥ1 = 1
6 (

√
3L̂3 cos φ + Q̂3 sin φ), (11a)

Ĥ2 = 1
6 (

√
3L̂3 sin φ − Q̂3 cos φ) (11b)

and the roots are given by

Êλ
± = 1

4
√

3
(L̂± ± λQ̂±), (12a)

Ê±2 = 1

2
√

6
Q̂±2, (12b)

with λ = ±1 and φ an arbitrary angle (see [8,9]).
The properties of the Demkov-Fradkin tensor Q̂i j [see

Eq. (8)] are similar to those of the Runge-Lenz-Laplace
vector. The most obvious one is that it is orthogonal to L̂
in the sense that its contraction with the components L̂i (i =
{1, 2, 3}) yields zero,

Q̂ jiL̂i = L̂iQ̂i j = 0 . (13)

Correspondingly, two eigenvectors of the Demkov-Fradkin
tensor Q̂i j lie in a plane with x̂ and p̂ and define the major and
minor axes of the elliptical orbit of the particle in the classical
two-body problem. The total contraction of the Demkov-
Fradkin tensor is also related to the Hamiltonian since

Q̂i jQ̂ ji = Ĥ2
nr − ω2

2
(L̂

2 + 3h̄2). (14)

This contraction and L̂
2

again represent two possible Casimir
operators of the su(3) algebra.

Due to their construction according to Eq. (8), the compo-
nents Q̂i j of the Demkov-Fradkin tensor have even parity like
the orbital angular momentum L̂. This is also reflected in the
� degeneracy of the eigenstates |n〉 of the isotropic harmonic
oscillator. For a given n = ∑

i ni (i = {1, 2, 3}), the possible �

values read

� =
{

n, n − 2, . . . , 0, n = 2k

n, n − 2, . . . , 1, n = 2k + 1,
(15)

with k ∈ N0. Thus, the energy eigenvalues of the harmonic
oscillator,

En = (
n + 3

2

)
h̄ω, n ∈ N0, (16)

have a degeneracy of 1
2 (n + 1)(n + 2) for a given n. Like for

the hydrogen atom, the eigenstates of the isotropic harmonic
oscillator show a higher degeneracy than the 2� + 1 typically
anticipated for the SO(3) group. However, eigenstates of
different parities are not degenerate in the isotropic oscillator
[see Eq. (15)]. This is related to the fact that the three orbital
angular momentum components L̂i and the five components
of the Demkov-Fradkin tensor Q̂i j , i.e., all eight generators
of the su(3) algebra, have even parity. Truax analyzed the
symmetry structure of the Schrödinger equation from a group-
theoretic point of view and could show that the two previously
described potentials and the case of a constant potential are
the only central potentials that can actually give rise to a
dynamical symmetry in nonrelativistic quantum mechanics
at all [30]. In Sec. III A we will confirm his results from a
systematic study of generalized tensor operators defined in
phase space.

B. Relativistic quantum mechanics

Relativistic effects are often taken into account by studying
relativistic wave equations such as the Klein-Gordon or the
Dirac equation. However, it is well known that all these
equations cannot be interpreted as a Schrödinger equation for
a single particle, since particle number is not conserved in a
relativistic theory. To this end, the relativistic wave equations
must be interpreted as an equation of motion of a relativistic
quantum field theory.

Nevertheless, the solutions of the relativistic wave equa-
tions may still serve as the starting point of an expansion in
v/c, where v is the typical velocity of the particle and c is the
speed of light. Starting from the Dirac equation and including
a Coulomb potential, one can expand in Zα (which is v/c in
atomic units) to obtain the full expression for the fine structure
of the hydrogen atom. From this point of view we consider it
useful to study the Dirac equation in the Schrödinger form,
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where the Hamiltonian reads

ĤD = c(α̂ · p̂ + βmc) + V (r), (17)

with α̂i = γ0γi and β = γ0 as the usual Dirac matrices. For
any arbitrary central potential V (r), the Dirac operator K̂
representing spin-orbit coupling,

K̂ = β

(
�̂ · L̂

h̄
+ 1

)
= β

(
Ĵ

2 − L̂
2

h̄2 + 1

4

)
, (18)

commutes with the Dirac Hamiltonian (17) and has the eigen-
values κ = ±( j + 1

2 ), with j = |� ± 1
2 |. In Eq. (18), �̂ = γ5α̂

is the non-normalized Pauli spin operator

�̂ =
(

σ 0

0 σ

)
, Ŝ = h̄

2
�̂, (19)

where σ represents the vector containing the three Pauli
matrices as its components. Since the Runge-Lenz vector (2)
is not a constant of motion anymore, the degeneracy of the rel-
ativistic hydrogenic energy eigenstates is lowered. However,
the energies still have a higher degeneracy with sgn(κ ) than
actually anticipated from the SU(2) symmetry [37],

En j = mc2

⎡
⎣1 +

(
Zα

n − |κ| +
√

κ2 − (Zα)2

)2
⎤
⎦

−1/2

. (20)

This degeneracy is also related to a dynamical Noether
charge. The corresponding constant of motion for a relativistic
Coulomb problem [V (r) = −k/r, k ∈ R] is given by the so-
called Johnson-Lippmann-Biedenharn operator R̂ [15,16],

R̂ = ih̄

mc
K̂γ5(ĤD − βmc2) − k

r
(�̂ · x̂)

= �̂ ·
[

β

2m
( p̂ × L̂ − L̂ × p̂) − k

r
x̂
]

− ih̄

mc

k

r
K̂γ5. (21)

The equality of both representations of R̂ is shown in the
Supplemental Material [31]. In the nonrelativistic limit, it is
c → ∞. Moreover, the antiparticle solutions are suppressed
and thereby β → 12×2, which finally leads to the reduction
R̂ → �̂ · Q̂, with Q̂ as given in Eq. (2). It should be noted
that also R̂2 is linked to ĤD in a manner similar to how
the Runge-Lenz-Laplace vector is linked to the nonrelativistic
Hamiltonian (1),

R̂2 = k2

{
1 −

(
h̄c

k

)2

K̂2

[
1 −

(
ĤD

mc2

)2]}
, (22)

which may be in essence rearranged to the Sommerfeld
formula (20) since all operators in Eq. (22) commute or
anticommute with each other [18]. The eigenvalues  of R̂ are
thus related to the principal quantum number n in Eq. (20).

The Johnson-Lippmann-Biedenharn operator connects the
doubly degenerate states for a given |κ| and thus acts as one
of the two supercharges of an S(2) supersymmetry in the
relativistic hydrogen atom [18,19,38]

Q̂α = R̂, Q̂β = iR̂ K̂
|κ| . (23)

With Q̂± = Q̂α ± iQ̂β , these supercharges fulfill the common
Witten superalgebra [39]

{Q̂+Q̂−} = ĤSUSY = R̂2, (24a)

Q̂2
± = 0, (24b)

[Q̂±, ĤSUSY] = 0, (24c)

with ĤSUSY the supersymmetric Hamiltonian, which is for-
mally equivalent to Ĥ2

D by the relation (22). The generated
supersymmetry contains a Z2 grading related to the parity
operator

P̂κ = K̂
|κ| , (25)

with eigenvalues sgn(κ ) = ±1. Correspondingly, the parity
operator anticommutes with the Johnson-Lippmann-
Biedenharn operator R̂ (see the Supplemental Material
[31]) [18].

Together with the three components Ĵi of the total angular
momentum, the three rescaled operators [18,38]

M̂1 = h̄

2

R̂
(R̂2)1/2

= h̄

2

R̂
|| , (26a)

M̂2 = h̄

2

K̂
(K̂2)1/2

= h̄

2

K̂
|κ| , (26b)

M̂3 = −2i

h̄
M̂1M̂2 (26c)

span an su(2) × su(2) algebra that is locally isomorphic to an
so(4) algebra [38],

[M̂ j, M̂k] = ih̄ε jkl M̂l , (27a)

[Ĵ j, Ĵk] = ih̄ε jkl Ĵl , (27b)

[Ĵ j, M̂k] = 0. (27c)

Unlike for its nonrelativistic counterpart, no corresponding
dynamical constant of motion has been described so far for
a relativistic isotropic harmonic oscillator. For the sake of
completeness, we mention that Itô et al. [23] as well as
Moshinsky and Szczepaniak [24] discussed an alternative and
recently even experimentally realized model [40] of a Dirac
oscillator, which is linear in both momentum and position and
obtained by the nongauge transformation

p̂ → p̂ + i

√
m

2
ωβ r̂ (28)

of the momentum operator in the Dirac Hamiltonian [see
Eq. (18)]. In fact, this model system shows an extraordinarily
high symmetry similar to the nonrelativistic isotropic har-
monic oscillator [25–27], but no specific dynamical constant
of motion has been discussed for this case so far. It has
however been argued that the interpretation of this type of
potential may be regarded as an anomalous magnetic moment
generated by an electrostatic harmonic potential [29,41]. In
contrast to nonrelativistic quantum mechanics, no restriction
on the type of central potentials for the presence of dynamical
Noether charges has been reported so far. Thus, it also seemed
interesting to us to compare our methodology to the case of a
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relativistic spin- 1
2 particle subject to a general central potential

V (r) in order to elucidate the types of potentials giving rise
to dynamical symmetries in a similarly systematic manner as
known for nonrelativistic quantum mechanics [30].

III. GENERAL DERIVATION OF DYNAMICAL
SYMMETRIES FOR CENTRAL POTENTIALS

A. Nonrelativistic case

1. Prerequisites

Our purpose is to derive dynamical integrals of motion for
a general nonrelativistic Hamiltonian (1) without specifica-
tion of the central potential V (r). Since the operator should
describe a physical observable, the operator is chosen to be
Hermitian. We assume that it may be constructed as a tensor
of rank l from the position operator x̂ and the momentum op-
erator p̂ in phase space. This tensor should be symmetric in its
variables since any antisymmetric combination is proportional
to the angular momentum operators that act as the generators
of a common so(3) algebra.

2. Rank l = 0

This introductory example nicely illustrates the general
procedure in the derivation of dynamical Noether charges,
since it will reveal the conservation of orbital angular mo-
mentum (not being, however, a dynamical Noether charge in
this specific example). We start with an ansatz for a scalar
Hermitian operator acting on a Hilbert space H,

Q̂ = a(0)
1 x̂2 + a(0)

2 p̂2 + 1
2 a(0)

3 (x̂ · p̂ + p̂ · x̂) + a(0)
4 , (29)

where the a(0)
i with i = {1, 2, 3, 4} are real scalar, even-

tually operator-valued functions. The coefficient functions
a(0)

i are now chosen such that Q̂ is a constant of motion,
that is,

[Q̂, Ĥnr] = 0. (30)

With the canonical commutators

[ p̂ j, Ĥnr] = −ih̄
∂Ĥnr

∂ x̂ j
= − ih̄

r

∂V

∂r
x̂ j, (31a)

[x̂ j, Ĥnr] = ih̄
∂Ĥnr

∂ p̂ j
= ih̄

m
p̂ j (31b)

and the common product rule for commutators affording

[ p̂2, Ĥnr] = −ih̄

(
1

r

∂V

∂r

)
(x̂ · p̂ + p̂ · x̂)

− h̄2

(
∂2V

∂r2
− 1

r

∂V

∂r

)

= −ih̄(x̂ · p̂ + p̂ · x̂)

(
1

r

∂V

∂r

)

+ h̄2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
, (32a)

[x̂2, Ĥnr] = ih̄

m
(x̂ · p̂ + p̂ · x̂), (32b)

[x̂ · p̂, Ĥnr] = [ p̂ · x̂, Ĥnr] = ih̄

(
p̂2

m
− r

∂V

∂r

)

= 2ih̄

{
Ĥnr −

(
V (r) + r

2

∂V

∂r

)}
, (32c)

the following restrictions on the other coefficient functions
may be derived from Eq. (30):

[
a(0)

1 , Ĥnr
] = h̄2a(0)

2

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
+ ih̄a(0)

3

(
1

r

∂V

∂r

)
,

(33a)[
a(0)

2 , Ĥnr
] = − ih̄

m
a(0)

3 , (33b)

[
a(0)

3 , Ĥnr
] = −2ih̄

m
a(0)

1 + 2ih̄a(0)
2

(
1

r

∂V

∂r

)
, (33c)

[
a(0)

4 , Ĥnr
] = 0. (33d)

If these equations can be solved nontrivially (i.e., a(0)
i 	= 0

for at least one i), another dynamical constant of motion is
found. It is clear from inspection of Eq. (33d) that a(0)

4 ∈ R
for a Hermitian operator. A special case is given for V (r) =
V0 ∈ R. Then Eqs. (33a)–(33d) are consistently solved for
a(0)

1 = a(0)
3 = 0 and

Q̂ = a(0)
2 p̂2 + a(0)

4 , a(0)
2 , a(0)

4 ∈ R, (34)

where a(0)
2 and a(0)

4 commute with the Hamiltonian (1). In
particular, one may set a(0)

2 = 1 and a(0)
4 = 0 and Eq. (34) then

states conservation of momentum in the case of a constant
potential as is expected.

Another possible choice is a(0)
1 = p̂2, which implies a(0)

2 =
x̂2 = r2 and a(0)

3 = −(x̂ · p̂ + p̂ · x̂) and is consistent with
Eqs. (33a)–(33c) irrespective of the functional form of the
potential V (r). Thus, the corresponding Noether charge reads

Q̂ = p̂2r2 + r2 p̂2 − 1
2 (x̂ · p̂ + p̂ · x̂)2 + a(0)

4 . (35)

Upon usage of x̂ · p̂ = p̂ · x̂ + 3ih̄ and the fact that L̂
2

is
Hermitian, this may be rearranged to

Q̂ = [r2 p̂2 − (x̂ · p̂)( p̂ · x̂)] + [ p̂2r2 − ( p̂ · x̂)(x̂ · p̂)] + 9
2 h̄2

+ a(0)
4

= 2
(
L̂

2 − 3
4 h̄2

) + a(0)
4 , a(0)

4 ∈ R, (36)

with the relation between the scalar operators and L̂
2

shown in
the Supplemental Material [31]. Since a(0)

4 may be arbitrarily
chosen as long as it commutes with Ĥnr, we may set a(0)

4 =
3
2 h̄2. Thus, our ansatz (29) for a scalar Hermitian Noether
charge reveals the conservation of orbital angular momentum
for any given central potential V (r).

3. Rank l = 1

The next possible choice is a polar vector operator. Since
the orbital angular momentum L̂ transforms as a pseudovector
with even parity, it is excluded from the basis set of Hermitian
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vector operators used for the construction of the dynamical
constant of motion. The simplest and most general choice is
then

Q̂i = a(1)
1 x̂i + a(1)

2 p̂i, (37)

where a(1)
1 and a(1)

2 are again scalar, eventually operator-
valued functions that do not necessarily commute with the
Hamiltonian (1). With the commutation relations (31a) and
(31b), it is simple to derive the conditions for the coefficient
functions

[
a(1)

1 , Ĥnr
] = ih̄a(1)

2

(
1

r

∂V

∂r

)
, (38a)

[
a(1)

2 , Ĥnr
] = − ih̄

m
a(1)

1 . (38b)

Note that we recover the orbital angular momentum if the
a1

i are allowed to be vector components of the momentum
and position operator, respectively [for that set a1

1 = p̂ j and
a1

2 = −x̂ j and identify Eqs. (38a) and (38b) with relations
(31a) and (31b)]. The only consistent solution with scalar
operator-valued coefficients is obtained for the choice

a(1)
2 = − p̂ · x̂

m
, (39)

which then leads to the other coefficient

a(1)
1 = p̂2

m
− r

∂V

∂r
= 2

(
Ĥnr − V (r) − r

2

∂V

∂r

)
. (40)

Upon insertion into Eq. (38a), the relation can then be trans-
formed into

[
a(1)

1 , Ĥnr
] = ih̄

(
− p̂ · x̂

m

)(
1

r

∂V

∂r

)
− ih̄

2m

[(
∂2V

∂r2
+ 2

r

∂V

∂r

)

× (x̂ · p̂) + H.c.

]
+ h̄2

2m

(
∂2V

∂r2
+ 2

r

∂V

∂r

)
,

(41)

where H.c. denotes the Hermitian conjugate operator. Thus,
an additional Noether charge is found if and only if V (r) is
the solution of the differential equation

∂2V

∂r2
+ 2

r

∂V

∂r
= 0. (42)

A trivial solution is V (r) = V0, V0 ∈ R. In that case, a(1)
1 must

be a scalar that commutes with the Hamiltonian. For the given
choice (39), this implies a(1)

1 = p̂2

m [see Eq. (32c)] and thus
leads to

Q̂ = 1

m
[ p̂2x̂ − ( p̂ · x̂) p̂] = 1

2m
( p̂ × L̂ − L̂ × p̂), (43)

where in the last step the Grassmann identity has been used.
This is already a special form of the Runge-Lenz-Laplace
vector (2) in the case of a constant potential.

A nontrivial solution is easily accessible, however, upon
identification of Eq. (42) as the well-known Laplace equation
in spherical coordinates (with no boundary conditions). A
special solution is the Coulomb potential V (r) = −k/r, with
k ∈ R being the Green’s function of the Laplace operator. The

corresponding constant of motion is then

Q̂ =
(

p̂2

m
− k

r

)
x̂ − p̂ · x̂

m
p̂ = 1

2m
( p̂ × L̂ − L̂ × p̂) − k

r
x̂,

(44)

which is the known form of the Runge-Lenz-Laplace vector
Q̂ given in Eq. (2). Thus, its existence is clearly connected to
the functional form of the Coulomb potential.

4. Rank l = 2

A symmetric tensor operator of rank 2 is most generally
defined as

Q̂i j = a(2)
1 x̂ix̂ j + a(2)

2 p̂i p̂ j, (45)

with a(1)
1 and a(1)

2 scalar operator-valued functions. Again, we
exclude any antisymmetric operators in the ansatz since they
recover the generalization of orbital angular momentum being
the so(3) generators. Upon usage of Eq. (30), the following
conditions on the coefficients follow:

[
a(2)

1 , Ĥnr
] = h̄2a(2)

2

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
, (46a)

[
a(2)

2 , Ĥnr
] = 0, (46b)

a(2)
1 = ma(2)

2

(
1

r

∂V

∂r

)
. (46c)

Insertion of Eqs. (46b) and (46c) then yields

[
a(2)

1 , Ĥnr
] = h̄2a(2)

2

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)

+ ih̄

2
a(2)

2

1

r2

[(
∂2V

∂r2
− 1

r

∂V

∂r

)
(x̂ · p̂) + H.c.

]

− 2h̄2a(2)
2

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
, (47)

with H.c. again denoting the Hermitian conjugate part.
Equation (47) is consistent with the condition (46a) if and only
if the potential V (r) solves the differential equation

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
= 0. (48)

Again, a trivial solution is V (r) = V0, V0 ∈ R. Then a(1)
1 is

zero and a(2)
2 may be any arbitrary scalar that commutes with

Ĥnr, i.e., the solution for this case may be simply written as

Q̂i j = a(2)
2 p̂i p̂ j, (49)

which may be easily rescaled to the physical form Q̂i j =
1

2m p̂i p̂ j . A special solution of the differential equation (48) is
the harmonic potential V (r) = kr2, k ∈ R. Correspondingly,
the dynamical Noether charge then reads

Q̂i j = 2ma(2)
2

(
1

2m
p̂i p̂ j + kx̂ix̂ j

)
, (50)

with any a(2)
2 that commutes with the Hamiltonian [see

Eq. (46b)]. The dynamical charge can then be rescaled to
the Demkov-Fradkin tensor given in Eq. (8). Its existence is
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therefore also related to the specific functional form of the
harmonic potential.

5. Rank l = 3

The next-higher-order generalization of a possible dynam-
ical tensor operator of rank 3 would be

Q̂i jk = a(3)
1 x̂ix̂ j x̂k + a(3)

2 p̂i p̂ j p̂k, (51)

with the coefficients a(3)
1 and a(3)

2 again scalar operator-valued
functions. Insertion of Eq. (51) into Eq. (30) then leads to the
conditions

[
a(3)

1 , Ĥnr
] = −ih̄a(3)

2

1

r3

(
∂3V

∂r3
− 3

r

∂2V

∂r2
+ 3

r2

∂V

∂r

)
, (52a)

[
a(3)

2 , Ĥnr
] = 0, (52b)

a(3)
1 = ih̄ma(3)

2

[
1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)]
, (52c)

a(3)
2

(
1

r

∂V

∂r

)
= 0. (52d)

The condition (52d) only allows the case

1

r

∂V

∂r
= 0 (53)

for a nontrivial solution of the given system of conditions.
This is however only fulfilled for the case of a constant
potential V (r) = V0, V0 ∈ R. In this case, a(3)

1 is zero again
and a(3)

2 can be chosen as an arbitrary scalar that commutes
with Ĥnr. The corresponding Noether charge is

Q̂i jk = a(3)
2 p̂i p̂ j p̂k . (54)

6. Arbitrary rank l > 3

The previously described procedure can be generalized
to any symmetric tensor of arbitrary rank l in phase space
given by

Q̂i jk···r = a(l )
1 x̂ix̂ j x̂k · · · x̂r + a(l )

2 p̂i p̂ j p̂k · · · p̂r . (55)

For any rank l > 0, an ansatz for a dynamical constant of
motion with two operator-valued coefficients a(l )

1 and a(l )
2 and

usage of Eq. (30) will lead to l + 1 conditions. If l � 3, two
specific conditions are always

[
a(l )

2 , Ĥnr
] = 0, (56a)

1

r

∂V

∂r
= 0, (56b)

which only allow a constant potential V (r) = V0, V0 ∈ R, and
due to that, the generalized constant of motion (despite its
unphysical meaning) is

Q̂i j···r = a(l )
2 p̂i p̂ j · · · p̂r, l � 3, (57)

as anticipated from the form of the nonrelativistic Hamilto-
nian (1). The results thus confirm Truax’s group algebraic
findings that a dynamical Noether charge for a general non-

relativistic Hamiltonian (1) is only found for the cases of
constant, Coulomb, and harmonic potentials [30].

B. Relativistic case

1. Prerequisites

In the following, we will restrict ourselves to spin- 1
2 parti-

cles, for which the Dirac Hamiltonian (17) properly describes
the dynamics. Like in the nonrelativistic case, we aim at
a derivation of dynamical Noether charges constructed as
tensors of rank l from the position operator x̂ and the mo-
mentum operator p̂ as well as their dependence on the specific
functional form of the central potential V (r).

2. Rank l = 0

A generic and very insightful derivation of a rank-0 dy-
namical constant of motion was reported by Khachidze and
Khelashvili [19]. However, the presence of a Coulomb po-
tential was implicitly assumed and several operators such as
the unit position vector and K̂(�̂ · p̂) were taken intentionally
for the ansatz of a dynamical constant of motion in order to
make it similar to the spin projection of the nonrelativistic
Runge-Lenz-Laplace vector. In contrast, our purpose is to
derive both the form of the Johnson-Lippmann-Biedenharn
operator from a most general ansatz and its uniqueness for
a Coulomb potential.

Due to the SU(2) invariance of the Dirac Hamiltonian (17),
the total angular momentum Ĵ is a conserved quantity. Under
Lorentz transformations, it behaves like a pseudovector. In
addition, the Dirac operator K̂ [see Eq. (18)] commutes with
the Dirac Hamiltonian (17) irrespective of the explicit form
of a central potential V (r). However, the SU(2) double cover
also allows for operators such as �̂ · x̂ or �̂ · p̂ as possible
choices for a dynamical constant of motion of rank 0. Since
any operator containing �̂ transforms like a pseudoscalar, the
most general ansatz for an integral of motion may also include
the γ5 matrix and thus

R̂ = b(0)
1 (�̂ · x̂) + b(0)

2 (�̂ · p̂) + b(0)
3 γ5, (58)

where the coefficients b0
i (i = {1, 2, 3}) are again scalar, even-

tually operator-valued functions that are chosen such that the
commutator between R̂ and ĤD vanishes,

[R̂, ĤD] = 0. (59)

With the commutation relations

[�̂ · p̂, ĤD] = − ih̄

r

∂V

∂r
(�̂ · x̂), (60a)

[�̂ · x̂, ĤD] = ih̄cγ5(2βK̂ + 1), (60b)

[γ5, ĤD] = 2mc2γ5β (60c)

and insertion into Eq. (59), it is possible to derive the neces-
sary restrictions

[
b(0)

2 , ĤD
] = 0, (61a)

b(0)
3 = ih̄

mc
b(0)

1 K̂, (61b)
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which yields

[R̂, ĤD] = [
b(0)

1 , ĤD
]
(�̂ · x̂) + ih̄

mc

[
b(0)

1 , ĤD
]
K̂γ5

+ ih̄cb(0)
1 γ5 − ih̄b(0)

2

(
1

r

∂V

∂r

)
(�̂ · x̂) = 0. (62)

This equation is only solved nontrivially if b(0)
1 is a function

of r, b(0)
1 = b(r). With

[b(r), ĤD] = ih̄cγ 5

(
1

r

∂b

∂r

)
(�̂ · x̂) (63)

and (�̂ · x̂)(�̂ · x̂) = r2, it follows that

[R̂, ĤD] = ih̄cγ5

(
b(r) + r

∂b

∂r

)
+ ih̄

[
ih̄

m
K̂

(
1

r

∂b

∂r

)

− b(0)
2

(
1

r

∂V

∂r

)]
(�̂ · x̂)

!= 0, (64)

where the fact that [K̂, γ5(�̂ · x̂)] = 0 has been used. A trivial
solution to this equation is b(r) = 0 and V (r) = V0, V0 ∈ R.
Then the corresponding dynamical Noether charge is

R̂ = b(0)
2 (�̂ · p̂), (65)

with any b(0)
2 that commutes with ĤD [see Eq. (61a)]. This

includes two special cases. On the one hand, for any spin- 1
2

particle subject to a constant potential, not only the total
momentum p̂, but also its helicity �̂ · p̂ is a conserved quantity
in the framework of relativistic quantum mechanics (given the
choice b(0)

2 = 1
|p| ). It should be noted that chirality is only

conserved in the case of a massless particle and coincides
with its helicity in that case. On the other hand, however,
the specific choice b(0)

2 = ih̄
m K̂ leads to the conservation of the

quantity

R̂ = ih̄

m
K̂(�̂ · p̂) = �̂ · β

2m
( p̂ × L̂ − L̂ × p̂), (66)

which goes to the spin projection R̂ → �̂ · Q̂ of the Runge-
Lenz-Laplace vector (43) for the case of a constant potential
in the nonrelativistic limit β → 12×2.

A nontrivial solution is obtained for b(r) = V (r) and if the
potential fulfills the differential equation

V (r) + r
∂V

∂r
= 0, (67)

with the Coulomb potential V (r) = −k/r, k ∈ R, as its so-
lution. For that case, b(0)

2 = ih̄
m K̂, and with Eq. (61b) the

corresponding dynamical Noether charge reads

R̂ = −k

r
(�̂ · x̂) + ih̄

m
K̂(�̂ · p̂) − ih̄

mc

k

r
K̂γ5, (68)

in agreement with Eq. (21). Thus, the existence of the
Johnson-Lippmann-Biedenharn operator is connected to the
presence of a Coulomb potential only.

3. Rank l = 1

The next-higher-order dynamical constant of motion is a
tensor of rank 1. The total angular momentum Ĵ = L̂ + Ŝ is
a conserved quantity, but behaves like a pseudovector under

Lorentz transformations. Thus, it is feasible to use the general
ansatz for a dynamical Noether charge

R̂i = b(1)
1 x̂i + b(1)

2 p̂i + b(1)
3 γi, (69)

where the γi matrices (i = {1, 2, 3}) are used since they also
transform as polar vectors under Lorentz transformations.
Note that the Dirac matrices α̂i and β are closely related to
them as α̂i = βγi and β = γ0. With the relations

[x̂ j, ĤD] = ih̄
∂ĤD

∂ p̂ j
= ih̄cα̂ j, (70a)

[ p̂ j, ĤD] = −ih̄
∂ĤD

∂ x̂ j
= − ih̄

r

∂V

∂r
x̂ j, (70b)

[γ j, ĤD] = 2cβ( p̂ j − mcγ j ), (70c)

the following restrictions on the operator-valued scalar coeffi-
cient functions follow from Eq. (59):

[
b(1)

1 , ĤD
] = ih̄b(1)

2

(
1

r

∂V

∂r

)
, (71a)

[
b(1)

2 , ĤD
] = −2cb(1)

3 β, (71b)[
b(1)

3 , ĤD
] = c

(
2mcb(1)

3 − ih̄b(1)
1

)
β. (71c)

This system of equations is consistently solved for the choice
b(1)

2 = β + bK̂, b ∈ R, which subsequently implies b(1)
3 = α̂ ·

p̂ upon insertion of b(1)
2 into Eq. (71b). Substituting these

relations into Eq. (71c) then yield

b(1)
1 = −1

c
β(α̂ · x̂)

(
1

r

∂V

∂r

)
. (72)

Final usage of this relation in Eq. (71a) and several rearrange-
ments (see the Supplemental Material [31]) then lead to

[
b(1)

1 , ĤD
] = ih̄β

(
1

r

∂V

∂r

)
+ β

[(
1

r

∂V

∂r

)
(x̂ · p̂) + H.c.

]

− 2mc

(
1

r

∂V

∂r

)
(α̂ · x̂) − ih̄β

(
1

r

∂V

∂r

)
. (73)

This is consistent with Eq. (71a) as well as the choices of b(1)
2

and b(1)
3 if and only if

1

r

∂V

∂r
= 0, (74)

i.e., if the potential is constant, V (r) = V0 ∈ R. Then b(1)
1 = 0

and the corresponding Noether charge of rank 1 reads

R̂i = β p̂i + (α̂ · p̂)γi = β[ p̂i − (α̂ · p̂)α̂i]. (75)

Besides these three components of a polar vector and the three
components of the pseudovectorial total angular momentum
Ĵi, no other dynamical constants of motion of rank 1 are found.

4. Rank l = 2

Like in the aforementioned cases, our ansatz includes a
symmetric tensor of second rank (l = 2),

R̂i j = b(2)
1 x̂ix̂ j + b(2)

2 p̂i p̂ j + 1
2 b(2)

3 (x̂iγ j + γix̂ j )

+ 1
2 b(2)

4 ( p̂iγ j + γi p̂ j ), (76)
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since any antisymmetric tensor (as represented by σi j =
i
2 [γi, γ j]) will lead to a generalization of total angular
momentum conservation. Usage of Eq. (59) leads to the
restrictions

[
b(2)

1 , ĤD
] = h̄2b(2)

2

1

r2

(
∂2V

∂r2
− 1

r

∂V

∂r

)
, (77a)

[
b(2)

2 , ĤD
] = −2cb(2)

4 β, (77b)

[
b(2)

3 , ĤD
] = 2ih̄cb(2)

1 β + 2mc2b(2)
3 β + ih̄b(2)

4

(
1

r

∂V

∂r

)
,

(77c)[
b(2)

4 , ĤD
] = 2mc2b(2)

4 β, (77d)

2cb(2)
3 β = −ih̄b(2)

2

(
1

r

∂V

∂r

)
, (77e)

b(2)
3 βδi j = 0, (77f)

which are however consistently solvable if and only if Eq. (74)
is fulfilled. Thus, a second-rank Noether charge for a spin- 1

2
particle is only found for a constant potential V (r) = V0, V0 ∈
R and then given by

R̂i j = β p̂i p̂ j + 1
2 (α̂ · p̂)( p̂iγ j + γi p̂ j ) = β[ p̂i p̂ j

− 1
2 (α̂ · p̂)( p̂iα̂ j + α̂i p̂ j )]. (78)

5. Arbitrary rank l > 2

The previously described ansatz can be extended to any
symmetric tensor of arbitrary rank l > 2,

R̂i jk···r = b(l )
1 x̂ix̂ j x̂k · · · x̂r + b(l )

2 p̂i p̂ j p̂k · · · p̂r + 1

l
b(l )

3

×
∑
π

γix̂ j x̂k · · · x̂r + 1

l
b(l )

4

∑
π

γi p̂ j p̂k · · · p̂r, (79)

where every index runs from 1 to 3 and the sums go over
all possible permutations π respecting the order of indices.
This means, for a combination of, e.g. three different operator
components,

∑
π

âib̂ j ĉk = âib̂ j ĉk + âiĉ j b̂k + b̂iâ j ĉk + b̂iĉ j âk + ĉiâ j b̂k

+ ĉib̂ j âk . (80)

Insertion of this tensor operator into Eq. (59) reveals the
necessary condition (74) again among others (see the Supple-
mental Material [31]). This sets b(l )

1 = b(l )
3 = 0 and leads to

conservation of the quantity

R̂i jk···r = β p̂i p̂ j p̂k · · · p̂r + 1

l
(α̂ · p̂)

∑
π

γi p̂ j p̂k · · · p̂r

= β

[
p̂i p̂ j p̂k · · · p̂r − 1

l
(α̂ · p̂)

∑
π

α̂i p̂ j p̂k · · · p̂r

]
.

(81)

Thus, the general symmetrized (dynamical) constant of mo-
tion of rank l � 2 incorporates both momentum and general-
ized helicity conservation in the case of a constant potential
V (r) = V0, V0 ∈ R. With this procedure, it turns out that the
mathematical structure of the Dirac Hamiltonian (17) only al-
lows dynamical Noether charges in the presence of a Coulomb
or constant potential. For the case of a Coulomb potential,
this is the Johnson-Lippmann-Biedenharn operator R̂ [see
Eq. (68)], whereas the constant potential reveals generalized
conservation of momentum and helicity.

IV. CONCLUSION

In this paper, the appearance of dynamical Noether charges
was related to the specific functional form of central potentials
in both nonrelativistic and relativistic quantum mechanics.
Moreover, a general derivation scheme was depicted that starts
from a very general ansatz in phase space within the Hamil-
tonian formalism. The condition of a vanishing commutator
between this constructed constant of motion and the Hamilto-
nian leads to a differential equation, which has to be fulfilled
by the potential in order to generate a dynamical symmetry.
In nonrelativistic quantum mechanics, these differential equa-
tions only allow for a Coulomb-like [V (r) ∝ 1/r], harmonic
[V (r) ∝ r2], or constant [V (r) = V0 ∈ R] potential in order
to find dynamical Noether charges of rank l = 1, 2 or l > 2,
respectively. The nontrivial cases are known as the Runge-
Lenz-Laplace vector (l = 1) and the symmetric Demkov-
Fradkin tensor (l = 2). Together with the orbital angular
momentum components, both mentioned constants of motion
are generators spanning a higher-dimensional dynamical Lie
algebra that contains so(3) as a subalgebra. For constant
potentials, the correspondingly conserved higher-rank tensors
merely represent a generalization of momentum conservation.

Generalizing to relativistic quantum mechanics based on
the Dirac equation, only a Coulomb-like and a constant po-
tential give rise to additional dynamical Noether charges of
rank l = 0 or l > 0, respectively. For the Coulomb potential,
the corresponding constant of motion can be shown to be
the well-known Johnson-Lippmann-Biedenharn pseudoscalar
that reduces to a spin projection of the Runge-Lenz-Laplace
vector in the nonrelativistic limit. Like in the nonrelativistic
limit, the higher-rank tensor operators represent a generaliza-
tion of momentum conservation, but also allow for helicity
conservation. These Noether charges are however only given
for constant potentials.
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