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Excitation-energy transfer from weak to strong coupling: Role of initial system-bath correlations
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Excitation-energy transfer problems in molecular aggregates have attracted intensive research interests for
their fundamental importance. It is usually supposed that the total density operator at time t = 0 is a factorized
product of single-excitation system state and thermal equilibrium bath state. The Franck-Condon principle
ensures that it is a good approximation for a rapid photoexcitation. For natural photosynthesis, however,
the transfer process in light-harvesting complexes mostly is initialized from an excited molecule, not direct
absorption of a photon. Such intermolecular excitations span the same time scale as the transfer dynamics, and
longer than the characteristic time of bath relaxation. Therefore, the initial system-bath correlations should be
reconsidered. This work extends the coherent resonant energy transfer theory by including initial system-bath
correlations. Within the approach of a second-order time-convolutionless quantum master equation in the polaron
frame, a general time evolution equation for the reduced system density operator is obtained, including detailed
expressions for both homogeneous and inhomogeneous terms. Two essentially distinct kinds of nonequilibrium
are identified: one stems from subsistent initial system-bath correlations, while the other is from the theory
of polaron transformation itself. The two kinds of nonequilibrium can accelerate or slow down the dynamical
evolution for different energetic situations. Rate equations based on Förster-Dexter theory with and without
initial correlations are also derived for comparison. Besides, our conclusions provide a positive perspective
accounting for the quantum coherence induced by initial system-bath correlations, which may help to clarify the
long-lasting issue of whether quantum phenomenons might be observed under natural conditions of excitation
by incoherent solar light, and deepen understandings of the physical mechanisms underlying the natural
photosynthesis process.

DOI: 10.1103/PhysRevA.99.032111

I. INTRODUCTION

Excitation-energy transfer (EET) is a ubiquitous process
with significant importance in fundamental scientific phenom-
ena and technical implications, such as photosynthesis, pho-
tocatalytic chemistry, and operation of optoelectronic devices
[1]. For instance, in natural photosynthesis, the sophisticated
antenna molecule harvests a photon and creates an excita-
tion in one location (the donor) and passes the excitation to
another location (the acceptor), under the influence of the
protein scaffold and surrounding solvent environment [2–5].
Quantitative elucidations of excitation dynamics in such sys-
tems become an increasingly attractive research area. For this
purpose, identification of an appropriate and reliable theory
that correctly accounts for the influence of environment is
necessary.

In this work, we employ the polaron quantum master
equation to study excitation transfer process. This theory
combines a second-order time local quantum master equation
with small polaron transformation [6–22]. Compared with
the well-known Förster-Dexter theory [23,24] and Redfield
(or Lindblad) [25,26] type master equation theory, it can inter-
polate between weak- and strong-coupling regimes and gives
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a reliable result to describe the transfer dynamics for interme-
diate system-bath coupling strength, allowing for a consistent
exploration from coherent to incoherent evolution with the
theoretical solutions according well with the experimental
results [27–29], though it is based on a perturbative approach.
Meanwhile, it is also more computational acceptable than
numerically exact nonperturbative approaches, such as the
quasiadiabatic propagator path integral [30,31], the hierarchy
equations of motion [32–34], and the multiconfiguration time-
dependent Hartree approach [35–37].

The polaron master equation, to our best knowledge, gener-
ally assumes a separable initial state with an excitation on the
donor while the environment is in a thermal equilibrium state.
Physically, this corresponds to preparation of an excited state
in the system, which is originally in the ground electronic state
with the bath in thermal equilibrium, by an impulsive excita-
tion at time t = 0. Thus the system with single excitation has
no correlation with surrounding environment or bath. This is
a good approximation for photoexcitations, the time duration
of which is much shorter than that of excitation transfer
dynamics and bath relaxation [27–29], and it is in accordance
with the Franck-Condon principle. In general, nevertheless,
this initial condition might not be appropriate since it does not
account for the subsistent initial correlation between the single
excitation system and the bath. For natural photosynthesis,
the excitation transfer in light-harvesting complexes mostly is
initialized from an excited molecule, not direct absorption of

2469-9926/2019/99(3)/032111(11) 032111-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.032111&domain=pdf&date_stamp=2019-03-14
https://doi.org/10.1103/PhysRevA.99.032111


M. QIN, C. Y. WANG, H. T. CUI, AND X. X. YI PHYSICAL REVIEW A 99, 032111 (2019)

a photon [2,3]. Since the duration of intermolecular excitation
is the same with that of transfer dynamics, thus longer than
the characteristic time of bath relaxation [27–29,38], initial
correlations may play a nonignorable role [39–43]. Thus we
should consider this initial correlation seriously to assess its
influence on the transfer dynamics. Similar investigations of
the effects of initial bath preparation focus on a “shifted”
initial condition originating from a fluctuation in the bath
coordinates of the system site [39–43]. In this work, we
assume an initial nonequilibrium bath state which is pre-
pared from a thermal equilibrium state of the total system,
and contains initial system-bath correlations. The excitation
transfer dynamics subjected to this initial condition is inves-
tigated within the polaron master equation formulism that is
capable of interpolating between weak- and strong-coupling
regimes.

In addition, from the point of view of quantum open
system theory, we usually have to adopt various approxi-
mations or assumptions to get a master equation such that
it can be solved analytically or numerically. One common
assumption is that the initial system-bath state is a factor-
ized state with the system and the thermal equilibrium bath
being initially uncorrelated. This is justified for the weak
system-bath coupling regime as well as a Markovian bath. For
natural photosynthetic systems, however, these two conditions
become untenable. The system-bath coupling is significant
and ever present and, moreover, the surrounding solvent and
protein scaffold act as a “memory” for the system [20,44–50].
These lead to the assumption of the initial factorized state
to be invalid. Therefore, it is clearly worth investigating to
what extent the transfer dynamics are modified by a initial
correlated condition. In this respect, several proposals have
been made. Many previous works focus on an exactly solvable
model with a Hamiltonian of particular form [51–54]. Another
one is the correlated projection superoperator technique which
considers the relevant part of the dynamics as a correlated
system-bath state [55–57]. A third approach is based on
the reduced hierarchy equations of motion [58], which are
suited for exponentially decaying bath correlation function. A
joint transfer-tensor-hierarchy equation approach [59] is also
developed to calculate emission spectra of multichromophoric
systems. The next proposal considers a reduced propagator
of the evolution operator in a Bargmann coherent-state ba-
sis on a weak system-bath coupling approximation [60]. In
[61], a standard projection operator technique in combination
with a weak-coupling expansion is adopted, assuming that
the system is initially prepared from a correlated system-
bath state such that the initial correlations are inherited due
to the interaction terms in the total Hamiltonian. A mas-
ter equation is constructed to explore the impact of initial
system-bath correlations. Since the weak-coupling expansion
is employed, it is also valid only in the weak system-bath
coupling regime. In this work, we extend this method to
go beyond this limit, through combining the weak-coupling
expansion with the polaron master equation, and apply it to
investigate the transfer process in a donor-acceptor system,
the coupling of which to its surrounding bath varies in a wide
range.

The remainder of the paper is organized as follows. In
Sec. II, a donor-acceptor model is introduced to describe

the transfer process. Then we show the formulism of the
polaron master equation and explicit initial state preparation
for our model. Under the assumption of super-Ohmic spectral
densities, a general time evolution equation for the reduced
system density operator is obtained, including detailed ex-
pressions for both homogeneous and inhomogeneous terms.
Two essentially distinct kinds of nonequilibrium are identified
in this method. In Sec. III, we focus on the time evolution
of the population in the donor state to assess the influence
of initial system-bath correlations as well as nonequilibrium
preparation due to the polaron transformation under two
different energetic situations. We compare the two kinds of
nonequilibrium in variant system-bath coupling regimes. Rate
equations based on Förster-Dexter theory with and without
initial correlations are also derived for comparison. At last,
Sec. IV is devoted to concluding remarks. Some details of
derivations are left to the Appendix.

II. THEORY

A. Model system

First, we introduce the model to be studied in this paper.
We focus on a simple donor-acceptor pair. Each site can be
regarded as a two-level system with the energy split εi (i = D
for donor and i = A for acceptor). |g〉 stands for the state
where both sites are in the ground electronic state at the
beginning. |D〉 (|A〉) is designated as the case where only D
(A) is excited while A (D) remains in the ground electronic
state. Here, we are interested in the case of single excitation.
The bath is treated as harmonic oscillators with different
frequencies. The system, initially in |g〉, is in equilibrium with
the bath. Then, an excitation is transferred from an antenna
molecule to the donor-acceptor system, the duration of which
is τexc (above a few hundred femtoseconds). It is generally
believed that τexc � τEET, where the latter is the time scale
of excitation transfer process in the donor-acceptor system,
and both in turn are longer than the characteristic time of bath
relaxation [27–29,38]. Meanwhile, τexc and τEET are assumed
to be much smaller than the duration of spontaneous decay
to the ground state |g〉. Then the transfer between |D〉 and
|A〉 is governed by a Frenkel exciton model Hamiltonian
in the single exciton manifold, H = H p

s + Hc
s + Hb + Hsb.

H p
s represents population while Hc

s coherence of the system
Hamiltonian. Hb is the Hamiltonian of the surrounding bath
with b†

k (bk) the creation or annihilation operator and ωk

the frequency of the kth phonon mode of bath. Hsb is the
interaction Hamiltonian describing the coupling of our system
to the bath, dominated by site energy fluctuations. gki is the
coupling strength of site i to the kth mode of the bath. These
terms are as follows:

H p
s =

∑
i=D,A

Ei|i〉〈i|, (1)

Hc
s = J (|D〉〈A| + |A〉〈D|), (2)

Hb =
∑

k

ωkb†
kbk, (3)

Hsb =
∑

i=D,A

∑
k

gki(b
†
k + bk )|i〉〈i|. (4)
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The corresponding quantum Liouville equation can then be
written as

dρ(t )

dt
= −iLρ(t ) = −i

(
Lp

s + Lc
s + Lb + Lsb

)
ρ(t ), (5)

where Lp
s , Lc

s , Lb, and Lsb correspond to the Hamiltonians
defined above respectively and L is the total Liouville opera-
tor.

With the application of polaron transformation generated
by G = ∑

i=D,A

∑
k

gki

ωk
(b†

k − bk )|i〉〈i| to Eq. (5), we obtain the
following quantum Liouville equation for ρ̃(t ) = eGρ(t )e−G:

dρ̃(t )

dt
= −iL̃ρ̃(t ) = −i

(
L̃p

s + L̃c
s +Lb

)
ρ̃(t ), (6)

where L̃p
s and L̃c

s are quantum Liouville operators corre-
sponding to the polaron transformed system Hamiltonian H̃ =
eGH e−G = H̃ p

s + H̃c
s + Hb with

H̃ p
s =

∑
i=D,A

Ẽi|i〉〈i|, (7)

H̃c
s = J (B|D〉〈A| + B†|A〉〈D|), (8)

while Hb remains unchanged. Here, Ẽi (i = D, A) is shifted by
its corresponding site-dependent reorganization energy λi =∑

k
g2

ki
ωk

, such that Ẽi = Ei − λi for the donor (i = D) and ac-

ceptor (i = A) site, respectively. In Eq. (8), B = θ
†
DθA, where

θi is a displacement operator defined by θD = e− ∑
k

gkD
ωk

(b†
k−bk )

and θA = e− ∑
k

gkA
ωk

(b†
k−bk ) with θ

†
D and θ

†
A being their Hermitian

conjugates.
The transformed Hamiltonian H̃ can be divided into the

zeroth- and first-order Hamiltonian as H̃ = H̃0 + H̃1 such that

H̃0 = H̃ p
s + 〈

H̃c
s

〉 + Hb = H̃0,s + Hb, (9)

where the zeroth-order system Hamiltonian H̃0,s = H̃ p
s +

〈H̃c
s 〉 can be expressed explicitly as

H̃0,s =
∑

i=D,A

Ẽi|i〉〈i| + Jw(|D〉〈A| + |A〉〈D|). (10)

In Eq. (10), the so-called Franck-Condon factor is expressed

as w = 〈θ†
DθA〉 = 〈θ†

AθD〉 = e
− 1

2

∑
k

δg2
k

ω2
k

coth (
βωk

2 )
where δgk =

gkD − gkA is the bath-induced renormalization factor. Here,
〈· · · 〉 denotes average over e−βHb/ZB. The remaining first-
order term of H̃ is given by

H̃1 = H̃c
s − 〈

H̃c
s

〉 = J (B̃|D〉〈A| + B̃†|A〉〈D|), (11)

where B̃ = θ
†
DθA − w. By construction, 〈H̃1〉= 0 since 〈B̃〉 =

〈B̃†〉= 0. It is designed to guarantee the validity of the second-
order master equation in both weak and strong system-bath
coupling limits. In the formulism of polaron theory, the energy
scale related to the fluctuations of the electronic coupling
assigned in Eq. (11) should be the smallest in the system. As a
measure of the magnitude of such fluctuations, the following
parameter can be introduced [12,15]:

γ = J〈|B̃|2〉1/2 = J (1 − w2)1/2. (12)

Therefore, the renormalized system-bath coupling Hamilto-
nian H̃1 remains bounded by J in the limit of strong system-

bath coupling, and vanishes in the weak-coupling limit. Small
γ guarantees the smallness of H̃1, and if γ is sufficiently
small, H̃1 can serve as a proper perturbative term in theoretical
treatment and the resulting second-order quantum master
equation is an improvement over that with respect to the bare
system-bath coupling.

Based on the expressions of H̃0 and H̃1, the first-order
Hamiltonian in the interaction picture with respect to H̃0

becomes

H̃1,I (t ) = J (B̃(t )T(t ) + B̃†(t )T†(t )), (13)

where B̃(t ) = eiHbt B̃ e−iHbt and T(t ) = eiH̃0,st |D〉〈A|e−iH̃0,st .
Accordingly, the polaron transformed total density operator
ρ̃I (t ) = eiL̃0tρ(t ) in the interaction picture is governed by

dρ̃I (t )

dt
= −iL̃1,I ρ̃I (t ). (14)

To obtain the quantum master equation governing the time
evolution of the reduced system density operator σ̃I (t ) =
Trb[ρ̃I (t )], we apply the standard projection operator tech-
nique [62] with the usual definition of the projection operator
P(·) = ρbTrb{·} and its complement Q = 1 − P to Eq. (14). A
formally exact time-convolutionless quantum master equation
for Pρ̃I (t ) can then be derived as follows:

d

dt
Pρ̃I (t ) = K(t )ρ̃I (t ) + I(t )ρ̃I (0), (15)

with the time-convolutionless generator given by

K(t ) = αPL̃1,I (t )[1 − (t )]−1P (16)

and

I(t ) = αPL̃1,I (t )[1 − (t )]−1G(t )Q, (17)

where α serves as a parameter that keeps track of the order of
the system-bath coupling strength. For practical calculations,
a commonly used approximation needs to be made, that is
the second-order approximation with respect to H̃1,I (t ). Since
[1 − (t )]−1 and G(t ) can be expanded in powers of α, we
can truncate the exact expression to second order in H̃1,I (t ).
It’s notable that the inhomogeneous terms should be included
since they are nonvanishing in this lowest-order approxi-
mation. Taking the trace over the bath degrees of freedom,
the resulting quantum master equation for σ̃I (t ) = Trb[ρ̃I (t )]
reads

d

dt
σ̃I (t ) = Trb

[
K(t )ρ̃I (t )

] + Trb
[
I(t )ρ̃I (0)

]
. (18)

The first term on the right-hand side is the homogeneous term

Trb[K(t )ρ̃I (t )]

= −α2
∫ t

0
dτ Trb{L̃1,I (t )L̃1,I (τ )σ̃I (t ) ⊗ ρb}, (19)

which gives the standard second-order terms in the mas-
ter equation. Inserting the interaction Hamiltonian (13) into
(19) and using the cyclic invariance of the bath operators
within Trb[· · · ], we obtain the resulting explicit expressions
for the homogeneous term (19) (here we set α = 1) as
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follows:

Trb[K(t )ρ̃I (t )]

= −J2eS(0,0)
∫ t

0
dτ {(eS(0,τ−t ) − 1)[T(t ),T(τ )σ̃I (t )]

+ (e−S(0,τ−t ) − 1)[T†(t ),T(τ )σ̃I (t )]

+ (e−S(0,τ−t ) − 1)[T(t ),T†(τ )σ̃I (t )]

+ (eS(0,τ−t ) − 1)[T†(t ),T†(τ )σ̃I (t )]} + H.c., (20)

in which

S(λ, t ) = −1

2

∑
k

(
δgk

ωk

)2

×
[

coth

(
βωk

2

)
(eλωk−iωkt + e−λωk+iωkt )

− (eλωk−iωkt − e−λωk+iωkt )

]
. (21)

The second term on the right-hand side of Eq. (18) is the
inhomogeneous contribution

Trb[I(t )ρ̃I (0)] = −iα Trb{L̃1,I (t )Qρ̃I (0)} − α2
∫ t

0
dτ Trb

×{L̃1,I (t )L̃1,I (τ )Qρ̃I (0)}, (22)

which is dependent on the initial state. Then all that’s left is
to substitute the initial condition ρ̃I (0) into Eq. (22). Usually,
the initial uncorrelated state is employed:

ρ(0) = σ (0) ⊗ ρb. (23)

It is a direct product of system state σ (0) and thermal equi-
librium bath state ρb = e−βHb/Trb[e−βHb]. This is equal to
assuming that the system and the bath are interacting with van-
ishing interaction strength, so they are uncorrelated, and then
one switches on the system-bath interaction Hsb at a particular
instant t which we set to be zero. In most physical situations,
however, the system and the bath have interacted for a long
time beforehand; then it is practically impossible to avoid
the interaction between the system and the bath before t = 0.
The uncorrelated initial condition Eq. (23) is justified when
the system-bath coupling is weak and the impact of the system
on bath statistics can be ignored. Meanwhile, the bath is
Markovian such that it “forgets” the initial correlations very
quickly. For moderate- or strong-coupling strength and non-
Markovian baths, which is the case in many realistic situa-
tions of experimental interest, like photosynthetic excitation
transfer process discussed in this paper, the effect of initial
system-bath correlations is non-negligible. The system-bath
coupling is significant and ever present, which means it cannot
be switched on or off at some particular instant. In most
previous literatures, the initial condition (23) considered may
be referred to as a “spectroscopic” preparation. This is a good
approximation for a rapid photoexcitation from the ground
state, which occurs in an antenna molecule that harvests a
photon and creates an excitation. And it is in accordance with
the Franck-Condon principle. In the experiments with light-
harvesting complexes [27–29], a short laser pulse with dura-
tion τpulse (several tens of femtoseconds) much smaller than

τEET (above a few hundred femtoseconds) and bath relaxation
(a hundred femtoseconds) is employed to excite the pigment
molecule. So this approximation is also tenable. In the biolog-
ical functioning of systems such as the FMO complexes, how-
ever, the transfer process mostly is initialized from an excited
molecule, not direct absorption of a photon. Recall that re-
action centers or FMO complexes seldom absorb photons di-
rectly; instead they accept excitation energy from the antenna
[2,3], the duration of which is τexc, since τexc � τEET, which
in turn is longer than the characteristic time of bath relaxation
[27–29,38]. While the excitation is being transferred into the
donor-accepter system, it begins to interact with the surround-
ing bath. It’s been a while since the correlation between the
single excitation system and the bath began to establish. Under
these circumstances, if we set a particular instant at which the
excitation is totally on the donor site as the initial moment for
the transfer dynamics we are interested in, the bath state then
cannot be a form of thermal equilibrium. Moreover, the sur-
rounding solvent and protein scaffold acts as a “memory” for
the system [20,44–50], and the system-bath coupling is sig-
nificant; therefore, a nonequilibrium initial state of the bath,
or that is to say, the initial system-bath correlated condition,
is probably more appropriate. With these considerations in
mind, it is clearly worthwhile to ask to what extent the transfer
dynamics are modified by a initial correlated condition.

On the grounds of the above discussions, we consider the
initial state to be of the form as follows, to account for initial
correlations between the system and the bath:

ρ(0) = σ (0) ⊗ 〈D|e−βH |D〉
Z

, (24)

though one may imagine a variety of different forms. The mo-
ment at which the excitation is totally on the donor site is set
to be t = 0, i.e., the initial condition for the system is σ (0) =
|D〉〈D|. The solvent and protein scaffold bath is assumed to
have been in equilibrium with the single-excitation system
before t = 0 and now prepared in a nonequilibrium state
ρb(0) = 〈D|e−βH |D〉/Z , containing the system-bath correla-
tions that have been established beforehand. Such an initial
condition has been studied previously [54,61,63,64]. Without
going into details of molecule structure, this assumed form
of initial bath state might not be exactly the case for actual
photosynthetic excitation transfer processes. One can even say
it is some kind of artificial manipulation, rather than a natural
process, yet it contains initial system-bath correlations which
are usually neglected in previous works on photosynthesis.
Physically, Eq. (24) means that the system and the bath, as
a whole, are in equilibrium at a inverse temperature 1/β

at time t < 0. Then one makes a measurement only on the
system at time t = 0 to prepare the system in a pure state
σ (0) = |D〉〈D|. The combined system after the measurement
can be described by Eq. (24) according to general principles
of quantum measurement theory. For excitation transfer in
light-harvesting complexes, the assumption of an excitation
on the donor site at t = 0 may be comprehended as the
measurement operation on the system. From Eq. (24), we
see that the bath state has been modified due to the finite
system-bath interaction, and correlations between the system
and bath have been established before the measurement. Then
any physical process of preparation of the initial state of the
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system would disturb the bath state. ρb(0) = 〈D|e−βH |D〉/Z
is therefore not a canonical equilibrium state for the bath. It
also depends on the system state |D〉 through the interaction
term Hsb in total Hamiltonian H . It should be noted that this
initial bath state differs from the thermal equilibrium state ρb.
This is because ρb in Eq. (23) is a fixed bath state for all forms
of initial system states σ (0), which means the system and the
bath are completely uncorrelated. Consequently, it is common
to say that Eq. (24) contains initial system-bath correlations,
though the density matrix in Eq. (23) and Eq. (24) are similar
in form. What we should also note is that the initial bath
state ρb(0) = 〈D|e−βH |D〉/Z is not equal to the reduced state
of the total equilibrium state, i.e., TrS[e−βH ]/Z , either. As a
result, after the system preparation, the bath evolves under
the action of the total Hamiltonian H and approaches this
total system-bath equilibrium state. It is obvious from the
initial condition (24) that the bath state depends on the system
state |D〉 due to the interaction term Hsb in total Hamiltonian
H , as described above, but the initial system state does not
depend on the bath as a result of the projective measurement
operation. During this evolution, however, the bath begins to
have an important effect on the system dynamics, which will
be shown below.

Accordingly, this initial condition should be transformed
into the polaron frame, and its form can be written as

ρ̃(0) = σ̃ (0) ⊗ 〈D|e−βH̃ |D〉
Z

, (25)

with σ̃ (0) = σ (0) = |D〉〈D|. By expanding the bath state in
powers of coupling strength, we can express the initial state
(25) in the following form:

ρ̃(0) = σ̃ (0) ⊗ [
ρ

(0)
b + ρ

(1)
b + · · ·], (26)

with the superscript representing the order of coupling
strength. From Eq. (18) we see that only ρ

(0)
b and ρ

(1)
b

contribute to the master equation. Next, to get the explicit
expression of ρ

(0)
b and ρ

(1)
b in Eq. (26), we should expand

the initial state (24) in powers of α. For this purpose, the
well-known Kubo identity can be employed,

eβ(X+Y ) = eβX

(
1 +

∫ β

0
dλ e−λXY eλ(X+Y )

)
, (27)

where X and Y are two arbitrary operators. For our model,
these two operators are set to be X = −(H̃0,s + Hb) and Y =
−H̃1. It is easy to see that, to first order in system-bath
coupling strength, e−βH̃ can be expanded according to Kubo
identity as follows:

e−βH̃ ≈ e−β(H̃0,s+Hb)

(
1 −

∫ β

0
dλ eλ(H̃0,s+Hb)αH̃1e−λ(H̃0,s+Hb)

)
.

(28)

Then the initial condition (25) in the polaron frame can be
expanded as

ρ̃(0) ≈ σ̃ (0)

Z
⊗ (〈D|e−βH̃0,s |D〉e−βHb − α e−βHbE (β )),

(29)
where

E (β ) =
∫ β

0
dλ(eλHbJB̃ e−λHb〈D|e−βH̃0,s eλH̃0,s |D〉〈A|e−λH̃0,s |D〉

+ eλHbJB̃†e−λHb〈D|e−βH̃0,s eλH̃0,s |A〉〈D|e−λH̃0,s |D〉)

(30)

is thus an operator acting in the Hilbert space of the bath only.
It represents the first-order modification in the bath state due
to the initial correlations. Z is the partition function such that
Trs,b[ρ̃(0)] = 1. To the first order in the coupling strength, it
can be calculated that

Z = 〈D|e−βH̃0,s |D〉 − αZb〈E (β )〉b = ZbZ ′, (31)

where Z ′ = 〈D|e−βH̃0,s |D〉 − α〈E (β )〉b and 〈E (β )〉b denotes
the average value of E (β ) taken with respect to the equi-
librium state ρb = e−βHb/Zb. It can be shown from Eq. (30)
that this term is generally zero. As a result, Z ′ is simply
〈D|e−βH̃0,s |D〉, the detailed expression of which is as follows:

Z ′ = 〈D|e−βH̃0,s |D〉

= cosh

(
β�ε

2

)
− ẼD − ẼA

�ε
sinh

(
β�ε

2

)
, (32)

where

�ε =
√(

ẼD − ẼA

2

)2

+ J2w2. (33)

Now, the explicit expressions for the initial state (25) in
powers of coupling strength are determined:

ρ
(0)
b = ρb (34)

and

ρ
(1)
b = − 1

ZbZ ′ α e−βHbE (β ). (35)

B. Master equation with correlated initial state

The next task is to go into the interaction picture, substitute
this expanded initial state into Eq. (22), and take the average
value of the bath operators with respect to the equilibrium
state ρb. Then we give the explicit expressions for the inho-
mogeneous term (22)

Trb[I(t )Qρ̃I (0)] = i
J2

Z ′ eS(0,0)
∫ β

0
dλ[(eS(λ,t ) − 1)〈D|e(λ−β )H̃0,s |D〉〈A|e−λH̃0,s |D〉

+ (e−S(λ,t ) − 1)〈D|e(λ−β )H̃0,s |A〉〈D|e−λH̃0,s |D〉][T(t ), σ̃I (0)] + H.c., (36)
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where S(λ, t ) has been defined in Eq. (21). “H.c.” denotes
the Hermitian conjugates of all the previous terms. It should
be noted that the projection operation Qρ̃I (0) = ασ̃I (0) ⊗
1
Z [−e−βH̃0,s E (β )]. Consequently, the second term in the inho-
mogeneous contribution (22) can be ignored, since only the
terms up to the second order in coupling strength are taken
into account. Thus we say that Eq. (36) represents the impact
of initial system-bath correlations. The explicit expressions
for Eq. (36) and Eq. (21) are provided in Appendix B.

C. Master equation with uncorrelated initial state

If we choose the initial uncorrelated state Eq. (23), it
transforms into ρ̃(0) = σ̃ (0) ⊗ θ

†
De−βHbθD/Zb, which is also

nonequilibrium with respect to the bath due to the po-
laron transformation applied to the initial thermal equi-
librium bath state ρb. After the same derivation proce-
dure, we get the corresponding results for the inhomo-
geneous contribution (22) with the initial uncorrelated state
(23), as shown to be

Trb[I(t )Qρ̃I (0)]

= −iJ eS(0,0)/2[( f (t ) − 1)][T(t ), σ̃I (0)]

− J2eS(0,0)
∫ t

0
dτ {F(1)(t, τ )[T(t ),T(τ )σ̃I (0)]

+ F(2)(t, τ )[T†(t ),T(τ )σ̃I (0)]

+ F(3)(t, τ )[T(t ),T†(τ )σ̃I (0)]

+F(4)(t, τ )[T†(t ),T†(τ )σ̃I (0)]} + H.c. (37)

Here, the bath function f (t ) = e2i
∑

k gnDδgk sin(ωkt ) accounts
for the cases where there are common bath modes shared
between the donor and the acceptor. And F(1)(t, τ ) = fm(t, τ )
eS(0,τ−t ) − fa(t, τ ), F(2)(t, τ ) = fm(−t, τ )e−S(0,τ−t ) −
fa(−t, τ ), F(3)(t, τ ) = fm(t,−τ )e−S(0,τ−t ) − fa(t,−τ ), and
F(4)(t, τ ) = fm(−t,−τ )eS(0,τ−t ) − fa(−t,−τ ), with
fm(t, τ ) = f (t ) f (τ ) − 1 and fa(t, τ ) = f (t ) + f (τ ) − 2.

The nonzero inhomogeneous term (37) when we choose
the initial uncorrelated state (23) corresponds to the contri-
bution of nonequilibrium preparation of initial bath in the
polaron frame. This nonequilibrium is different from that
induced by initial system-bath correlations in the laboratory
frame denoted by Eq. (36). Instead, it is a result of the po-
laron transformation applied to the initial thermal equilibrium
bath state ρb, as well as the following projection operator
formulism. To be specific, after the application of polaron
transformation to the initial uncorrelated state (23), the initial
thermal equilibrium state ρb therein or the zeroth-order term
ρ

(0)
b in Eq. (26) becomes θ

†
De−βHbθD/Zb, from which we see

that the initial bath state now is different from ρb (or ρ
(0)
b ).

That’s to say, the bath is initially in nonequilibrium within
the polaron frame. Consequently, applying the complemen-
tary super operator Q, which is defined to project onto the
irrelevant part of the density matrix, gives a nonzero inho-
mogeneous term in Eq. (37). From the above analysis, we
identify two essentially distinct nonequilibrium: one stems
from subsistent initial system-bath correlations as defined by
Eq. (24), while the other from the theory of polaron transfor-
mation itself. Many previous literatures on the polaron theory

[11–13,15] have focused on the role of this transformation-
induced nonequilibrium preparation of initial bath state within
the polaron frame. In Sec. III, we will compare the influence
of these two kinds of nonequilibrium. For this purpose, we
should also calculate σ̃ (t ) without any inhomogeneous terms.
Of the three cases, calculations with the initial uncorrelated
state can be regarded as a benchmark.

Besides, we introduce two spectral densities to treat the
system-bath couplings in the above expressions: Js(ω) =∑

k δg2
kδ(ω − ωk ) andJi(ω) = ∑

k gkDδgkδ(ω − ωk ), both of
which take into account various situations including the case
of common bath modes.

III. RESULTS AND DISCUSSIONS

With the preliminary derivations, we proceed to investigate
the transfer dynamics in our donor-acceptor system which
can then be used to determine other physical observables
of the system. For this purpose, we focus on the time evo-
lution of the population in the donor state |D〉, σDD(t ) =
Trs[|D〉〈D|σ (t )]. In general, when calculating expectation
values from a polaron master equation, one should be cau-
tious about the transformation of physical observable between
the polaron and the laboratory frame. Nevertheless, since
G = ∑

i=D,A

∑
k

gki

ωk
(b†

k − bk )|i〉〈i| commutates with |D〉〈D|,
eG|D〉〈D|e−G = |D〉〈D|, thus

σDD(t ) = Trs[|D〉〈D|σ (t )]

= Trs[|D〉〈D|e−Gσ̃ (t )eG]

= Trs[e
G|D〉〈D|e−Gσ̃ (t )]

= Trs[|D〉〈D|σ̃ (t )], (38)

i.e., the population in state |D〉 remains unaffected by polaron
transformation. We can obtain σDD(t ) directly from the master
equation for σ̃I (t ). Yet, the off-diagonal elements, which
are relevant to the calculation of the linear spectra, do not
commute with the polaron transformation operator G defined
above; calculating σDA(t ) or σAD(t ) in the laboratory frame is
therefore more involved. Further works will be committed to
this aspect.

We perform numerical calculations for the following super-
Ohmic spectral densities:

Js(ω)/2 = Ji(ω) = η

3!

ω3

ω2
c

e−ω/ωc , (39)

where η is the dimensionless system-bath coupling strength.
ωc is the cutoff frequency and its reciprocal represents the
relaxation time of the bath. It should be noted that, in real-
istic situations, the localized vibration modes described by
a delta function also contribute significantly to the spectral
density [20,44–50]. This goes beyond the scope of this work
and for simplicity only the continuous part is accounted for.
Meanwhile, the continuous part of realistic spectral densities
in photosynthesis-related EET typically have more weight at
low frequencies than a super-Ohmic density [65]. It is thus
more appropriate to adopt an Ohmic or sub-Ohmic form. Nev-
ertheless, this spectral density of Eq. (39) provides a simple
picture for describing the system-bath coupling and allows for
analytical expressions for correlation functions as has been
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0.5( )a 1.0( )b 1.5( )c
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t
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FIG. 1. Time evolution of donor population σDD(t ) in the units where J = 1, ωc = 1.5, β = 1, and �E = ẼD − ẼA = 1.5 for different
values of system-bath coupling strength η. Black solid curves correspond to the results with initial correlations represented by inhomogeneous
term (36). Red dashed curves are for the case without the initial correlations but the inhomogeneous term (37) exists. Blue dotted curves are
for the case without any inhomogeneous terms. Thin purple curves correspond to the results from the theory of Förster-Dexter energy transfer
(FDET) with initial correlations (24), while green dot-dashed curves correspond to the results without initial correlations.

studied previously [11–22] in terms of polaron formulism.
Especially, it avoids complications such as a well-known
infrared divergence, which would be an issue for the case of
Ohmic spectral density leading to electronic couplings being
renormalized to zero in spite of the system-bath coupling
strength. With these spectral densities, it is easy to write the
detail expressions for the bath-induced Franck-Condon factor
w, S(λ, t ) and the bath function f (t ) = e2i

∑
k gnDδgk sin(ωkt ), as

well as the relevant coefficients involved in Eq. (37) (see
Appendixes A and B). Time-dependent donor populations are
calculated by solving Eq. (18).

For the system operators in Eqs. (20), (36), and (37), it is
convenient to move into the exciton basis (see Appendix C).
For each of the three cases described in Sec. II, calculations
are performed with and without the inhomogeneous term
(36) or (37) for comparison. For each case, two different
energetic situations are taken into consideration: �E = ẼD −
ẼA = ±1.5. Throughout the paper, the parameters are J = 1,
ωc = 1.5, and β = 1. In the entire regime of system-bath
coupling strength, γ remains smaller than the onsite energy
gap |�E |, as well as the the characteristic frequency ωc

of spectral densities, which guarantees the accuracy of the
present polaron master equation [12,15].

For comparison, calculations of time-dependent evolution
based on the following rate equation for the case of initial
correlated state (24) are also performed:

d

dt
σDD(t ) = −kDA(t )σDD(t ) + kAD(t )[1 − σDD(t )] + I (t ),

(40)

where kDA(t ) is the time-dependent Förster-Dexter rate
[23,24,66] from D to A, while kAD(t ) from A to D. I (t )
represents the effects of initial system-bath correlations (24).
The theory of Förster-Dexter energy transfer (FDET) gives
an account of a Pauli-type population dynamics of individual

chromophores being excited or deexcited, in terms of hopping
processes. It is a successful application of Fermi’s golden
rule that relies on the smallness of the electronic resonance
interactions. Expressions for kDA(AD)(t ) and I (t ) are presented
in Appendix D.

A. �E = 1.5

The time evolution of donor population σDD is plotted in
Fig. 1 for �E = 1.5. We observe that the initial correlations
play an ignorable role in the weak-coupling regime according
to the results of both polaron and Förster-Dexter theory.
Physically, the system interacts weakly with the bath, so the
bath is scarcely modified; the influence of initial correlations
is insignificant. It is the same with the nonequilibrium induced
by polaron transformation. Weak system-bath couplings make
the modified bath have less access to affect the system evo-
lution. Thus the three curves obtained by the polaron master
equation nearly overlap for small η, and the same is true for
the two curves obtained by the rate equation. Meanwhile, the
polaron dynamics shows large oscillation that is not captured
by Förster-Dexter theory, and the stationary limits calculated
from the two theories also exhibit significant distinctions,
since in the weak system-bath coupling regime Förster-Dexter
theory becomes invalid, which can also be interpreted as
the manifestation of quantum coherence that counteracts the
results of the detailed balance based on the rate equation.

In moderate-coupling regimes, however, a visible differ-
ence between polaron dynamics with and without initial corre-
lations emerges as illustrated in Fig. 1. The initial correlations
seem to be capable of accelerating evolution, especially in
primary stages. Nevertheless, the nonequilibrium due to the
polaron transformation seems to slow down the dynamics
if one compares the red-dashed curves and the blue dotted
curves. As a result, the evolution rate of dynamics with initial
system-bath correlations in the laboratory frame (black solid
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FIG. 2. Time evolution of donor population σDD(t ) for �E = ẼD − ẼA = −1.5 and other conventions are the same as in Fig. 1.

curves) is almost the same as that without initial system-bath
correlations either in the laboratory frame or in the polaron
frame (blue dotted curves). The effects on the evolution rate
of these two kinds of nonequilibrium neutralize each other.
In addition, the initial system-bath correlations cause larger
oscillation, especially for moderate-coupling strength (1.5 <

η < 3). In this respect, the nonequilibrium due to the polaron
transformation seems to damp the oscillation amplitude. As
well, the effects on the oscillation amplitude of these two
kinds of nonequilibrium neutralize each other. Consequently,
the evolution curves of black solid and blue dotted have few
differences. Besides, with further increasing η, the system-
bath coupling becomes strong enough to damp the oscilla-
tion. The time-dependent donor population in the primary
stage as well as stationary regime gradually overlap with
those obtained by the rate equation. This is because of the
successful application of Förster-Dexter theory in describing
energy transfer when the electronic coupling strength between
chromopheres is weak in comparison to their interaction with
the bath degrees of freedom.

We also note that, as time goes on, the difference between
the dynamics with and without initial correlations diminishes,
which is true for both polaron and Förster-Dexter theory.
After a period of evolution, the transfer dynamics goes to
the Markovian limit as the upper integration limit becomes
∞ instead of t , and the inhomogeneous terms (37) decay
to zero and therefore have an negligible contribution to sys-
tem evolution. We can also prove numerically that Eq. (36)
decays to zero in the long-time limit. Physically, at longer
times, the system will gradually “forget” the influence of
nonequilibrium, both from initial system-bath correlations in
laboratory frame and from polaron transformation. Therefore,
in the long-time limit, the three curves of polaron dynamics
overlap as well. By the way, when �E = 1.5, the slight
difference between the Förster-Dexter dynamics with and
without initial system-bath correlations can be observed only
for moderate- and strong-coupling strength in a nonstation-
ary regime, and to less extents than those between polaron
dynamics.

B. �E = −1.5

Figure 2 displays the case of the other energetic situation
�E = −1.5. One can observe that, for both polaron and
Förster-Dexter theory, the dynamics exhibit no difference
for small η, and a visible difference between the dynamics
with and without initial correlations emerges in moderate-
and strong-coupling regimes. Conversely, however, the ini-
tial system-bath correlations slow down the evolution with
increasing η when �E = −1.5, which is also the case of
the results based on the Förster-Dexter rate equation, while
the nonequilibrium preparation within the polaron frame ac-
celerates the dynamics. Consequently, the evolution rates in
these two cases are almost the same as shown by the red-
dashed curves and the blue dotted curves in Fig. 2. What’s
more, we find that, analogous to the results for the case
of �E = 1.5, the initial system-bath correlation is capable
of enlarging the oscillation amplitude for moderate-coupling
strength (1.5 < η < 3), while the nonequilibrium due to the
polaron transformation damp the oscillation. This is a positive
instance accounting for the quantum coherence induced by
initial system-bath correlations, and also provides the pos-
sibilities to interpret the origin of quantum coherence that
might be observed under natural conditions of excitation by
incoherent solar light, in view of the fact that a series of photo-
synthesis experiments have been performed utilizing coherent
laser radiation as a resource. In fact, we may expect a more
significant effect for the case of slow bath (J > ωc). Note that,
however, the polaron master equation is not precise enough
when the bath is slow [21]. This difficulty can be overcome by
employing a variational polaron master equation, or numerical
methods, such as the quasiadiabatic propagator path integral
[30,31], the hierarchy equations of motion [32–34], and the
multiconfiguration time-dependent Hartree approach [35–37].
Again, the effects on both the dynamical evolution rate and the
oscillation amplitude of these two kinds of nonequilibrium
neutralize each other. Therefore, the black solid and blue
dotted evolution curves also nearly overlap, which is basically
the same with the results from Fig. 1. In addition, with
increasing η, the dynamical evolution predicted by the two
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theories gradually approaches in both early stage and station-
ary regime, for the same reason as the case of �E = 1.5.

It can also be observed from Fig. 2 that the difference be-
tween these three curves is obvious only in primary stages. At
longer times, the influence of nonequilibrium both from initial
system-bath correlations in laboratory frame and from polaron
transformation will gradually become much less significant
or of no consequence. Again, the three curves of polaron
dynamics overlap as well in the long-time limit. The same
conclusion can be obtained for Förster-Dexter theory as well.

IV. CONCLUSION

In this work, we have investigated the excitation-energy
transfer dynamics of the donor-acceptor model subjected to
the conditions of initial system-bath correlations. We assume
a product form of initial state, in which the bath part contains
correlations with the single-excitation system. The polaron
quantum master equation is employed such that we can in-
vestigate the dynamics from the weak to strong system-bath
coupling regime. We apply the weak-coupling expansion to
the initial bath state within the polaron formulism. Dynamical
master equations with an initially direct product of the sys-
tem and thermal equilibrium bath state are also derived. For
comparison, calculations of time-dependent evolution based
on the Förster-Dexter rate equation are also performed.

Two kinds of nonequilibrium are identified: one stems from
subsistent initial system-bath correlations, while the other
from the theory of polaron transformation itself. Under the
assumption of super-Ohmic spectral densities, we obtain de-
tailed expressions for both the homogeneous and inhomoge-
neous terms, the latter of which accounts for the contributions
of the two kinds of nonequilibrium. The effects of two kinds
of nonequilibrium for different system-bath coupling strength
η and the evolution time t are discussed in detail under
two different energetic situations �E = ±1.5. We find that,
when �E = 1.5, the initial correlations can accelerate dynam-
ical evolution, especially for moderate system-bath coupling,
while the nonequilibrium due to the polaron transformation
seems to slow down the dynamics. When �E = −1.5, it is
just the reverse: the nonequilibrium as a result of the polaron
transformation speeds up the dynamics in moderate and strong
system-bath coupling regimes, while the initial system-bath
correlations slow down the evolution rates. These phenomena
can also be observed for Förster-Dexter dynamics, but to
less extent than those between polaron dynamics especially
when �E = 1.5. More importantly, the initial system-bath
correlations cause larger oscillation, while the nonequilib-
rium due to the polaron transformation damp the amplitude
of oscillation. This provides a positive perspective in that
it suggests initial system-bath correlations induced quantum
coherence, and also helps to clarify the long-lasting issue of
whether the quantum phenomena might be observed under
natural conditions of excitation by incoherent solar light rather
than utilizing coherent laser radiation as a resource. Besides,
further increasing system-bath coupling strength damps the
oscillative evolution and makes the time-dependent popula-
tion overlap with those obtained by the rate equation, which is
a manifestation of the validity of Förster-Dexter theory in the
strong system-bath coupling regime.

At longer times, the influence of nonequilibrium, both from
initial system-bath correlations in laboratory frame and from
polaron transformation, gradually vanishes since both kinds of
inhomogeneous contributions decay to zero in the long-time
limit. Their influence gradually becomes much less significant
or of no consequence such that the system will forget the
nonequilibrium effects from both initial system-bath corre-
lations in the laboratory frame and polaron transformation.
For the dynamical evolution calculated from Förster-Dexter
theory, the same conclusion can be obtained as well.

We hope these may help to deepen the understanding of
the excitation transfer process in the natural photosynthesis
process.
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APPENDIX A: REORGANIZATION ENERGY
AND THE FRANCK-CONDON FACTOR

The bath induced reorganization energy and the
Franck-Condon factor can be evaluated in terms of spectral
densities that describe the system-bath couplings. With the
definitions given by Eq. (39), the reorganization energy can
be expressed as

λi =
∑

k

g2
ki

ωk
=

∫ ∞

0

Ji(ω)

2ω
dω (A1)

and the Franck-Condon factor

w = 〈θ†
DθA〉 = 〈θ†

AθD〉 = e
− 1

2

∑
k

δg2
k

ω2
k

coth
(

βωk
2

)

= exp

{
−1

2

∫ ∞

0

Js(ω)

ω2
coth

(
βω

2

)
dω

}
. (A2)

The electronic couplings in the polaron frame are
renormalized by the Franck-Condon factor w, incorporating
temperature dependence into H̃0,s to capture the influence of
the bath on system evolution.

Besides, the bath function f (t ) can also be expressed as

f (t ) = e2i
∫ ∞

0 dω
Ji (ω)

ω2 sin (ωt )
. (A3)

Then we can easily write the detailed expressions for the
relevant coefficients involved in Eq. (37).

APPENDIX B: DERIVATIONS OF THE EXPRESSION
FOR EQ. (36) AND EQ. (21)

To determine the explicit expressions for Eq. (36) and
Eq. (21), we invoke the identities

eλH̃0,s |D〉〈A|e−λH̃0,s = dax|D〉〈A| + day(|D〉〈A| − |A〉〈D|)
+ daz(|D〉〈D| − |A〉〈A|) (B1)
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and

eλH̃0,s |A〉〈D|e−λH̃0,s = adx|A〉〈D| + ady(|D〉〈A| − |A〉〈D|)
+ adz(|D〉〈D| − |A〉〈A|), (B2)

where

dax = (ẼD − ẼA)
2

�ε2
cosh(λ�ε) + 4J2w2

�ε2

+ ẼD − ẼA

�ε
sinh(λ�ε),

day = 2J2w2

�ε2
[cosh(λ�ε) − 1],

daz = Jw(ẼD − ẼA)

�ε2
[1 − cosh(λ�ε)] − Jw

�ε
sinh(λ�ε),

(B3)

and

adx = (ẼD − ẼA)
2

�ε2
cosh (λ�ε) + 4J2w2

�ε2

− ẼD − ẼA

�ε
sinh (λ�ε),

ady = 2J2w2

�ε2
[1 − cosh (λ�ε)],

adz = Jw(ẼD − ẼA)

�ε2
[1 − cosh (λ�ε)] + Jw

�ε
sinh (λ�ε).

(B4)

The expression of 〈D|e−βH̃0,s |D〉 has been shown in Eq. (32).
With this in mind, we obtain the final expressions for Eqs. (36)
and (21), respectively:

Trb[I(t )Qρ̃I (0)]

= i
J2

Z ′ eS(0,0)
∫ β

0
dλ[(eS(λ,t ) − 1)(dazDD − dayDA)

+ (e−S(λ,t ) − 1)[(adx − ady)DA + adzDD]]

× [T(t ), σ̃I (0)] + H.c., (B5)

in which

S(λ, t ) = −1

2

∫ ∞

0
dω

Js(ω)

ω2

×
[

coth

(
βω

2

)
(eλω−iωt + e−λω+iωt )

− (eλω−iωt − e−λω+iωt )

]
. (B6)

APPENDIX C: EXPRESSIONS OF THE SYSTEM
OPERATORS IN THE EXCITON BASIS

For numerical calculations, it is convenient to express the
system operators in the renormalized exciton basis in which
H̃s,0|±〉 = ε±|±〉. The eigenvalues of the zeroth-order term
H̃s,0 are

ε± = 1
2 [(ẼD + ẼA) ±

√
4J2w2 + (ẼD − ẼA)

2
], (C1)

where Ẽi = Ei − λi, (i = D, A) is the shifted energy for the
donor and acceptor site, respectively, with the corresponding
site-dependent reorganization energy λi defined in Eq. (A1).
w is the Franck-Condon factor defined in Eq. (A2). The

corresponding eigenstates are related with local excitation
states |D〉 and |A〉 through

|+〉 = cos
θ

2
|D〉 + sin

θ

2
|A〉, (C2)

|−〉 = sin
θ

2
|D〉 − cos

θ

2
|A〉, (C3)

where tan θ = 2Jw/(ẼD − ẼA). Inserting Eqs. (C2) and (C3)
into Eqs. (20), (B5), and (37), the explicit form of these terms
now can be obtained by expressing the commutators in the
exciton basis. Then we get the matrix elements of the quantum
master equation (18).

APPENDIX D: DERIVATION OF FORSTER-DEXTER
RATE EQUATION

The theory of Förster-Dexter energy transfer that describes
hopping dynamics treats the bare electronic coupling as a
perturbation. The total Hamiltonian of the Frenkel exciton
model studied in this paper now can be divided into the zeroth-
and first-order part as follows:

H0 = H p
s + Hb + Hsb, (D1)

H1 = Hc
s , (D2)

where H p
s , Hb, Hsb, and Hc

s have been defined in Eqs. (1)–(4).
In the interaction picture of H0, ρI (t ) = e

i
h̄L0tρ(t ) is governed

by the following time evolution equation:
d

dt
ρI (t ) = − i

h̄
LI (t )ρI (t ), (D3)

where L0 is the Liouville operator for H0, and LI (t ) is for
H1(t ) = eiH0t/h̄H1e−iH0t/h̄. (D4)

Applying the standard projection operator technique [62] and
following the same procedures of deriving the polaron master
equation shown in the main text, one can obtain the rate
equation (40) for the case of initial correlated state Eq. (24).
The time-dependent Förster-Dexter rate from D to A is given
by [23,24,66]

kDA(t ) = 2J2

h̄2 eS(0,0)Re
∫ t

0
dτ

× [ei(ED−EA )τ/h̄ f (t ) f (τ − t )(e−S(0,−τ ) − 1)], (D5)

while kAD(t ) is the same as kDA(t ) except for the replacement
ED − EA → EA − ED. In (D5), note that a contribution of
zero phonon line to the rate has been subtracted within the
integrand, which removes the singularity that can exist for the
super-Ohmic spectral density adopted here.

The effects of initial system-bath correlations are involved
in I (t ) which has a similar expression to the Förster-Dexter
rate:

I (t ) = 2J2

h̄2 eS(0,0)Re
∫ t

0
dτ [ei(ED−EA )τ/h̄

× [ f (t ) f (τ − t ) − 1](e−S(0,−τ ) − 1)]. (D6)

If the initial state is uncorrelated [Eq. (23)], the time-
dependent Förster-Dexter rates kDA(AD)(t ) in the rate equation
remain exactly the same, and the only difference lies in that
I (t ) = 0.
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