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It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models
of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary,
but also ultralocal, i.e., the particle’s speed is upper bounded, as in standard relativistic quantum field theories.
The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after
the requirement of ultralocality of the evolution; this fact is an instance of Meyer’s 1996 no-go results stating
that no nontrivial scalar quantum cellular automaton can be translationally invariant [D. A. Meyer, J. Stat. Phys.
85, 551 (1996); Phys. Lett. A 223, 337 (1996)]. All results are presented in a single-particle framework and for
a (1+1)-dimensional space-time.
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I. INTRODUCTION

Lattice gauge theories (LGTs) are a framework to define
and study nonperturbative quantum field theory (QFT) [1].
The associated computations, often very demanding, are usu-
ally evaluated via Monte Carlo sampling, but this technique is
limited for real-time dynamics, and it suffers from the sign
problem [2]. Tensor-network techniques can improve [3,4]
or circumvent and outperform [5–7] Monte Carlo sampling.
One still expects at the very least a substantial speedup
from quantum computers [8]. Now, although a fully fledged
quantum computer has not yet been built, various types of
quantum simulators have already provided proofs of prin-
ciple, from chemistry, to condensed matter, to high-energy
physics. Regarding the latter, a small-size digital quantum
simulator based on trapped ions was, indeed, recently built,
which successfully reproduced pair creation in the Schwinger
model [9]. Also, several proposals of analog [10–12] and
digital [13] quantum simulations of LGTs with cold atoms
in optical lattices have been made in the past years. The
model implemented in Martinez et al.’s experiment [9] is a
unitary digitization, i.e., time discretization, via a series of
quantum gates, of a continuous-time formulation of (1+1)D
lattice quantum electrodynamics. This continuous-time model
can actually be seen as a continuous-time quantum walk
(CTQW) having multiparticle gauge interactions. Quantum
walks (QWs) are models of quantum transport on graphs,
e.g., spatial lattices, which are useful both to design quantum
algorithms and for quantum simulation. They have actually
been suggested as a universal computational model [14].

In discrete-time QWs (DTQWs), the state of the walker
at time j + 1 ∈ N∗, and position p ∈ Z, is determined solely
by the state of the walker at time j within a certain bounded
spatial neighborhood around p. This defines ultralocality for
an evolution operator in discrete time. Multiparticle DTQWs
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are known as quantum cellular automata (QCA) [15]. Ul-
tralocality of the evolution, not only spares resources, but
actually preserves a fundamental property of standard rela-
tivistic QFTs in continuous space-time: the existence of a
maximum speed, i.e., an upper bound on the propagation
speed. This feature is at the heart of a structure theorem
which proves that any QCA can be built out of a small
subfamily of QCA, in a way which preserves space-time
neighborhoods [16]. QCA thus seem natural candidates to
discretize relativistic QFTs. Several results have already been
obtained: (i) in the single-particle free case [17–19], with
couplings to electromagnetic [20], non-Abelian [21], and
relativistic gravitational gauge fields [22,23], and (ii) in the
multiparticle free case [15,24,25]. Some results exist in the
multiparticle interacting case [26]. Also, action principles
for QCA and their general-relativistic covariance have been
studied [26–29]. That being said, there has been little work,
even in the single-particle case, on the relationship between
the well-known discretizations of QFTs that LGTs are, and
these more recent QCA discretizations.

Let us comment on what happens to the maximum speed
in LGTs. In continuous time, i.e., Hamiltonian LGTs, the
evolution operator is not ultralocal. Indeed, for the dynam-
ics described by a lattice Hamiltonian to be nontrivial, this
Hamiltonian must be non-block-diagonal in position space;
otherwise, there is no interblock dynamics; but the evolution
operator corresponding to a non-block-diagonal Hamiltonian
is generically not ultralocal, i.e., from one instant to another,
there is a nonzero probability to have moved arbitrarily far
from the starting position.1 Let us now speak about the

1Notice that, out of a certain light cone, i.e., for big enough
distances x and small enough times t such that x > VLBt , where
VLB is the Lieb-Robinson (LB) upper bound velocity on the group
velocity [30], this probability is, although generically nonvanishing,
exponentially bounded with distance, independent of the state. This
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discrete-time versions of LGTs. These being formulated, for
technical reasons, in Euclidean space-time, their unitarity
is not manifest. Unitarity can be proven in certain cases,
e.g., for the (1+1)D Wilson [31] and staggered [32] LGT
models in Euclidean discrete time. However, generalizing
these models to higher dimensions and number of flavors
can lead to difficulties in ensuring unitarity [33,34], while
QCA discretizations are by construction manifestly unitary.
Let us now come back to the question of the ultralocality
of the evolution. The transfer matrices, that is, the Euclidean
versions of the evolution operators, are built by exponentiating
the terms of the space-time-discretized action in a way which
ensures the positive definiteness of the transfer matrix, i.e., the
unitarity of the evolution. This criterion does not forbid the
exponentiation of non-block-diagonal matrices, and it is no
surprise that the obtained transfer matrices, and so the asso-
ciated evolution operators, are not ultralocal. The digitization
performed in Martinez et al.’s experiment does not yield an
ultralocal evolution either. In contrast, QCA are manifestly
ultralocal by construction.

The present work is aimed at shedding light on conceptual
and technical relationships which exist between LGTs and
QCA discretizations of QFTs. The main result is that DTQWs
can be used to digitize fermionic models of continuous-time
LGTs, in such a way that the evolution operator is not only
manifestly unitary, but also ultralocal. Our discrete-time ul-
tralocal scheme is not chiral symmetric, neither (i) in the
standard multicomponent-wave-function picture nor (ii) in
the staggered-fermions picture, where the wave function is
scalar and the chiral symmetry corresponds to a translational
invariance of the model. While (i) could be satisfied at the
price of introducing fermion doubling, which our model
avoids, (ii) is unavoidable for an ultralocal unitary evolution,
in virtue of Meyer’s 1996 no-go results stating that no nontriv-
ial scalar quantum cellular automaton can be translationally
invariant [35,36].

II. LEFT-RIGHT SPATIAL DISCRETIZATION OF THE
(1+1)D DIRAC EQUATION: MOTIVATION, DEFINITION,

AND PROPERTIES

The (1+1)D Dirac equation reads i∂t� = H0(−i∂x )�,

having introduced (i) a two-component Dirac wave function,
�(t,x) = 〈x|�(t )〉 = (ψL

(t,x), ψ
R
(t,x) )

�, � denoting the transpo-
sition, with superscripts L and R for “left” and “right,”
explained after Eqs. (1), and (ii) the free Dirac Hamilto-
nian, H0(−i∂x ) = α1(−i∂x ) + mα0, with mass m and al-
pha matrices α0 = σ 3 and α1 = σ 1, where σ n is the nth

result is generic to near-neighbor Hamiltonians, i.e., Hamiltonians
with finite-support interactions and defined on lattices, and it ap-
plies, more generally, to correlations between any two observables
separated by some distance. The LB bound acts in practice, i.e., up
to negligible errors, as a strict upper bound, i.e., causally decorrelates
distant parts of the system, since an exponential suppression is a very
strong one. However, the LB bound is, on the contrary to the speed
of light, not universal: it depends on the considered Hamiltonian,
that is, both on the structure of the lattice and on the form of the
near-neighbors interaction.

Pauli matrix. We introduce a 1D spatial lattice (xp =
pa)p∈Z with lattice spacing a. The so-called naive spa-
tial discretization of the above Dirac equation is obtained
by replacing ∂x by a symmetric finite difference: i�̇(t,x) =
α1[−i (�(t,x+a) − �(t,x−a) )/(2a)] + mα0�(t,x). This way of
discretizing is known to suffer from the fermion-doubling
problem [1,37], which comes from the use of finite differences
defined over two lattice spacings rather than a single one [1].
The mere replacement of the symmetric finite difference by
an asymmetric one breaks the Hermiticity of the Hamilto-
nian, and leads to renormalization issues [1]. That being
said, it is possible to preserve Hermiticity while sticking
to asymmetric finite differences, by the use of, say, a left
(right) finite difference for the upper (lower) component of
the Dirac wave function. Such a discretization can be written
as i |�̇(t )〉 = Ĥ |�(t )〉 , where Ĥ will be called the left-right
Hamiltonian, and reads Ĥ = ∑

p Ĥp, each single-site being
the sum of two terms, Ĥp = Ĥm

p + Ĥ t
p, a mass term, Ĥm

p =
mα0 |p〉〈p| , and the announced left-right transport term, Ĥ t

p =
(−i/a) antidiag(|p〉 〈p| − |p + 1〉 〈p| , |p〉 〈p + 1| − |p〉 〈p|),
where the first “coefficient” is the upper-right one, and |p〉 =
|xp〉. Notice that Ĥ is (i) translationally invariant and (ii) of
near-neighbors type. The equations of motion induced by the
left-right Hamiltonian read

iψ̇L
p = −i

a

(
ψR

p − ψR
p−1

) + mψL
p , (1a)

iψ̇R
p = −i

a

(
ψL

p+1 − ψL
p

) − mψR
p , (1b)

with �p = �(xp), and where we have omitted the time vari-
able to lighten notations. Now, look at the first equation:
ψL

p is “fed,” i.e., ψ̇L
p is determined, by the knowledge of

ψR
p , which is at the same location, and of ψR

p−1, which
is on the left of ψL

p , so that we may say that ψR
p feeds

to the right, hence the superscript R, and similarly for L
(second equation).

As mentioned before, the left-right discretization avoids
fermion doubling. Now, there exists a well-known solution to
remove fermion doubling in naive discretizations, namely, that
of Wilson [38], known as Wilson fermions, which consists
of adding, to the standard naive discretization, a mass term
of the Schrödinger type (i.e., a lattice Laplacian), called
Wilson term. The effect of the Wilson term on the dispersion
relation is to raise the energy on the edges of the Brillouin
zone in order to remove the unwanted extra poles in the
propagator, and this can be done by a tunable amount [37].
The Hamiltonian corresponding to this model, that we may
call Wilson’s Hamiltonian, is [37] Ĥ (r)

W = ∑
p(Ĥ (r)

W )p, with

(Ĥ (r)
W )p = (Ĥn)p + (Ĥ (r)

S )p, where W is for “Wilson,” n for
“naive,” S for “Schrödinger,” and r ∈ R is Wilson’s parameter.
The naive Hamiltonian is given by (Ĥn)p = (Ĥm

n )p + (Ĥ t
n)p,

where we write the mass term in a different representation
from that above, (Ĥm

n )p = m(−σ 2) |p〉〈p| , and where the
naive transport term is given by (Ĥ t

n)p = −i
2a α1( |p〉〈p + 1| −

|p + 1〉〈p| ). Finally, Wilson’s term is given by (Ĥ (r)
S )p =

α0 r
2a (2 |p〉〈p| − |p〉〈p + 1| − |p + 1〉〈p| ). The choice r = 1

is the most popular one, and we will stick to it unless
otherwise mentioned. Now, it turns out that the left-right
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FIG. 1. Comparison between the continuous-time (a) left-right
and (b) staggered dynamics. The thick, solid blue (dashed red) arrows
indicate how the ψR

p ’s or φ2p+1’s (ψL’s or φ2p’s) feed the ψL
p ’s

or φ2p’s (ψR’s or φ2p+1’s). The thin, light-blue arrows indicate a
possible way of performing the staggering starting from the left-right
discretization.

Hamiltonian is unitarily equivalent to Wilson’s Hamiltonian
with r = 1, via a certain rotation in the internal Hilbert
space, that is, BĤpB† = (Ĥ (r=1)

W )p, where the unitary ma-
trix is B = exp(−iσ 1 π

4 ). Note that, in order to lighten the
writing, we have omitted the identity tensor factor of the
position Hilbert space, and will do so from now on in similar
cases.

It is well known that adding, as above, a Wilson term,
breaks the axial-U(1), also called chiral symmetry, of
the naive lattice massless Dirac Hamiltonian, i.e., the
massless Ĥ (r �=0)

W does not commute with γ 5, which equals
±id/2+1γ 0 . . . γ d−1 in even space-time dimensions d , that
is, in the present case, say γ 5 = +σ 1, which amounts to the
exchange of the upper and lower components of the Dirac
wave function. The left-right Hamiltonian also breaks chiral
symmetry.2. A well-known solution to restablish, up to a
modification of the Hilbert space, chiral symmetry (without,
of course, reintroducing the doubling problem), is to work
with the so-called staggered formulation of LGT [1,39]. The
idea is to distribute the internal components of the Dirac wave
function over different lattice sites. Consider Eqs. (1). Take
every lower component ψR

p , and shift it spatially by a/2, i.e.,
position it at x = pa + a/2 (this is the only operation to be
performed). This induces a new lattice (xn = na/2)n∈Z of
spacing a′ = a/2 which is filled, at even sites n = 2p, with
ψe

2p ≡ ψL
p , and, at odd sites n = 2p + 1, with ψo

2p+1 ≡ ψR
p .

We can thus define a single-component wave function φ

such that φn = ψe
n for n even and ψo

n for n odd. In terms
of φ, Eqs. (1) can be recast as a single equation, iφ̇n =
−i
2a′ (φn+1 − φn−1) + m(−1)nφn, that is, i |φ̇〉 = Ĥstag |φ〉 ,

where Ĥstag = ∑
n(Ĥstag)n, with (Ĥstag)n = (Ĥm

stag)n +
(Ĥ t

stag)n, (Ĥm
stag)n = m(−1)n |n〉 〈n| , and (Ĥ t

stag)n =
−i
2a′ ( |n〉 〈n + 1| − |n + 1〉 〈n| ). Now, the massless staggered
Hamiltonian is invariant, not only by two-site translations

2It is actually a general result, known as the Nielsen-Ninomiya no-
go theorem, that no Hamiltonian that respects the usual Hermiticity,
locality (i.e., near-neighbors structure), and translation-invariance
conditions, such as Ĥ or Ĥ (r)

W , can avoid fermion doubling without
breaking chiral symmetry.

on the lattice, which simply corresponds to the translational
invariance of the original nonstaggered Hamiltonian, but also
by single-site translations on that lattice, which corresponds
to the exchange of the original upper and lower components,
that is, to the γ 5 invariance of the massless continuum
Dirac Hamiltonian. This is how the staggering restablishes a
remnant3 of chiral symmetry.

To sum up, both the left-right discretization and the stag-
gered one avoid fermion doubling, but while the former breaks
chiral symmetry, a remnant of this symmetry is reestablished
in the latter, thanks to the transformation of internal degrees
of freedom into external ones. (See Fig. 1.)

III. ULTRALOCAL UNITARY DIGITIZATION OF THE
SPATIALLY DISCRETIZED (1+1)D DIRAC

EQUATION VIA DTQW

We are interested in the time discretization of the
continuous-time unitary dynamics generated by the left-right
Hamiltonian, which is non-block-diagonal in position space.
Now, the naive time discretization of non-block-diagonal lat-
tice Hamiltonians, that is, considering the continuous-time
evolution but through a stroboscope of period 
t , leads
to an evolution between two discrete-time instants which
is, generically, not ultralocal, because the exponential of a
non-block-diagonal Hamiltonian is not ultralocal. One may
say, in the present case of a near-neighbors Hamiltonian,
that the naive time discretization leads to a “loss of ul-
tralocality,” in the sense that the near-neighbors structure
of the Hamiltonian is the most local continuous-time dy-
namics that one can conceive on a lattice, which may also
be seen, in terms of the evolution operator, as an ultralo-
cality, but “at constant time.” The ultralocality of the evo-
lution cannot be naively “restored,” after time discretizing,
by truncation of the exponential series, because this breaks
unitarity. A well-known trick to “restore” ultralocality in
the time discretization of a near-neighbors Hamiltonian is
to split the Hamiltonian into block-diagonal parts, and then
use the Trotter-Suzuki approximation to build an appropriate
ultralocal one-time-step evolution operator [40]. Let us do so
for Ĥ .

The mass term is irrelevant in this discussion, since it can
be time discretized naively within the Trotter-Suzuki scheme
because it is diagonal in position space. Let us focus on the
transport Hamiltonian Ĥ t. One can write Ĥ t = Ĥon + Ĥ int,

where, for i = on, int, Ĥ i = ∑
p Ĥ i

p, with the on-site and
the intersite single-site terms, respectively given by Ĥon

p =
1
aσ 2 |p〉 〈p| and Ĥ int

p = 1
a [ − iσ+ |p〉 〈p + 1| + H.c.], where

σ+ = (σ 1 + iσ 2)/2. Ĥon is manifestly block diagonal in po-
sition space. What about Ĥ int? To visualize the situation, let
us explicitly write the matrix representation Ht of this trans-
port Hamiltonian, Ĥ t, in the LR-position basis, ( |p〉 ⊗ |L〉 ,

3“Remnant” in the sense that the symmetry is structurally different:
it is not a symmetry in an internal Hilbert space (there is no such
space anymore), but in the external one.
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|p〉 ⊗ |R〉 )p∈Z. This yields, from, say, p − 1 to p + 1,

Ht = −i

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 1 · · · ·
−1 · 1 · · ·
· −1 · 1 · ·
· · −1 · 1 ·
· · · −1 · 1
· · · · −1 ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

For a good visualization, we have only written a 6 × 6
matrix, but the equality stands for the infinite-dimensional
matrix. The dots stand for zeros. The boxed 1’s and (−1)’s
correspond to Ĥon, and the others to Ĥ int. We notice the above-
mentioned manifest block diagonality of Ĥon in position
space. Now, what this matrix representation “reveals” is that
Ĥ int is also block diagonal, obviously not in the position basis
(|p〉)p∈Z, that we shall call nonstaggered position basis, but
in the complete, i.e., LR-position basis, or, via the correspon-
dence Lp → 2p and Rp → 2p + 1, in the staggered position
basis, (|n〉)n∈Z. Indeed, this correspondence yields, not only
the following identification, Ht = Ht

stag, where Ht
stag is the

matrix representation of the massless staggered Hamiltonian,
but also that the on-inter splitting of Ĥ is nothing but a
standard even-odd splitting of Ĥstag, similar to that performed
in Ref. [40], that is, Hon = He, and Hint = Ho, where Ĥstag =
Ĥ e + Ĥo, with the even and odd parts respectively given by
Ĥ e = ∑

p(Ĥ t
stag)2p and Ĥo = ∑

p(Ĥ t
stag)2p+1. From now on,

the matrix representations of operators, e.g., Ĥ t, can thus be
interpreted either in the left-right or in the staggered picture.

Let us introduce a discrete time coordinate j ∈ N, such
that � j,p = �(t j ,xp), where t j = j
t . Now that we have split
Ht = Ht

stag into two block-diagonal parts, we can build the
desired ultralocal time-discretized evolution from time j to
time j + 1, that we write |� j+1〉 = U |� j〉 + O(
t )—where,
to lighten the writing, we have simply used the notation |� j〉
for the associated column-vector representation—by defin-
ing U ≡ UmUt, with Ut ≡ UonUint, where, for i = m, on, int,
Ui ≡ exp(−i
t Hi ) . Now, we have seen above that both
the mass and the on-site Hamiltonians are block-diagonal
in the nonstaggered position basis, so that one can perform
a block exponentiation. Since the involved blocks are Pauli
matrices, which square to the identity, their exponentiation
is straightforward (use, e.g., the power-series representation
of the exponential). Moreover, we have also seen that the
intersite Hamiltonian is actually the same as the on-site one
but shifted by one lattice site in the staggered position basis.
In the end, we thus obtain Um = diag(μ,μ∗, μ, μ∗, μ, μ∗),
where μ = exp(−i
t m), the ∗ denotes complex conjugation,
and

Uon =

⎡⎢⎢⎢⎢⎢⎣
c −s · · · ·
s c · · · ·
· · c −s · ·
· · s c · ·
· · · · c −s
· · · · s c

⎤⎥⎥⎥⎥⎥⎦,

Uint =

⎡⎢⎢⎢⎢⎢⎣
c · · · · ·
· c −s · · ·
· s c · · ·
· · · c −s ·
· · · s c ·
· · · · · c

⎤⎥⎥⎥⎥⎥⎦, (3)

where c = cos δ and s = sin δ, with δ = 
t/a. A straightfor-
ward computation delivers the product

Ut =

⎡⎢⎢⎢⎢⎢⎣
c2 −sc s2 · · ·
sc c2 −sc · · ·
· sc c2 −sc s2 ·
· s2 sc c2 −sc ·
· · · sc c2 −sc
· · · s2 sc c2

⎤⎥⎥⎥⎥⎥⎦, (4)

which is translationally invariant in the nonstaggered position
basis. The discrete-time evolution through U reads � j+1,p =
〈p|U|� j〉, that is, explicitly,

ψL
j+1,p = e−i
t m

(
sc ψR

p−1 + c2ψL
p − sc ψR

p + s2ψL
p+1

)
,

ψR
j+1,p = e+i
t m

(
s2ψR

p−1 + sc ψL
p + c2ψR

p − sc ψL
p+1

)
. (5)

Recall that, in the limit 
t → 0, these equations coincide
with the dynamics of continuous-time LGT fermions, which
in turn coincides, in the limit of a lattice spacing a → 0, with
standard Dirac dynamics.

The ultralocal transport evolution operator, Ut, that we
have built thanks to the even-odd splitting of the staggered
Hamiltonian Hstag, has “lost” the single-site translation invari-
ance of Hstag. This is the price to pay for this even-odd dig-
itization, which renders the discrete-time scheme ultralocal:
indeed, Meyer’s 1996 no-go results state that no nontrivial
scalar ultralocal unitary evolution, that is, quantum cellular
automaton, can be translationally invariant [35,36]. Hence,
there is no more remnant of chiral symmetry in Ut. This makes
the left-right picture more relevant than the staggered one in
a discrete-time framework, since the translational invariance
is only realized in the former. Let us now state one of the
main points of the present work. It turns out that the left-right
picture Ut in Eq. (4) can be written as a DTQW of the
type introduced by Strauch to establish a connection between
discrete- and continuous-time QWs [41], namely,

Ut = C(−θ )SR
kC(θ )SL

k , (6)

where we have introduced (i) a coin operation C(θ ) =
exp(−iσ 2θ/2), where θ = π − 2δ, and (ii) left and right
internal-state-dependent shifts, SL

k = diag(eik, 1) and SR
k =

diag(1, e−ik ), where k is the quasimomentum operator associ-
ated to the matrix representation of the position basis (|p〉)p∈Z.

In the Appendices, we extend our time-discretization
method to Wilson’s Hamiltonian in the original internal-
space representation, which allows for any choice of Wilson’s
parameter, r. We also U(1) gauge our DTQWs; the lattice
gauge transformations involve, notably, the standard finite
differences used in LGT, instead of the more complicated
ones used in Ref. [20]. We suggest a gauge-invariant quantity
on the space-time lattice and a classical on-shell dynamics
(Maxwell’s equations) for it, more appropriate than that of
Ref. [20].
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IV. CONCLUSION AND PERSPECTIVES

Enforcing the ultralocality of the evolution operator leads
to a loss of the staggered-model chiral symmetry, and this is
unavoidable in virtue of Meyer’s 1996 no-go results stating
that no nontrivial scalar quantum cellular automaton can
be translationally invariant. Sharatchandra et al.’s staggered
discrete-time scheme is (unitary and) chiral in the staggered
sense, i.e., translationally invariant, but not ultralocal [32],
while our discrete-time scheme is (unitary and) ultralocal,
but not translationally invariant. We stress that this incom-
patability between the ultralocality of the evolution operator
and its translational invariance, proved in the 1D case in
Ref. [35], also holds in higher spatial dimensions [15,36,42],
so that lattice chiral symmetry will also have to be given up in
higher-dimensional extensions of the present work.

Our discrete-time scheme is ultralocal, so that it shares
with continuum QFTs the property that the particle’s speed
is upper bounded. However, we can only recover the ap-
propriate continuum-limit equations by first performing a
continuous-time limit, which is a nonrelativistic limit in which
the speed of light goes to infinity. In other words, setting

x/
t = c, a constant, makes it impossible to derive either
a continuous-time limit or a continuous-space-time one. This
forbids the straightforward identification of the maximum
speed of the discrete-time model as a discrete-time coun-
terpart of the speed of light of the Dirac equation in the
continuum, a question we hope to solve in future work. This
difficulty contrasts with the standard DTQW-discretized Dirac
equation, in which the discrete-space-time counterpart of the
continuum speed of light is precisely simply the ratio 
x/
t ,
which can be set constant without forbidding the continuous-
space-time limit to be performed.

Let us now compare the present work to previous works
making connections between discrete- and continuous-time
QWs. We have already mentioned that our DTQW, Eq. (6),
can be obtained from a slight though subtle formal modi-
fication of Strauch’s walk [41], which is fully explicited in
Appendix C—and which leads, at least in the continuous-
space limit, to possibly very different physics: nonrelativistic
Schrödinger equation for Strauch’s walk versus Dirac equa-
tion for the present walk. Now, this work by Strauch, is
a seminal one on connecting discrete- and continuous-time
QWs, which has inspired generalizations. The main idea of
all these works is that the continuous-time limit can only be
taken for the so-called “lazy DTQWs,” analogous to the lazy
random walks, whose continuous-time limit can be taken and
coincides with (continuous-time) Markov processes [43,44]: a
lazy DTQW is a DTQW in which the probability amplitudes
of being shifted from a given vertex to a neighboring one go
to zero with the time step, which allows for a continuous-time
limit to be taken.

Let us now comment on Childs’ work [43]. Given a
CTQW defined by its Hamiltonian acting on a vertex (Hilbert)
space, Childs first constructs a DTQW on the associated edge
(Hilbert) space.4 He then defines, on an enlarged edge space,

4In the case of a regular graph, such as a regular spatial lattice,
the edge space corresponds to the vertex space tensorized with a

a lazy DTQW, whose projection on the vertex space tends,
in the continuous-time limit, to the original CTQW. Now,
already before building the lazy DTQW (and the following
holds for the latter) the projection of the DTQW on the vertex
space is not unitary: in other words, in the discrete-time
scheme, unitarity is given up in the vertex space, and only
holds in the edge space. This nonunitarity can be checked by
direct computation. Also, an interesting way of understanding
it in the particular case of an ultralocal and translationally
invariant Hamiltonian (to which Childs’ work is not limited)
is the following: the evolution operator corresponding to
the projection of the DTQW on the vertex space inherits
by construction both the ultralocality and the translational
invariance of the Hamiltonian, so by Meyer’s 1996 no-go
results, it cannot be unitary. In constrast, our DTQW is unitary
on the vertex space (we have introduced no edge space),
thanks to giving up translational invariance. To sum up: (i)
Childs’ ultralocal time discretization preserves the (eventual)
translational invariance of the continuous-time scheme, but
gives up unitarity on the vertex space, while (ii) ours gives
up that translational invariance, but preserves unitarity on the
vertex space.5 Now, as mentioned above, making the DTQW
lazy requires, in Childs’ work, enlarging the edge space.
Reference [46] suggests an alternative lazy DTQW which
does not need an enlarged edge space to be defined, and whose
projection on the vertex space is also nonunitary (also already
before the lazy-DTQW choice). This projection method we
have been commenting on above, referred to as “dimensional
reduction” in Ref. [47], is also used in Ref. [48].6

In Ref. [49], the constructed DTQW is, this time, unitary on
the vertex space of its continuous-time limit, simply because
that vertex space is, this time, not the vertex space of the
DTQW, but has instead the same dimension as the edge space
on which the DTQW takes place: it corresponds to the original
vertex space of the DTQW, to which one adds, per vertex,
as many vertices as the number of dimensions of the coin
space, i.e., the vertex space of the CTQW is a staggered
version of the edge space on which the DTQW takes place.
This is a common point with the present work. However, the
continuous-time limit of our DTQW, Eq. (6), cannot be de-
rived by a straightforward application of the method presented
in Ref. [49]. The staggered framework of Refs. [40,49] and

coin Hilbert space; in other words, the coin-space dimension is
independent from the vertex.

5In this respect, Childs’ work is close to that of Grössing and
Zeilinger [45], while ours is close to that of Meyer [35]. That being
said, while Gössing and Zeilinger only present this translationally
invariant nonunitary one-step ultralocal evolution operator, Childs
derives it as the projection on the vertex space of an operator acting
on the edge space which is unitary: this enables one to run a unitary
evolution at each time step by working on the edge space, and to
project on the vertex space only the whole time evolution once
finished, instead of applying at each time step a nonunitary evolution
operator acting on the vertex space.

6This work is limited, unlike Childs’, to a coin space of fixed di-
mension for all vertices. The author comments, in the last paragraph,
on the differences between the two works. Notice that Childs presents
extensions to nonsparse Hamiltonians [43].
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the present work is also that of a large number of works by
Portugal and collaborators [47,50–53], with a focus, in the
two last works, on (digital) Hamiltonian simulation—that is,
the simulation of continuous-time Hamiltonian dynamics by
discrete-time schemes, a topic to which the present work be-
longs. The time-discretization method provided in Ref. [53],
in particular, is an extension to more general graphs of a sort
of even-odd splitting such as that used in Ref. [40] and in the
present work, but limited to models in which the Hamiltonians
belonging to the subgraphs mutually commute—which yields
examples of perfect state transfer. In Ref. [40], as well as
in the present work, the even and odd Hamiltonians do not
commute, so the simulation of the continuous-time dynamics
by our DTQW is only valid up to first order in the time step.
However, using this digitization still enables us to build an
evolution operator which is both unitary and ultralocal for
an arbitrary time step—although, again, it only approaches
the continuous-time Hamiltonian dynamics in the limit of a
small time step. Eventually, we ask the following question re-
garding the differences between Childs’ and Portugal’s works:
in Portugal’s work, is a method provided to time discretize
ultralocally an arbitrary CTQW, i.e., to construct a DTQW
which tends to this CTQW, such that unitarity is preserved
in the vertex space by lowering the “degree” of translational
invariance? This would be a counterpart of Childs’ work, in
which the degree of translational invariance is not lowered but
unitarity is given up in the vertex space.

Before ending this discussion about the works connect-
ing DTQWs and CTQWs, let us comment on Shikano’s
work [54], in which, among other results, Strauch’s lazy
DTQW [41] is mathematically revisited. There seems to be,
in Shikano’s paper [54], a slight generalization with respect
to Strauch’s work [41]. In particular, it seems, as apparently
supported by the caption of Fig. 5, that the CTQW derived as a
limit of a DTQW remains, in Ref. [54], essentially viewed as a
spatially discretized version of the nonrelativistic Schrödinger
equation only. It is however mentioned in that caption that
a CTQW exists, built by Childs and Goldstone (for spatial
search) [55], which delivers, in the continuous-space limit,
the Dirac equation rather than the nonrelativistic Schrödinger
equation.7 Morever, it is actually interesting to note that the
naively spatially discretized Dirac equation also appears in
Shikano’s paper [54],8 but without, apparently, being identi-

7This CTQW considered by Childs and Goldstone is essentially
the naively spatially discretized Dirac equation; our work goes
beyond this with the left-right spatial discretization, which avoids
fermion doubling. Note that Ref. [55] is earlier than Childs’ general
connection between DTQWs and CTQWs [43], which is anyway,
as explained in the previous paragraphs, different from the type of
connection that is made in the present work, which is closer to
Portugal’s work.

8See, in Ref. [54], Eq. (53) and its Fourier representation (60),
which exhibit fermion doubling (the dispersion relation is ± sin k).
This equation (53) is obtained—as mentioned below by Shikano—
by choosing γ = i (which is, interestingly, an ingredient of the
present work) in the slight generalization of Strauch’s work which
is considered in the paper.

fied or at least considered as such, only as an intermediate step
to derive, as Strauch, the nonrelativistic Schrödinger equation.

Finally, let us comment on hopes for the present work. Cur-
rently, experimental quantum simulation does not enable one
to explore LGT physics that cannot be explored numerically
via Monte Carlo sampling. The only experiment quantum
simulating LGTs is that, digital, reported in Ref. [9], which re-
produces known results. That being said, this field of research
is quickly growing, and there are many proposals of both
digital and analog quantum simulation of LGTs, as mentioned
in the Introduction. Moreover, if we do not restrict ourselves
to gauge theories, analog quantum simulation already enables
one to access new physics in condensed-matter systems [56].
Finally, if we do not restrict ourselves to quantum simulation,
but also consider tensor networks—which are mathematical
techniques inspired from quantum information, on which one
can base efficient numerical methods to be used on current,
classical computers—the limitations of Monte Carlo sampling
have already been overcome in several situations [57], giving
theoretical access to new LGT physics. Notice that tensor
networks are in particular used to benchmark the results that
one can expect from future quantum simulations of LGTs.
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SUMMARY OF THE APPENDICES

In Appendices A and B we show, respectively, that (i) the
naive spatial discretization of the (1+1)D Dirac equation and
(ii) the standard additional Wilson term can also be digitized
unitarily and ultralocally with DTQWs, via (i) the same
method or (ii) a very similar one, respectively. In Appendix C,
we give the precise link between the DTQWs introduced in
the present work and Strauch’s original one. In Appendix D,
we perform the standard even-odd, non-DTQW-based digi-
tization of the (1+1)D Dirac equation, and show that it is
unitarily mapped to the DTQW-based one, but that this map-
ping is not of near-neighbors type, i.e., it has matrix elements
arbitrarily far from the diagonal. This implies, in particular,
that it is quadratically costly, in the number of sites of the 1D
spatial lattice, to go from the non-DTQW-based digitization
to the DTQW-based one (or vice versa)—while this would
be linearly costly if the mapping was of near-neighbors type.
In Appendix E, we show how to include a U(1) gauge-field
coupling in our scheme, Eq. (6) of the paper, which gives back
the known models of Hamiltonian LGT and continuum field
theory when taking, respectively, the continuous-time limit
and an additional continuous-space limit. This U(1)-gauged
scheme is gauge invariant on the space-time lattice, and the
gauge transformations involve, notably, the standard finite
differences used in LGT, instead of the more complicated
ones used in Ref. [20]. We suggest a gauge-invariant quantity
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on the space-time lattice and a classical on-shell dynamics
(Maxwell’s equations) for it, more appropriate than that of
Ref. [20].

Note before reading. The reader may have noticed that,
in the main text, we have essentially reserved the notion of
“ultralocality” for evolution operators. We did so in order
to avoid confusion. However, this notion can be used in an
abstract, mathematical sense, for an arbitrary operator. Indeed,
given an operator acting on wave functions defined on a 1D
spatial lattice (e.g., a Hamiltonian or an evolution operator),
that is, in practice, a large matrix in the position basis, we
qualify it as “ultralocal” if its matrix elements strictly vanish
above a certain distance Dloc from the diagonal.9 Notice that
the terminology “ultralocal” is equivalent to “near neighbors.”
Notice also that the physical meaning of the ultralocality
depends a priori on the type of operator which is qualified
as ultralocal.

Before reading Appendix B, we recommend reading at
least Appendices D 1 and D 2.

APPENDIX A: UNITARY AND ULTRALOCAL
DIGITIZATION OF NAIVE FERMIONS WITH DTQWs

This digitization is simply based on the following decom-
position of the naive transport term into the sum,

H t
n = 1

2 [(H t )′ + H t], (A1)

of the left-right transport term, H t, already introduced in the
main text, and of a right-left one,

(H t )′ =
∑

p

(
H t

p

)′
, (A2)

with(
H t

p

)′ = −i

a

[
0 |p〉 〈p + 1| − |p〉 〈p|

|p〉 〈p| − |p + 1〉 〈p| 0

]
.

(A3)

We have straightforwardly that(
H t

p

)′ = (
H t

p

)♦ ≡ σ 1H t
pσ

1. (A4)

The operation ♦ thus corresponds to the exchange of the up
and down components of the Dirac wave function, which is
by the way the action of γ 5 here. Now, it is easy to check
(i) that (Hon

p )♦ is, as Hon
p , block-diagonal in the nonstaggered

position basis, so that so is its exponential, but (ii) that (H int.
p )♦

is, on the contrary to H int.
p , not block-diagonal in the staggered

9We use the word “ultralocal” rather than “local” in order to indi-
cate that we exclude “interactions” (the physical content of this word
depends on the type of operator) that, e.g., decrease exponentially
with the distance, which are also referred to as local in certain
contexts [40]. We stress that this is intended to mean, not that the
results presented here cannot be extended to nonultralocal interac-
tions, but merely that we have not considered this situation. Note the
following: here, we work with an infinite number of spatial-lattice
sites; in practice, this number is finite, and can vary depending on
our amount of resources; by definition of the notion of ultralocality,
the ultralocality distance Dloc does not grow with the number of sites.

position basis. However, it is straightforward to compute the
exponential of some operator O♦ if we know the exponential
of O, since using the power-series representation of the ex-
ponential together with the fact that (σ 1)2 = 1 immediately
gives

eO♦ = σ 1eOσ 1 ≡ (eO)♦, (A5)

i.e., the operation ♦ commutes with the exponentiation. Ap-
plying this to O = −i
tH int first shows, without needing to
explicitate the computation, that, because the evolution oper-
ator associated to H int is ultralocal, then so is that associated
to (H int )♦, which is in the end enough for our purpose. We
can thus define an appropriate ultralocal evolution operator
associated to (H t )♦/2 by (pay attention to the order)(

Ut
2a

)′ ≡ (
Uint

2a

)′(
Uon

2a

)′
, (A6)

where, for i = on, int, we have defined(
Ui

2a

)′ ≡ e−i
t (Hi )♦/2 = (e−i
tHi/2)♦ ≡ (
Ui

2a

)♦
, (A7)

where the Ui
a’s are exactly the operators that have been intro-

duced in the main text but without indicating the subscript a.
We immediately obtain(

Ut
2a

)′ = (
Ut

2a

)♦
, (A8)

where, again, Ut
a is exactly the operator that has been intro-

duced in the main text but without indicating the subscript a.
Applying the operation ♦ to Eq. (4) considered for 2a instead
of a results in

(Ut
2a)′ =

⎡⎢⎢⎢⎢⎢⎣
c̃2 s̃c̃ s̃2 −s̃c̃ · ·

−s̃c̃ c̃2 · · · ·
· · c̃2 s̃c̃ s̃2 −s̃c̃

s̃c̃ s̃2 −s̃c̃ c̃2 · ·
· · · · c̃2 s̃c̃
· · s̃c̃ s̃2 −s̃c̃ c̃2

⎤⎥⎥⎥⎥⎥⎦, (A9)

where

c̃ = cos δ̃, s̃ = sin δ̃, (A10)

with

δ̃ = δ

2
. (A11)

Now, this (Ut
2a)′ can be written as the following DTQW:(

Ut
2a

)′ = SR
kC(−θ̃ )SL

kC(θ̃ ), (A12)

where

θ̃ = π − 2δ̃. (A13)

Finally, we define an appropriate ultralocal evolution operator
for the naive transport Hamiltonian by (pay attention to the
order)

Ut
n ≡ (

Ut
2a

)′
Ut

2a, (A14)

that is,

Ut
n = [

SR
kC(−θ̃ )SL

kC(θ̃ )
][

C(−θ̃ )SR
kC(θ̃ )SL

k

]
, (A15)

which simplifies into

Ut
n = SR

kC(−θ̃ )SkC(θ̃ )Sk
(
SR

k

)−1
, (A16)
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where

Sk = SL
k SR

k =
[

eik 0
0 e−ik

]
. (A17)

Of course, we can also implement a mass term by defining

Un ≡ Um
n Ut

n, (A18)

where

Um
n ≡ exp

[
−i
t

∑
p

mα0
n |p〉〈p|

]
, (A19)

and α0
n is any 2 × 2 matrix compatible, in the sense of the

Clifford algebra, with the choice α1 = σ 1 made for the naive
transport term: for example, any Pauli matrix but σ 1.

In Appendix F, we briefly comment on how the terms of the
continuous-time naive LGT Dirac dynamics, which exhibit
no trace of lattice-chiral transport,10 are implemented by the
DTQW-based digitization described in the present Appendix.

APPENDIX B: DTQW-BASED DIGITIZATION OF THE
CONTINUOUS-TIME WILSON TERM

The Wilson term, introduced in the main text, can be
viewed as the sum of two terms: a first (second) term which,
in position space, is diagonal (of nearest-neighbors type, and
so not “even” block-diagonal),(

H (r)
d

)
p = α0 r

2a
(2 |p〉 〈p|), (B1a)(

H (r)
NN

)
p = −α0 r

2a
(|p〉 〈p + 1| + |p + 1〉 〈p|), (B1b)

where “d” (“NN”) stands for “diagonal” (“nearest neigh-
bors”). The diagonal term is, as before, irrelevant in the
following, since its exponential is ultralocal.

We want to build an ultralocal evolution operator for the
nearest-neighbors term. Can we proceed for this term, H (r)

NN,
as we did in Appendix A for the naively discretized free Dirac

Hamiltonian, H t
n, i.e., build the desired ultralocal evolution

operator via a splitting of H (r)
NN into the sum of similar left-right

and right-left terms? No, and this because of two different
reasons: first, H t

n is a transport term, which is traced by the
minus sign in |p〉 〈p + 1| − |p + 1〉 〈p|, while H (r)

NN is, in the
continuum, a mass term, which is traced by the plus sign in
|p〉 〈p + 1| + |p + 1〉 〈p|; second, even if we had a transport
term, with a minus sign, instead of a “mass term,” with a
plus sign, the choice α0 = σ 3 in H (r)

NN is not suitable for the
above-mentioned splitting, i.e., what would be α1 (and not α0)
if we had a transport term instead of a “mass term,” should be
antidiagonal, e.g., σ 1 or σ 2.

That being said, H (r)
NN is still ultralocal, and with an ultralo-

cality radius of one lattice spacing, so one can still digitize
it via a standard even-odd splitting, such as that performed
for H t

n in Appendix D. Now, if, instead of performing this
even-odd digitization directly on H (r)

NN, we first express the
latter with the Pauli matrix σ 1, which appears in H t

n, thanks
to the relation

σ 3 = Gσ 1G−1, (B2)

where

G = eiσ 2π/4 = 1√
2

[
1 1

−1 1

]
, (B3)

we naturally end up with an even-odd digitization of H (r)
NN,

that we denote by U(r)
e.o., which, up to a unitarity equivalence

induced by Eq. (B2), (i) is similar to that, Ut
e.o., of H t

n, and (ii)
enables one to infer a DTQW-based digitization, denoted by
U(r)

w (the “w” is for “walk”), via the same transformation as
that relating Ut

e.o. to Ut
n; see Eq. (D12).

The computations are equivalent to replacing a (position-
space) σ 2 appearing in H t

n by a −rσ 1, which appears in H (r)
NN

11,
and U(r)

w is thus naturally defined by the following counterpart
to Eq. (D12):

U(r)
e.o. = G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2
r · · isrcr −s2

r · · · · · · ·
· c2

r isrcr · · −s2
r · · · · · ·

· isrcr c2
r · · isrcr −s2 · · · · ·

isrcr · · c2
r isrcr · · · · · · ·

· · · isrcr c2
r · · isrcr −s2

r · · ·
· −s2

r isrcr · · c2
r isrcr · · −s2

r · ·
· · −s2

r · · isrcr c2
r · · isrcr −s2

r ·
· · · −s2

r isrcr · · c2
r isrcr · · ·

· · · · · · · isrcr c2
r · · isrcr

· · · · · −s2
r isrcr · · c2

r isrcr ·
· · · · · · −s2

r · · isrcr c2
r ·

· · · · · · · −s2
r isrcr · · c2

r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G−1 = U(r)
w , (B4)

10Chiral transport is a type of transport which has some chirality
feature, i.e., which somehow makes the internal components of the wave function move in opposite directions, typically, by choosing
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with

cr = cos δ̃r, sr = sin δ̃r, (B5)

where

δ̃r = rδ̃, (B6)

and δ̃ is given by Eq. (A11).
Now, as announced, G−1U(r)

w G can be written as DTQW
similar to Ut

n in Eq. (A16), namely,

G−1U(r)
w G = SR

k K (θ̃r )SkK (θ̃r )Sk
(
SR

k

)−1
, (B7)

where K (θ ) is given by Eq. (C2), and

θ̃r = π − 2δ̃r . (B8)

One can prove that U(r)
w and U(r)

e.o. are unitarily equivalent,
going through the same steps as those followed to show that
Ut

n and Ut
e.o. are unitarily equivalent, in Appendix D 3.

APPENDIX C: LINK WITH STRAUCH’S CONNECTION
BETWEEN DTQWs AND CTQWs

All the θ ’s appearing in this Appendix stand for θ̃ ’s, where
θ̃ is given by Eq. (A13); we omit the tilde to make the reading
more pleasant.

The DTQW operator appearing in Strauch’s work [41], that
we shall call Strauch’s operator, and with which he derived a
connection between DTQWs and CTQWs, is the following:

OStrauch ≡ S̆kK (θ )S̆kK (θ ), (C1)

with

K (θ ) = iC̆(θ ), (C2)

and

S̆k = S−1
k , (C3a)

C̆(θ ) = e−iσ 1θ/2, (C3b)

where Sk is given by Eq. (A17). Note that we can write

OStrauch = −S̆kC̆(θ )S̆kC̆(θ ). (C4)

This operator is nothing but an elementary DTQW operator,
S̆kK (θ ), applied twice.

Now, in order to make a connection with the DTQW
operators appearing in the present work, and, more precisely,
with Ut

n, Eq. (A16), one must notice the following unitarity
equivalence:

S̆k = PSkP−1, (C5a)

C̆(θ ) = PC(θ )P−1, (C5b)

the appropriate internal-Hilbert-space basis. We call lattice-chiral
transport a type of transport which has some chirality feature in
addition to that already coming from the continuous-space limit,
that is, a chirality feature in the way one performs the spatial
discretization.

11Indeed, replace −i( |p〉 〈p + 1| − |p + 1〉 〈p| ) by
−r( |p〉 〈p + 1| + |p + 1〉 〈p| ).

where C(θ ) = e−iσ 2θ/2, and the passage matrix is

P = i

[
0 e−iπ/4

eiπ/4 0

]
=

[
0 eiπ/4

−e−iπ/4 0

]
. (C6)

With this, and using for Ut
n, Eq. (A16), the notation

Ut
n = Ut

n(θ, θ ), (C7)

one can easily write

OStrauch = −PSL
k Ut

n(−θ, θ )
(
PSL

k

)−1
. (C8)

This shows that OStrauch and −Ut
n(−θ, θ ) are unitarily equiv-

alent. Now that OStrauch has a continuous-time limit implies
that in the limit of a vanishing time step 
t = 0, it equals
the identity, which is manifestly not unitarily equivalent to
−OStrauch. Hence this holds for an arbitrary time step 
t , i.e.,
−OStrauch is not unitarily equivalent to OStrauch, and is thus not
unitarily equivalent to Ut

n(−θ, θ ), since the latter is unitarily
equivalent to −OStrauch.

Taking the limit θ → π makes Strauch’s scheme coincide
with a standard CTQW on the line, instead of the previously
well-known limit θ → 0, associated to a continuum limit
in both time and space, which delivers the Dirac equation
with σ 3 as the first alpha matrix. In the present work, we
use Ut

n(θ, θ ) instead of Ut
n(−θ, θ ): this is necessary to be

able to derive a continuous-space limit after the continuous-
time one, which, as with θ → 0, makes the scheme coincide
with the Dirac equation, but in a different Clifford-algebra
representation, with σ 1 as the first alpha matrix.

Note that Strauch’s proof for the connection between
DTQWs and CTQWs already introduces the fact that one
applies twice the shift and coin operations: this appears to be a
necessary ingredient to derive a continuous-time limit from a
standard DTQW in Strauch’s (and hence in the present) frame-
work. Indeed, Strauch’s procedure to take the continuous-time
limit can be viewed as a (time-)continuum limit in the fashion
of Ref. [58], i.e., a (time-)continuum limit performed with
a stroboscope of period 2. This comes from the following
technical analogy between Strauch’s time-continuum limit
and the space-time-continuum limit of Ref. [58]: in Ref. [58],
increasing the stroboscope period from 1 to 2 enables one to
release the constraint on the zeroth-order value of the mixing
angle, i.e., no need for it to be homogeneous in space-time
anymore, for the continuum limit to exist; in Strauch’s (and
hence in the present) work, this procedure enables one to
release the constraint on the spatial smoothness of the lattice
wave function, i.e., no need to take a continuous-space limit
as we take a continuous-time limit.

APPENDIX D: NON-DTQW-BASED DIGITIZATION OF
CONTINUOUS-TIME NAIVE FERMIONS

All the θ ’s appearing in this Appendix stand for θ̃ ’s, where
θ̃ is given by Eq. (A13); we omit the tilde to make the reading
more pleasant, and this also enables us to use the tilde for
another purpose, namely, to denote the Fourier transform.

1. Presentation

The non-DTQW-based digitization is the standard even-
odd straightforward (one could say “naive”) one: the naive

032110-9



ARNAULT, PÉREZ, ARRIGHI, AND FARRELLY PHYSICAL REVIEW A 99, 032110 (2019)

transport lattice Hamiltonian is split into even and odd parts,

H t
n = H e

e.o. + Ho
e.o., (D1)

where “e.o.” is for “even-odd,” that is, it indicates that the
digitization is non-DTQW-based, and where

H e
e.o =

∑
l

(
H t

n

)
2l , (D2a)

Ho
e.o. =

∑
l

(
H t

n

)
2l+1, (D2b)

which are block-diagonal in the position basis, so that so
are their exponentials, which is the trick used to preserve
ultralocality in the time discretization.

The Trotter formula enables one to write the evolution
from time j to time j + 1 as (we now work with matrix
representations, but use, for state vectors, the same braket
notation)

| j+1〉 = Ue.o.| j〉 + O(
t ), (D3)

where, instead of the DTQW-based digitization, Eq. (A18),
we consider here

Ue.o. = Um
n Ut

e.o., (D4)

with

Ut
e.o. = Ue

e.o.U
o
e.o. (D5)

and

Ue/o
e.o. = e−i
tHe/o

e.o. , (D6)

and where the mass term is still given by Eq. (A19). After a
computation analog to that performed in the paper, we end up
with

Ue
e.o. =

⎡⎢⎢⎢⎢⎢⎣
c −σ 1s · · · ·

σ 1s c · · · ·
· · c −σ 1s · ·
· · σ 1s c · ·
· · · · c −σ 1s
· · · · σ 1s c

⎤⎥⎥⎥⎥⎥⎦,

(D7a)

Uo
e.o. =

⎡⎢⎢⎢⎢⎢⎣
c · · · · ·
· c −σ 1s · · ·
· σ 1s c · · ·
· · · c −σ 1s ·
· · · σ 1s c ·
· · · · · c

⎤⎥⎥⎥⎥⎥⎦, (D7b)

where, for a good visibility, we have written 6 × 6 matrices (of
2 × 2 matrices) in the (nonstaggered) position basis, (|p〉)p∈Z,
i.e., 12 × 12 matrices in the staggered position basis, (|n〉)n∈Z,
that is, as big as that of Eq. (B4). The product reads

Ut
e.o.=

⎡⎢⎢⎢⎢⎢⎣
c2 −σ 1sc s2 · · ·

σ 1sc c2 −σ 1sc · · ·
· σ 1sc c2 −σ 1sc s2 ·
· s2 σ 1sc c2 −σ 1sc ·
· · · σ 1sc c2 −σ 1sc
· · · s2 σ 1sc c2

⎤⎥⎥⎥⎥⎥⎦,

(D8)

which is translationally invariant only every two sites of the
(nonstaggered) position basis.

2. First comparisons with the DTQW-based digitization

Let us compare the non-DTQW-based digitization, Ut
e.o.,

given by Eq. (D8), to the DTQW-based, Ut
n (we recall that the

“n” is for “naive”), given by Eq. (A16).

a. First comment, on the compact writings

From now on, we will often consider the infinite-
dimensional matrices as linear operators acting on the wave
function � j : p → � j,p, rather than on the infinite column
vector |� j ), and will use, instead of the notation | j+1〉 =
Ue.o.| j〉 + O(
t ), the writing � j+1,p = (U� j )p + O(
t ),
without changing the notation U used for the infinite-
dimensional matrix—the context should make it clear whether
the distinction matters or not.

The one-time-step evolution equations induced by Ue.o. and
Un respectively read

 j+1,p = (Ue.o. j )p = M[c2 j,p − σ 1sc ( j,p+1 −  j,p−1)

+ s2 j,p+2(−1)p], (D9a)

� j+1,p = (Un� j )p = M
[
c2� j,p − σ 1sc (� j,p+1 − � j,p−1)

+ s2
(
S2

k� j
)

p

]
, (D9b)

with

M =
[
μ 0
0 μ∗

]
, (D10)

and where we recall that Sk is an internal-state-dependent
shift, given by Eq. (A17).

Now, we have

c = 1 + O(
t2), s = O(
t ), (D11)

so that the s2 term of Eqs. (D9a) and (D9b) vanishes in
the continuous-time limit. One could multiply s2 by any
factor as long as the evolution remains unitary and ultralo-
cal, which are the main requirements in the present work;
Eqs (D9a) and (D9b) are two such possibilities. One may
say that, in order for the ultralocal scheme to be unitary,
(i) the non-DTQW-based digitization uses as a factor of s2

a position-dependent shift, and more precisely a site-parity-
dependent shift, while (ii) the DTQW-based digitization uses
an internal-state dependent shift. In Appendix G, we show
that the even-odd scheme can actually be seen as a staggered
version of a scheme which is DTQW-based, not with the
LR coin basis, but with an even-odd coin basis that one can
introduce.

032110-10



DISCRETE-TIME QUANTUM WALKS AS FERMIONS OF … PHYSICAL REVIEW A 99, 032110 (2019)

b. More detailed comparison

We have, in the staggered position basis,

Ut
e.o. =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2 · · −sc s2 · · · · · · ·
· c2 −sc · · s2 · · · · · ·
· sc c2 · · −sc s2 · · · · ·

sc · · c2 −sc · · · · · · ·
· · · sc c2 · · −sc s2 · · ·
· s2 sc · · c2 −sc · · s2 · ·
· · s2 · · sc c2 · · −sc s2 ·
· · · s2 sc · · c2 −sc · · ·
· · · · · · · sc c2 · · −sc
· · · · · s2 sc · · c2 −sc ·
· · · · · · s2 · · sc c2 ·
· · · · · · · s2 sc · · c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ut
n, (D12)

with the following color code: all the matrix elements of Ut
e.o. are in black (the blue s2’s must be replaced by zeros), while those

of Ut
n are those in black, omitting those in blue boxes, which must replaced by zeros, and adding those in blue (which were

zeros in Ut
e.o.). Going from Ut

e.o. to Ut
n restores translational invariance (recall that Ut

e.o. is translationally invariant only every two
sites).

Now, Ut
e.o. and Ut

n are two infinite-dimensional unitary matrices. Since the usual finite-dimensional-case spectral theorem can
be extended to the infinite-dimensional case for unitary operators, both Ut

e.o. and Ut
n are diagonalizable. Hence a necessary and

sufficient condition for them to be unitarily equivalent is that they have the same eigenvalues. The answer, positive, is easily
given by a formal computation software: the 12 × 12 sub-blocks of Ut

e.o. and Ut
n given by Eq. (D12) have the same eigenvalues;

one then concludes invoking the common every-two-sites translational invariance of both infinite-dimensional matrices. In the
next section, we make use of this every-two-site translational invariance to show explicitly, by going to Fourier space, that Ut

and Wt are unitarily equivalent.

3. Mapping between the DTQW-based and the non-DTQW-based digitizations

a. In Fourier space

Ut
n is translationally invariant on the lattice {xp = pa, p ∈ Z}, but Ut

e.o. only every two lattice sites, so we compare both
evolutions by combining two consecutive lattice sites in the following way. Consider from now on that p = 2l . We define a
Fourier transform every two sites,

χ̃(K ) =
∑
l∈Z

χl e−iKl , (D13)

where we have used the notation K = 2k, and k ∈ [−π, π [ is the wave vector. We have, see Eq. (D9a) with m = 0,

(
Ut (2)

e.o. 
(2))

l =
[

c2E
l − σ 1sc

(
O

l − O
l−1

) + s2E
l+1

c2O
l − σ 1sc

(
E

l+1 − E
l

) + s2O
l−1

]
, (D14)

where Ut (2)
e.o. is the redefinition of Ut

e.o. (viewed as an operator and not a matrix) as acting on

(2) : l → 
(2)
l =

[
2l

2l+1

]
=

[
E

l
O

l

]
, (D15)

so that, expanded in the internal-Hilbert-space basis, the Fourier representation U (2) of Ut (2)
e.o. is a 4 × 4 matrix-multiplication

operator, i.e., acting as

(U (2)̃(2) )(K ) = U (2)
(K )̃

(2)
(K ), (D16)

with components

U (2)
(K ) =

⎡⎢⎢⎣
c2 + s2eiK · · −sc(1 − e−iK )

· c2 + s2eiK −sc(1 − e−iK ) ·
· −sc(eiK − 1) c2 + s2e−iK ·

−sc(eiK − 1) · · c2 + s2e−iK

⎤⎥⎥⎦. (D17)
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The corresponding matrix for Ut
n is [see Eq. (5)]

W (2)
(K ) =

⎡⎢⎢⎣
c2 + s2eiK · · −sc(1 − e−iK )

· c2 + s2e−iK −sc(1 − e−iK ) ·
· −sc(eiK − 1) c2 + s2eiK ·

−sc(eiK − 1) · · c2 + s2e−iK

⎤⎥⎥⎦, (D18)

where the “W” stands for “walk” (we could have used the
notation “Wn” instead of “Un,” since it is the DTQW-based
digitization).

U (2)
(K ) and W (2)

(K ) are two 4 × 4 unitary matrices. They are
equal in the 2 × 2 subspace formed by the first and last
columns and rows. It is thus enough to focus on the comple-
mentary subspace, formed by the second and third columns
and rows,

�
(
U (2)

(K )

) =
[

c2 + s2eiK −sc(1 − e−iK )

−sc(eiK − 1) c2 + s2e−iK

]
, (D19a)

�
(
W (2)

(K )

) =
[

c2 + s2e−iK −sc(1 − e−iK )
−sc(eiK − 1) c2 + s2eiK

]
. (D19b)

The above two matrices are unitary and thus diagonalizable
(as well as the original 4 × 4 ones). It turns out that they have
the same eigenvalues (and hence the original 4 × 4 ones as
well). Hence U (2)

(K ) and W (2)
(K ) are unitarily equivalent, i.e., there

exist B(K ) unitary such that

B(K )U (2)
(K )B−1

(K ) = W (2)
(K ), (D20)

and B(K ) is explicitly given, for example, by

B(K ) = Q(K )P−1
(K ), (D21)

where P(K ) (Q(K )) is the matrix whose (i) first and last
columns and rows are those of U (2)

(K ) (W (2)
(K )) and (ii) second

and third columns and rows are formed by the normalized
eigenvectors �(U (2)

(K ) ) [�(W (2)
(K ) )]. In particular, P(K ) (Q(K )) is

thus unitary.

b. In real space

Given our definition of the Fourier transform, Eq. (D13),
we have

�
(2)
l = 1

2π

∫ π

−π

dk �̃
(2)
(K )e

iKl , (D22)

so that

�
(2)
l = 1

2π

∫ π

−π

dk B(K )̃
(2)
(K )e

iKl (D23a)

= 1

2π

∫ π

−π

dk B(K )

(∑
l ′∈Z


(2)
l ′ e−iKl ′

)
eiKl , (D23b)

that is,

�
(2)
l =

∑
l ′∈Z

Bll ′
(2)
l ′ , (D24)

with

Bll ′ = bl−l ′ = 1

2π

∫ π

−π

dk B(K )e
iK (l−l ′ ), (D25)

which is, as B(K ), a 4 × 4 matrix, with coefficients

Buv
ll ′ = buv

l−l ′ = 1

2π

∫ π

−π

dk Buv
(K )e

iK (l−l ′ ). (D26)

We wonder whether the mapping B is ultralocal, i.e.,
whether its coefficients Bll ′ = bl−l ′ vanish when we are suffi-
ciently far from the diagonal, i.e., for |l − l ′| big enough.

Since bl−l ′ is a 4 × 4 matrix, it is convenient to reformulate
the question as whether there is at least one of its coefficients
buv

l−l ′ which do not vanish for |l − l ′| big enough, i.e., whether
there is at least one of the buv : N → buv

N of Z → C which
has not a finite support on Z. Now, inverting Eq. (D26) yields

Buv
(K ) =

∑
N ′∈Z

buv
N ′ e−iKN ′

, (D27)

so that buv has a finite support on Z if and only if the above
sum involves a finite number of terms.

Because of what we said in the last paragraph of
Appendix D 3 a, we know a priori that B(K ), which is unitary
and defined in Eq. (D21), has the following form:

B(K ) =

⎡⎢⎣1 · · ·
· ∗ ∗ ·
· ∗ ∗ ·
· · · 1

⎤⎥⎦ , (D28)

where the four asterisks stand for

�(B(K ) ) =
[

a(K ) b(K )

−eiϕb∗
(K ) eiϕa∗

(K )

]
, (D29)

which we know can be written has a generic 2 × 2 unitary
matrix, and determined pedestrianly, i.e., via the product

�(B(K ) ) = S(K )R−1
(K ), (D30)

where R(K ) (S(K )) is the matrix whose columns are formed
by the normalized eigenvectors of �(U (2)

(K ) ) [�(W (2)
(K ) )]. After
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some simplifications, we find

ϕ = 0, (D31a)

a(K ) = 2F, (D31b)

b(K ) = F [tan(δ̃)(1 + e−iK )], (D31c)

where

F = 1
2 (1 + X )−

1
2 (D32)

and

X = tan2(δ̃)

4
(2 + eiK + e−iK ). (D33)

Now, it is manifest from the following writing of B(K ),

B(K ) =F

⎡⎢⎢⎣
1
F · · ·
· 2 tan(δ̃)(1 + e−iK ) ·
· − tan(δ̃)(1 + eiK ) 2 ·
· · · 1

F

⎤⎥⎥⎦,

(D34)

that the latter will be a generalized (negative powers allowed)
polynomial of eiK , i.e., of the form of Eq. (D27) with a sum
involving a finite number of terms, if and only if F is also one.
Since |X | < 1, we have, for any ω ∈ R,

(1 + X )ω =
+∞∑
n=0

(
1

n!

n−1∏
k=0

(ω − k)

)
X n. (D35)

Applying this formula for ω = −1/2 shows that F is not
reducible to a (generalized) polynomial, i.e., it is an integer
series of X involving an infinite number of terms, and so
the mapping between the non-DTQW-based and the DTQW-
based discretizations is not ultralocal.

APPENDIX E: TOWARDS U(1) LATTICE GAUGE THEORY
WITH DTQWs

1. Left-right scheme

We now work with the abstract position basis, (|p〉)p∈Z.
Instead of the evolution operator given by Eqs. (6), consider
now

Û g;t = e−iα̂ jC(−θ )SR
k̂

SR
ϑ̂ j

C(θ )SL
ϑ̂ j

SL
k̂
, (E1)

where “g” is for “gauged,” and α̂ j and ϑ̂ j are operators which
are diagonal in the position basis, that is, α̂ j |p〉 = α j,p |p〉 ≡

t qA0

j,p |p〉 and ϑ̂ j |p〉 = ϑ j,p |p〉 ≡ −a qA1
j+1,p |p〉 , with

real-valued eigenvalues. In the continuum-space-time limit,
one gets the Dirac equation with an electric two-potential
coupling (A0, A1) through the charge q, as we are going
to show by first taking only the continuous-time limit. In
terms of the equations of motion, replacing evolution (6) by
evolution (E1) means replacing Eqs. (5) (we omit the mass) by

ψL
j+1,p = e−iαp

(
sc e−iϑp−1ψR

p−1 + c2ψL
p − sc ψR

p + s2eiϑpψL
p+1

)
,

ψR
j+1,p = e−iαp

(
s2e−iϑp−1ψR

p−1 + sc ψL
p + c2ψR

p − sc eiϑpψL
p+1

)
.

(E2)

The continuous-time limit of the above equations
yields a Hamiltonian evolution with what we shall call

the left-right gauged Hamiltonian, whose single-site
(transport) term is Ĥg;t

p = (−i/a)antidiag(|p〉 〈p| −
|p + 1〉 〈p| e−iϑ̂ j , |p〉 〈p + 1| eiϑ̂ j − |p〉 〈p|) + qÂ0

j |p〉 〈p| .
Taking now the continuous-space limit, one ends up with the
announced Dirac equation.

The gauged evolution, Eqs. (E2), is invariant under
discrete-space-time local gauge transformations, that is, in-
variant under � j,p → eiqϕ j,p� j,p, where ϕ j,p ∈ R is an arbi-
trary local phase, provided the gauge field transforms as

A0
j,p −→ A0

j,p − 1


t
(ϕ j+1,p − ϕ j,p), (E3a)

A1
j,p −→ A1

j,p + 1

a
(ϕ j,p+1 − ϕ j,p). (E3b)

In the continuous-time limit, the transformation on the
gauge field reduces to A0

p → A0
p − d

dt ϕp and A1
p → A1

p +
1
a (ϕp+1 − ϕp). Taking the continuous-space limit of the pre-
vious transformation, one recovers the standard gauge trans-
formation of an Abelian Yang-Mills gauge field, Aμ → Aμ −
∂μφ. Notice that the above gauge transformation on the space-
time lattice, which is given by standard finite differences, is
extremely simple with respect to that of Ref. [59]. This ensues
from the fact that the scheme of the present work, Eq. (6), is
chirally symmetrized with respect to that of Ref. [59], i.e.,
viewing this from another perspective, symmetrized in time:
indeed, in the present two-time-step scheme, the second step is
done with an opposite coin angle −θ , i.e., with a coin operator
which is the time symmetrized of that having angle θ .

The following quantity,

(F01) j,p ≡ (d0A1) j,p − (d1A0) j,p, (E4)

where, for any quantity Qj,p defined on the space-time
lattice, we have introduced (d0Q) j,p = (Qj+1,p − Qj,p)/
t
and (d1Q) j,p = (Qj+1,p+1 − Qj+1,p)/a, is invariant under the
transformation on the gauge field in Eqs. (E3) (since d0 and
d1 commute) and tends, in the continuous-space-time limit,
towards the standard electric tensor, F01 = ∂0A1 − ∂1A0. The
following alternate quantity,

(U01) j,p = eiqa2(F01 ) j,p, (E5)

is actually a more appropriate gauge-invariant quantity, be-
cause, as the equations of motion, Eqs. (E2), are, it is invari-
ant under the transformation Aμ

j,p → Aμ
j,p + 2w

μ
j,pπ/(q
μ),

with 
0 = 
t and 
1 = a, and w
μ
j,p ∈ Z such that w1

j+1,p −
w1

j,p �= −(w0
j+1,p+1 − w0

j+1,p), whereas (F01) j,p is not. This
quantity, Eq. (E5), is exactly that considered in Euclidean
(or Wilson), and hence discrete- (imaginary) time (Abelian)
LGTs; see Eq. (5.20) of Ref. [1]. Note that one can simply
use U01 instead of F01 for possible discrete equivalents to
Maxwell’s equations in the fashion of Ref. [20], since this
does not modify the continuum limit, given that what appears
in those equations are the (discrete) derivatives of U01.

2. Naive scheme

We have seen that Eq. (E1) is a possible U(1)-gauged
version of Eq. (6). Now, a possible U(1)-gauged version of
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Eq. (A16) is

U g;t
n = e−iα̂ j SR

k̂
Cg(−θ̃ , ϑ̂ j )Sk̂C

g(θ̃ , ϑ̂ j )Sk̂

(
SR

k̂

)−1
, (E6)

where

Cg(θ̃ , ϑ̂ j ) =
[

eiϑ̂ j cos θ̃
2 − sin θ̃

2

sin θ̃
2 e−iϑ̂ j cos θ̃

2

]
. (E7)

The continuous-time limit of the evolution induced by U g;t
n

is a Hamiltonian dynamics given by the gauged version of the
massless naive Hamiltonian, that is,(

Hg;t
n

)
p = −i

2a
α1(|p〉 〈p + 1| eiϑ̂p − |p + 1〉 〈p| e−iϑ̂p )

+ qÂ0
p |p〉 〈p| . (E8)

APPENDIX F: COMMENT ON THE DTQW-BASED
DIGITIZATION OF THE CONTINUOUS-TIME NAIVE LGT

DIRAC DYNAMICS

Let us comment on the particularity of the digitization
of the continuous-time naive LGT Dirac dynamics through
DTQW. Consider the following walk operator,

Wt(−θ̃1, θ̃2) = SR
kC(−θ̃2)SkC(θ̃1)Sk

(
SR

k

)−1
, (F1)

which is nothing but Ut
n, given by Eq. (A16), but considering

it as a function of two variables

θ̃i = π − 2δ̃i, (F2)

i = 1, 2, with

δ̃i = κi

t

2a
. (F3)

The parameter κi is introduced to keep a trace, in the calcu-
lations, of where the various terms come from in the original
discrete-time scheme. Expanding the above compact writing,
Eq. (F1), yields the following one-time-step evolution equa-
tions,

ψL
j+1,p = s̃2s̃1ψ

L
p+2 + c̃2c̃1ψ

L
p − c̃2s̃1 ψR

p+1 + s̃2c̃1 ψR
p−1,

(F4a)

ψR
j+1,p = c̃2c̃1ψ

R
p − s̃2c̃1 ψL

p+1 + c̃2s̃1 ψL
p−1 + s̃2s̃1ψ

R
p−2,

(F4b)

which correspond essentially to Eq. (D9b), but with

s̃i = cos
θ̃i

2
= sin δ̃i = δ̃i + O

(
δ̃3

i

) = κi

t

2a
+ O(
t3),

(F5a)

c̃i = sin
θ̃i

2
= cos δ̃i = 1 + O

(
δ̃2

i

) = 1 + O(
t2). (F5b)

The continuous-time limit of this scheme reads

�̇p = − 1

2a

[
κ1ψ

R
p+1 − κ2ψ

R
p−1

κ2ψ
L
p+1 − κ1ψ

L
p−1

]
. (F6)

As announced, the κi’s enable one to visualize how the
terms of the continuous-time dynamics are implemented by
the discrete-time automaton, and make it manifest, in the

continuous-time limit, the lattice-chiral aspect of the discrete-
time implementation.

APPENDIX G: EVEN-ODD DIGITIZATION AS A
DTQW-BASED DIGITIZATION BY INTRODUCING AN

EVEN-ODD COIN SPACE

The DTQW writing of Eqs. (5), namely, Eq. (6), can
actually be understood in the staggered picture, by replacing
L (R) by “even” (“odd”) and by using the staggered-picture
lattice, but this demands that one be able to realize, on this
lattice, (two-site) translations of even-site (odd-site) compo-
nents without translating the odd-site (even-site) ones. In other
words, if such translations can be realized, no single-site
translations are needed to evolve the walker on the staggered-
picture lattice, and the suggested procedure is conceptually
equivalent to the left-right picture since it naturally introduces
an even-odd (EO) internal Hilbert space. Such an even-odd
picture with even-odd internal degree of freedom should thus
simply be seen as a possible instance of the left-right picture,
with possible experimental interest.

To sum up the previous paragraph: the staggered picture
of the left-right-Hamiltonian digitization can be viewed as a
possible instance of the nonstaggered picture, provided one
can realize site-parity-dependent two-site translations on the
staggered-picture lattice. We are going to show that, similarly,
the even-odd digitization (referred to as non-DTQW-based) of
naive fermions, presented in Appendix D, can also be viewed,
under the same condition, as such a DTQW in the EO coin
basis (with, of course, an additional LR internal degree of
freedom on which no DTQW is performed).

Equation (D14) can be rewritten as

(
Ut (2)

e.o.
(2)

)
l

=
[

s̃
(
s̃E

l+1 − c̃σ 1O
l

) + c̃σ 1
(
c̃σ 1E

l + s̃O
l−1

)
−c̃σ 1

(
s̃E

l+1 − c̃σ 1O
l

) + s̃
(
c̃σ 1E

l + s̃O
l−1

)],

(G1)

that is to say,

U t (2)
e.o. =

[
s̃ −c̃σ 1

c̃σ 1 s̃

][
1 0
0 e−iK̂

][
s̃ c̃σ 1

−c̃σ 1 s̃

][
eiK̂ 0
0 1

]
,

(G2)

with K̂ = 2k̂, and where the (block) matrices are written in the
EO coin basis, that we are allowed to introduce provided one
can realize site-parity-dependent two-site translations, which
makes single-site translations unnecessary (and forbidden
if we introduce the EO coin basis). The scheme may be
rewritten as

U t (2)
e.o. = V C(−θ̃ )SR

K̂C(θ̃ )SL
K̂ V†, (G3)

with C(θ ) and SL/R
K̂

matricially given by C(θ ) and SL/R
K̂

,
respectively, but where the \mathsf font indicates that the
coin basis is here the EO one, not the LR one. We have also
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introduced the following site-parity-dependent change of LR
coin basis,

V =
[
ρ 0
0 ρ†

]
, (G4)

where

ρ = ei π
4

[
1 −i
−i 1

]
(G5)

is a square root of the Pauli matrix σ 1, i.e., ρ2 = σ 1.
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