
PHYSICAL REVIEW A 99, 032106 (2019)

Geometry of the quantum set on no-signaling faces
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Since Bell’s theorem we know that quantum mechanics is incompatible with local hidden-variable models,
the phenomenon known as quantum nonlocality. However, despite steady progress over the years, a precise
characterization of the set of quantum correlations has remained elusive. There are correlations compatible with
the no-signaling principle and still beyond what can be achieved within quantum theory, which has motivated
the search for physical principles and computational methods to decide the quantum or postquantum behavior of
correlations. Here, we identify a feature of Bell correlations that we call quantum voids: faces of the no-signaling
set where all nonlocal correlations are postquantum. Considering the simplest possible Bell scenario, we give a
full characterization of quantum voids, also understanding its connections to known principles and its potential
use as a dimension witness.

DOI: 10.1103/PhysRevA.99.032106

I. INTRODUCTION

Bell’s theorem [1] is considered among the most funda-
mental discoveries in the foundations of quantum physics.
Overall, Bell-type theorems prove that correlations gener-
ated between two (or more) noncommunicating spacelike
separated parties, and that violate certain bounds, cannot
be described through local hidden-variable models. In turn,
correlations violating such bounds are termed as Bell nonlocal
or simply nonlocal correlations (see Ref. [2] for a review).
Remarkably, quantum mechanical correlations can supersede
local hidden-variable bounds, a phenomenon called quantum
nonlocality, and experiments performed to date have con-
firmed such violations in agreement with the predictions of
quantum mechanics (Refs. [3–5] account for recent loophole-
free experiments).

It is well known that nonlocal quantum correlations re-
spect the no-signaling principle [6,7], basically stating that
spacelike separated parties cannot directly influence each
other’s measurement statistics. Strikingly, however, there are
nonsignaling correlations beyond what can be achieved within
quantum theory, i.e., correlations compatible with special rel-
ativity but of a postquantum nature [6]. Since this realization,
research in the foundations of quantum mechanics has not
only been concerned with the classical-quantum separation—
witnessed by a violation of Bell inequalities—but also with
the quantum-postquantum separation at the boundary of a set
of quantum correlations [8].

From a more foundational perspective, a number of (quan-
tum) theory-independent physical principles have been pro-
posed with the goal of explaining the boundary of the set
of quantum correlations. Namely, the principles proposed
so far are as follows: nontrivial communication complex-
ity [9], no advantage for nonlocal computation [10], infor-
mation causality and its generalization [11–13], macroscopic
locality [14], local orthogonality [15], and many-box

locality (a refinement of macroscopic locality) [16]. All of
these principles provide bounds on the set of quantum cor-
relations while reproducing some of its boundary points.
For instance, by applying most of these principles [11–16],
the Tsirelson bound [17], i.e., the maximum value, for
the paradigmatic Clauser-Horne-Shimony-Holtz (CHSH) in-
equality [18], is reproduced. On the more applied side, points
on the quantum boundary are shown to have direct rele-
vance in device-independent quantum information process-
ing [19,20], a novel framework where the successful execution
of quantum protocols can be guaranteed by measurement
statistics alone, without any need for assumptions about
the physical systems being measured or the nature of these
measurements.

Covering both foundational and applied perspectives, a
crucial aspect to better understand quantum correlations, their
potential advantages over classical resources but also their
limitations in the processing of information, relies on un-
derstanding their geometry [21]. Many more works [22–30]
have revealed a number of interesting geometrical aspects
of the set of quantum correlations. Perhaps the best avail-
able tool for studying the quantum-postquantum boundary is
the Navascues-Pironio-Acin (NPA) hierarchy [31,32], which
gives a series of outer approximations converging to a set
of quantum correlations Q. Interestingly, in a more recent
development [33], it was shown that any nonlocal correlation
which belongs to the set of almost quantum correlations
Q(1+ab), the set determined by the (1 + ab) level of the NPA
hierarchy [31,32], satisfies all physical principles proposed
so far, with two possible exceptions: (i) the information
causality principle [11,12] and its generalization [13], and (ii)
the recently proposed principle of many-box locality [16].
Thus, with our present understanding and from the known
inclusion Q � Q(1+ab) [33], we can say that any postquantum
correlation inside the almost quantum set cannot be fully
detected by known physical principles.
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Here, it is worth mentioning that apart from hierarchically
approximating or reproducing the set of quantum correlations
from theory-independent physical principles, some important
results on the geometry of the quantum set have been obtained
in the theory-dependent framework. These results are either
derived from the very mathematical structure of the quantum
mechanics itself [34–40] or by studying the interrelation of
nonlocal quantum correlations with the uncertainty princi-
ple [41], the complementarity principle [42], and measure-
ment compatibility [43] (for a recent review, see Ref. [44]).
Summing up, it is fair to say that although progress has been
made over the years, we still have a limited and fragmented
understanding of the quantum set of correlations.

In this paper, we investigate a very rich and yet almost
unexplored region of the quantum set of correlations, those
lying on the faces of the no-signaling set [45]. For our purpose
it is enough to consider the simplest Bell scenario. Applying
the known symmetries in the CHSH scenario [7,27], we focus
on analyzing one of the eight symmetries: the region defined
by the convex hull of the (canonical) Popescu-Rohrlich (PR)
box [6] and eight deterministic local boxes on the correspond-
ing local face. This gives us an eight-dimensional nonlocal
simplex whose no-signaling faces are simplexes of dimension
seven or less [46]. Within this picture we define the concept of
a quantum void, i.e., regions on the faces of the no-signaling
set where all nonlocal points are postquantum. As we show,
faces of dimension six or less can give rise to quantum voids.
As it turns out, all the no-signaling faces of dimension four
or less are quantum voids. Moving on, we analyze what
some of the known physical principles and the NPA(1 + ab)
outer approximation of the quantum set have to say about the
quantum voids. We find out that while principles such as no
violation of information causality and macroscopic locality
can reproduce some of the lower-dimensional quantum voids,
nevertheless, even the set of almost quantum correlations
Q(1+ab) cannot reproduce the six-dimensional quantum voids,
and thus none of the known physical principles can (with
our actual knowledge) reproduce such sets of postquantum
correlations. On the applied side, through an example, we
show that quantum voids can have potential applications as
device-independent dimension witnesses [47,48].

In addition, we analyze some of the no-signaling faces
which are not quantum voids. Among these, we study the
quantum Hardy nonlocal points [49–53] which live on some
of the five-dimensional faces. Considering the known re-
sults [54–57] showing the limitations of information causal-
ity, macroscopic locality, and local orthogonality princi-
ples in reproducing the maximally nonlocal quantum Hardy
point [52,53], we computed a lower bound on the maximal
success probability of Hardy’s argument over the set of almost
quantum correlations and find that the lower bound is larger
than the maximum quantum value. Our result shows that
all the known physical principles cannot (with our actual
knowledge) reproduce the maximum success probability of
Hardy’s nonlocality argument in quantum mechanics.

II. PRELIMINARIES

We will focus throughout the paper on the simplest pos-
sible Bell scenario, two spacelike separated parties, Alice

FIG. 1. Illustration of a bipartite scenario with two spacelike
separated parties Alice (A) and Bob (B). Alice inputs x and gets
an output a while Bob inputs y and gets an output b. We consider
the simplest Bell scenario where inputs and outputs are binary, i.e.,
x, y, a, b ∈ {0, 1}.

and Bob, that, upon receiving their parts of a joint physical
system, can make different measurements (labeled by X for
Alice and Y for Bob) obtaining the corresponding outcomes
(labeled A and B). All the empirically accessible data of
such a simple experiment are encoded in the probability
distribution p(a, b|x, y) that represents the correlations shared
between Alice and Bob (see Fig. 1). Further, we consider that
x, y, a, b ∈ {0, 1}, i.e., we focus on the case of binary inputs
and outputs, known as the CHSH scenario [18].

Within this context, three different sets of correlations are
of remarkable importance. The set L of local correlations
refers to probabilities p(a, b|x, y) that can be reproduced by
local hidden-variable models, that is,

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ), (1)

where the measurement outcomes are local responses to their
corresponding inputs and to the source of shared correlations
represented by �. In turn, the quantum mechanical description
based on Born’s rule states that the set Q of quantum correla-
tions is derived from

p(a, b|x, y) = Tr
[(

Mx
a ⊗ My

b

)
�
]
, (2)

where {Mx
a} and {My

b} represent measurement operators and
� a joint quantum state. Finally, we can define the set NS of
no-signaling correlations by the linear constraints,

∑
b

p(a, b|x, y) = p(a|x) =
∑

b

p(a, b|x, y′), (3)

∑
a

p(a, b|x, y) = p(b|y) =
∑

a

p(a, b|x′, y), (4)

as saying that distant observers should not influence the
measurement statistics of each other (otherwise superluminal
communication would be possible). A fundamental result in
the geometry of Bell correlations states that L � Q � NS (see
Fig. 2). The first strict inclusion follows from Bell’s theo-
rem [1], showing that there are nonlocal quantum correlations.
The second strict inclusion follows from Ref. [6], showing the
existence of postquantum no-signaling correlations.
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FIG. 2. An illustration of the strict inclusion relation L � Q �

NS in the bipartite two-input two-output scenario. The local face
marked CHSH represents a hyperplane corresponding to the Bell-
CHSH inequality.

In the CHSH scenario, the no-signaling correlations have
been fully characterized in Ref. [7]; the set forms an eight-
dimensional polytope with 24 vertices. Out of these vertices,
16 are local whereas eight nonlocal. To represent all the 24
vertices, we will use the notation δr,s, meaning that

δr,s =
{

1, if r = s,
0, otherwise.

The nonlocal vertices are the eight symmetries of the PR
box and can be expressed in terms of parameters α, β, γ ∈
{0, 1} as follows,

pα,β,γ

PR (a, b|x, y) = 1
2δa⊕b,xy⊕αx⊕βy⊕γ . (5)

The “canonical” PR box corresponds to the parameters
(α, β, γ ) = (0, 0, 0). In turn, the 16 local vertices, which are
merely all possible local deterministic probability distribu-
tions, can be written in terms of parameters α1, α2, β1, β2 ∈
{0, 1} as follows,

pα1,α2,β1,β2,

L (a, b|x, y) = δa,α1x⊕α2δb,β1y⊕β2 . (6)

The local set L is another polytope generated by the 16 local
vertices, and it is an eight-dimensional subpolytope of the NS
polytope. Moreover, as shown in Ref. [7], L has exactly eight
nontrivial faces which are in a one-to-one correspondence
with the eight symmetries of the CHSH inequality [18],

p(0, 0|0, 0) + p(0, 0|0, 1) + p(0, 0|1, 0)

−p(0, 0|1, 1) − pA(0|0) − pB(0|0) � 0, (7)

where p(a = 0, b = 0|x = 0, y = 0) = p(0, 0|0, 0) (similarly
to the other terms) and pA(0|0) = ∑

b p(a = 0, b|x = 0, y)
is the marginal distribution of Alice [similarly for pB(0|0)].
Each of the symmetries of the CHSH inequality is violated
(maximally) by exactly one of the symmetries of the PR box.
For example, the CHSH inequality (7) is violated maximally
by the canonical PR box p0,0,0

PR (a, b|x, y) = 1
2δa⊕b,xy, whereas

none of the remaining seven PR boxes violates (7). Finally,
from the strict inclusion relation L � Q � NS, we see that the
quantum set is an eight-dimensional set (a convex set though
not a polytope).

By referring to the known symmetries of the no-signaling
polytope in the CHSH scenario [27], without loss of general-
ity, it is sufficient to consider nonlocal correlations in any one

of the symmetric regions. Therefore, in this paper, we will
focus on the nonlocal region defined by the convex hull of the
canonical PR box (henceforth referred to simply as “the PR
box”), and the eight local vertices on the local facet derived
from “the CHSH inequality” given by condition (7).

III. THE NONLOCAL SIMPLEX AND ITS FACES

Let the set of 16 joint probabilities, in the CHSH scenario,
{p(a, b|x, y) : a, b, x, y ∈ {0, 1}}, be represented as a vector
�p = (p1, p2, . . . , p16) ∈ R16. We order the elements of this
vector according to the following rule, p(a, b|x, y) → pi,
where the index i can be determined from i = 23c + 22x +
21y + a + 1, and c = a ⊕ b ⊕ xy ⊕ 1. The symbol ⊕ repre-
sents addition modulo 2. For example, in this ordering, the
vector of probabilities corresponding to the PR box is

�pPR = (
0, 0, 0, 0, 0, 0, 0, 0, 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2

)
.

We consider the eight probabilities {pi : 1 � i � 8} as free
variables. Then, the remaining eight probabilities {pj : 9 �
j � 16} can be written in terms of free variables by using the
no-signaling and normalization conditions as follows,

p j = pl + pm + pn + 1

2

(
1 −

8∑
i=1

pi

)
, (8)

where the indices of free-variable probabilities pl , pm, pn are
given by

l = 22x + 2(y ⊕ 1) + a + 1, (9)

m = 22(x ⊕ 1) + 2y + (a ⊕ y ⊕ 1) + 1, (10)

n = 22(x ⊕ 1) + 2(y ⊕ 1) + (a ⊕ y) + 1. (11)

In terms of the joint probabilities which we consider as free
variables, the CHSH inequality (7) takes the following form,

1 −
8∑

i=1

pi � 0. (12)

On the facet, of the local polytope L, corresponding to
the CHSH inequality (12), there are eight local vertices
which we denote by {Li : 1 � i � 8}. The correspondence
between these eight local vertices and the values of parameters
(α1, α2, β1, β2) is as follows:

L1 ≡ (1, 0, 1, 1), L2 ≡ (1, 1, 1, 0),

L3 ≡ (0, 0, 1, 0), L4 ≡ (0, 1, 1, 1),

L5 ≡ (1, 1, 0, 1), L6 ≡ (1, 0, 0, 0),

L7 ≡ (0, 0, 0, 0), L8 ≡ (0, 1, 0, 1). (13)

It turns out that for local vertex Li, the free-variable probabil-
ities pk = δik , where 1 � k � 8.
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We consider the region which is a convex hull of the PR
box and eight local vertices {Li : 1 � i � 8}. Henceforth we
call this region a nonlocal region and denote it by NL (since
all points in this region except those which are on the local
face are nonlocal points). It turns out that this region forms an

eight-dimensional simplex [46]. To show this, we arrange all
the vectors of the nine vertices of the NL polytope in a matrix.
The first eight rows of this matrix correspond respectively
to the eight local vertices {Li : 1 � i � 8} and the ninth row
represents the PR box; the resulting matrix is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�pL1 : 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
�pL2 : 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
�pL3 : 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
�pL4 : 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1
�pL5 : 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0
�pL6 : 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1
�pL7 : 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
�pL8 : 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0
�pPR : 0 0 0 0 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is now easy to see that the nine rows of the above given
matrix are affinely independent, which means that on sub-
tracting any one row from the remaining eight rows, the
resulting eight vectors are linearly independent. Therefore,
the region NL is simply an eight-dimensional simplex with
nine vertices given by the PR box and eight local vertices
{L1, L2, L3, L4, L5, L6, L7, L8}.

Moving on, we now classify all the (proper) faces [45] of
the nonlocal simplex. Since we discuss faces of a simplex, it
is easy to characterize all of them: Consider a d-dimensional
simplex defined by a set of vertices V = {v1, v2, . . . , vd+1},
then any nonempty proper subset S � V defines a (proper)
face FS of the simplex, where the face FS is the convex hull
of all points in S. The NL simplex has eight nonlocal facets
of dimension seven (each defined by a convex hull of the PR
box and seven local vertices) and one local facet of dimension
seven (defined by a convex hull of eight local vertices). We
note that there will be many nonlocal and local faces of
dimension less than seven which are contained in the facets of
highest dimension seven. Among these faces, all the nonlocal
faces of the simplex can be determined as follows: Consider a
nonempty subset {pi1 , . . . , pik } of the set of eight free-variable
probabilities {p1, p2, . . . , p8}, and then assigning the value
zero to all probabilities of any such subset defines a nonlocal
face. On the other hand, if we assign the value zero to any
non-free-variable probability, then from Eq. (8) it follows
that (1 − ∑8

i=1 pi ) � 0, which means that the Bell-CHSH
inequality (12) cannot be violated. Therefore, assigning the
value zero to any non-free-variable probability will lead only
to some local face(s). Since the interesting aspect is to analyze
the nonlocal faces, in the remaining parts of this paper, we
will deal only with nonlocal faces of different dimensions,
i.e., faces which are derived by assigning the value zero to
a number of free-variable probabilities. Thus, any nonempty
subset S of the set of all free-variable probabilities {pi : 1 �
i � 8} defines a nonlocal face FS if we set all probabilities
in the subset S to zero. The number 8 − |S| in turn gives the
dimension of the nonlocal face FS . For example, if S = {pi :
1 � i � 8}, we get a face of dimension zero, and this face
contains only one nonlocal point which is the PR box. At the
other extreme, for example, S = {p8} defines a nonlocal face
of maximal dimension seven which is simply a set of all points

in the convex hull of the PR box and seven local deterministic
points {L1, L2, . . . , L7}.

IV. SOME EXAMPLES OF QUANTUM CORRELATIONS
ON NONLOCAL FACES OF THE “NL” SIMPLEX

Let us denote set of all quantum points in the simplex NL as
QNL. One interesting aspect is that there are nonlocal points in
QNL which live on some of the faces of the NL simplex, and in
this section we give some such examples. Let the observable
(or input) of Alice be denoted by Aα and that of Bob by
Bβ , where α, β ∈ {0, 1}. Now consider that, for parameters
a, x, y ∈ {0, 1}, a set of four joint probabilities satisfies the
following four conditions,

p(a, a ⊕ xy|Ax, By) > 0, (14)

p(i, a ⊕ xy|Ax⊕1, By) = 0, (15)

p(a, j|Ax, By⊕1) = 0, (16)

p(i ⊕ 1, j ⊕ 1|Ax⊕1, By⊕1) = 0, (17)

where

i = a ⊕ y ⊕ 1, (18)

j = xy ⊕ x ⊕ a ⊕ 1. (19)

Then, from conditions (14)–(17), for any choice of
i, j, a, x, y ∈ {0, 1}, one can give Hardy’s argument [49]
showing that the joint probability distribution satisfying
these four conditions must be nonlocal. The joint proba-
bility in condition (14), in turn, is referred to as the suc-
cess probability of Hardy’s argument. Hardy’s nonlocality
argument is as follows: Suppose that a probability distri-
bution which satisfies conditions (14)–(17) has a determin-
istic local-hidden-variable model [58], with λ ∈ �. Then,
condition (14) implies that there is at least one λ∗ ∈ �

for which Ax(λ∗) = a and By(λ∗) = a ⊕ xy. Now, Eqs. (15)
and (16) respectively imply that for the hidden variable λ∗,
Ax⊕1(λ∗) = i ⊕ 1 and By⊕1(λ∗) = j ⊕ 1. However, Eq. (31)
shows that there cannot be any hidden variable λ such that
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Ax⊕1(λ) = i ⊕ 1 and By⊕1(λ) = j ⊕ 1, which is a contradic-
tion. Therefore, any probability distribution satisfying condi-
tions (14)–(17) cannot have a local hidden-variable model and
hence it must be nonlocal.

The choice of condition on i and j in Eqs. (18) and (19)
ensures that the joint probabilities appearing in Eqs. (15)–(17)
belong to the set of free-variable probabilities. Notice that the
nonzero probability in Eq. (14) does not belong to the set of
free-variable probabilities. To sum up, conditions (14)–(19)
basically give all Hardy nonlocal points contained in the NL
simplex that we consider. For instance, the PR box (a vertex
of the NL simplex and a Hardy nonlocal point) satisfies all the
conditions (14)–(19).

We know that Hardy nonlocality arguments have quantum
solutions [49–51]. In Ref. [50] it was shown that given any set
of qubit measurements (such that measurements of each party
do not commute) one can always find a two-qubit entangled
state leading to Hardy’s nonlocality argument. In turn, it was
shown in Ref. [51] that for a given set of measurements there
is a unique pure state achieving such correlations. Therefore,
since all possible Hardy nonlocality arguments given by con-
ditions (14)–(19) have quantum solutions, we know that every
seven-dimensional nonlocal facet of the NL simplex contains
nonlocal quantum correlations.

V. CHARACTERIZATION OF ALL NONLOCAL FACES
OF THE NL SIMPLEX

Another interesting aspect of nonlocal faces of the NL
simplex is that some of these faces are quantum voids, i.e.,
all the nonlocal points on these faces are postquantum. In
what follows, first we prove the existence of quantum voids
of maximal possible dimension, and then we use the result
to characterize all nonlocal faces of any dimension into two
categories: (i) quantum voids and (ii) not quantum voids.

A. Six-dimensional quantum voids on nonlocal faces

We first show that the nonlocal simplex contains nonlocal
faces of maximal possible dimension six in which all nonlocal
correlations (points with a nonzero weight for the PR box) are
postquantum.

Consider six-dimensional nonlocal faces defined by as-
signing the value zero to the following two free-variable
probabilities,

p(a ⊕ 1, a ⊕ xy|x, y) = 0, (20)

p(a ⊕ 1, a ⊕ xy ⊕ x|x, y ⊕ 1) = 0, (21)

where a, x, y ∈ {0, 1}.
Proposition 1. Six-dimensional nonlocal faces of the NL

simplex defined by Eqs. (20) and (21) are quantum voids.
Proof. Let the two supporting hyperplanes, p(a ⊕ 1, a ⊕

xy|x, y) = 0 and p(a ⊕ 1, a ⊕ xy ⊕ x|x, y ⊕ 1) = 0, of the
eight-dimensional quantum region QNL be denoted respec-
tively by H1 and H2. Consider the section of the quantum
region defined by Q12

NL = QNL ∩ H1 ∩ H2. Since QNL is a
convex set, all the extremal points of Q12

NL are also extremal
points of QNL, which in turn are extremal points of the
quantum set Q. From the results in Refs. [36,37], it then

follows that all the extremal points of Q12
NL can be achieved

via projective measurements on two-qubit pure states. By
optimizing over all such measurements and states we will
show that all correlations in Q12

NL are local, thus proving the
quantum void.

Consider quantum correlations generated by a two-qubit
pure state |	〉, the two projective measurements performed
by Alice given by the orthonormal basis {|αx

0〉, |αx
1〉} and

{|α(x⊕1)
0 〉, |α(x⊕1)

1 〉}, and similarly for Bob given by {|βy
0〉, |βy

1〉}
and {|β (y⊕1)

0 〉, |β (y⊕1)
1 〉}. In order to represent the state |	〉,

we choose an orthonormal basis given by {|αx
0〉 ⊗ |βy

0〉, |αx
0〉 ⊗

|βy
1〉, |αx

1〉 ⊗ |βy
0〉, |αx

1〉 ⊗ |βy
1〉}. The first constraint Eq. (20)

implies that 〈
αx

a⊕1β
y
a⊕xy

∣∣	〉 = 0, (22)

and the second constraint Eq. (21) implies that〈
αx

a⊕1β
y⊕1
a⊕xy⊕x

∣∣	〉 = 0. (23)

Since {|βy
0〉, |βy

1〉} defines a basis of the second party,
we can write |βy⊕1

a⊕xy⊕x〉 = c0|βy
a⊕xy〉 + c1|βy

a⊕xy⊕1〉. Therefore,
Eq. (23) can now be written as

c∗
0

〈
αx

a⊕1β
y
a⊕xy

∣∣	〉 + c∗
1

〈
αx

a⊕1β
y
a⊕xy⊕1

∣∣	〉 = 0. (24)

Then, from Eqs. (22) and (24), it follows that either c1 = 0
(meaning that Bob’s measurements commute and thus can
only lead to local correlations), or that 〈αx

a⊕1β
y
a⊕xy|	〉 = 0 and

〈αx
a⊕1β

y
a⊕xy⊕1|	〉 = 0, implying |	〉 = |αx

a〉 ⊗ (k0|βy
a⊕xy〉 +

k1|βy
a⊕xy⊕1〉), which is a separable state (again, only generat-

ing local correlations). �
Finally, we note that replacing the second constraint, i.e.,

Eq. (21), by the following equation,

p(a ⊕ 1 ⊕ y, a ⊕ xy|x ⊕ 1, y) = 0, (25)

we get another set of six-dimensional quantum voids (the
proof runs similar to that for Proposition 1).

B. All quantum voids of the NL simplex

To characterize all the nonlocal faces of the NL simplex
into two categories, (i) quantum voids and (ii) not quantum
voids, first, we use the results that we have derived for six-
dimensional quantum voids. All these results are summarized
in Fig. 3, which is a bipartite graph with the eight free-
variable probabilities as nodes, and an edge connecting two
nodes means that assigning value zero to the two probabilities

FIG. 3. A bipartite graph with all free-variable probabilities as
nodes. An edge between two nodes means the two probabilities
(when assigned the value zero) define a six-dimensional quantum
void.
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FIG. 4. An illustration of the relation between different dimen-
sional faces of the NL simplex, and the two categories: (i) Q-void
and (ii) not Q-void. Here, one can see that all faces of dimension
d � 4 are Q-voids; five- and six-dimensional faces can be of both
types, Q-voids and not Q-voids; and all seven-dimensional faces are
not Q-voids.

corresponding to the two nodes leads to a six-dimensional
quantum void.

From Fig. 3 one can find all possible quantum voids, except
for two of them. Basically, this follows first by noticing that all
the lower-dimensional faces of the six-dimensional voids are
also quantum voids. Next, on considering all the remaining
nonlocal faces, i.e., those defined by subsets of free-variable
probabilities such that according to Fig. 3 there is no edge
between any two points of these subsets, we find that, with two
exceptions, all such subsets define faces containing quantum
nonlocal points (see the Appendix for details). In Fig. 3, let
us name the set of points in column 1 as S1 and that in the
column 2 as S2. The two quantum voids which do not follow
from Fig. 3 are the four-dimensional nonlocal faces defined
by the subsets S1 = {p1, p2, p7, p8} and S2 = {p3, p4, p5, p6}
(see the Appendix for a proof). We summarize the information
about the nonlocal faces of given dimensions, which can be
a quantum void or not a quantum void, in Fig. 4. Here, we
note that some of the four-dimensional quantum voids have
been derived before in Ref. [59], which is study of Hardy’s
nonlocality paradox for the set of NS correlations.

VI. CERTAIN CLASS OF CONVEX SETS
IN THE NONLOCAL SIMPLEX

After characterizing all the nonlocal faces into two classes,
(i) faces that are quantum voids and (ii) faces that are not
quantum voids, we study the two classes in light of some
known physical principles and the almost quantum set Q(1+ab).
It is known that all levels of the NPA outer approximations of
Q are convex sets [26], thus, a set of correlations respecting
the macroscopic locality principle (level 1 of the NPA hier-
archy), and the set of almost quantum correlations Q(1+ab)

(level 1 + ab of the NPA hierarchy), are convex sets. On
the other hand, it is known that one of the known necessary
conditions for respecting the information causality principle
is Uffink’s inequality [22], which again generates a convex
set [25]. These observations lead us to derive a general result
which will cover all the above-mentioned types of convex sets.
We simply denote such sets by Q(k), where the superscript k
will be replaced by a particular convex set as required.

So we consider convex outer approximations Q(k) of the
quantum set Q restricted to the nonlocal simplex NL. As

the intersection of two convex sets is convex, the resulting
restricted set Q(k)

NL = Q(k) ∩ NL is also convex. We will use
the notation ch for the convex hull of a set of points. Now
consider a representation of the nonlocal boundary, denoted
by ∂Q(k)

NL, as a function from the set of points on the local face
to some real number, i.e., ∂Q(k)

NL : ch({L1, . . . , L8}) → R. We
define such a function as follows: We consider a local point
x ∈ L = ch({L1, . . . , L8}) and join it with a point representing
the PR box; the set of all points on this line segment can be
expressed as μPR + (1 − μ)Lx, where 0 � μ � 1. Now we
define ∂Q(k)

NL(x) = μ
(k)
∗ so that μ

(k)
∗ is the maximum value of

μ(k) on the considered line segment. The region Q(k)
NL is the

hypograph of the function ∂Q(k)
NL(x) = μ

(k)
∗ ; moreover, since

Q(k)
NL is convex, this implies that the function ∂Q(k)

NL(x) = μ
(k)
∗

is a concave function [60]. Note that ∂Q(k)
NL(x) is a non-

negative function.
Since we are studying the nonlocal boundary of Q on faces

of the NL simplex, we define the restrictions to a convex set
Q(k) in the lower-dimension simplexes ch({PR, Li1 , . . . , Lid }),
where SL = {Li1 , . . . , Lid } � {L1, L2, . . . , L8} is a set of d
local deterministic points. Then ∂Q(k)

NL(x) = μ
(k)
∗ ∀ x ∈ ch(SL )

and it is a non-negative concave function.
Proposition 2. Consider some interior point x0 of the

domain ch(SL ), then ∂Q(k)
NL(x0) = 0 if and only if ∂Q(k)

NL(x) = 0
for all points x ∈ ch(SL )\{x0}.

Proof. Only if part, suppose that ∂Q(k)
NL(x0) = 0 and

∂Q(k)
NL(x) > 0 for some x ∈ ch(SL ). Then, given that x0 is an

interior point, there exists a point y ∈ ch(SL ) such that x0 =
λx + (1 − λ)y, where λ ∈ (0, 1). Since the function ∂Q(k)

NL(·)
is concave, ∂Q(k)

NL(x0) � λ∂Q(k)
NL(x) + (1 − λ)∂Q(k)

NL(y) > 0,
which contradicts our initial assumption that ∂Q(k)

NL(x0) = 0.
Next, for if part, suppose that ∂Q(k)

NL(x0) > 0 and
∂Q(k)

NL(x) = 0 for all x ∈ ch(SL )\{x0}. Given that x0 is an inte-
rior point, there exist two distinct points {y, z} ∈ ch(SL )\{x0}
such that y = λx0 + (1 − λ)z, where λ ∈ (0, 1). Then, from
concavity of the function ∂Q(k)

NL(·), we get ∂Q(k)
NL(y) �

λ∂Q(k)
NL(x0) + (1 − λ)∂Q(k)

NL(z), implying that ∂Q(k)
NL(x0) = 0;

this contradicts our initial assumption ∂Q(k)
NL(x0) > 0. �

VII. PHYSICAL PRINCIPLE(S) AND QUANTUM VOIDS

In this section we study the quantum voids in light of
some known physical principles and the almost quantum set
Q(1+ab). For this purpose, the result about the class of convex
sets derived in the previous section will be used. Since the
exact analytical expressions for the necessary condition for
respecting the information causality principle, i.e., Uffink’s
inequality [22], and the macroscopic locality principle [14]
are known, we first checked the reproducibility of the
quantum voids with the help of these two principles. Next, as
required, we check the reproducibility of some of the quantum
voids by the set of almost quantum correlations Q(1+ab) [33],
which in turn empowers us to draw a general conclusion
about the reproducibility of quantum voids from all known
physical principles [9–11,14,15]. Before presenting our
results below, first, in the following, we give a brief account
of the information causality principle, the macroscopic
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locality principle, and the set of almost quantum
correlations Q(1+ab).

A. Information causality principle

The information causality principle [11,12] can be formu-
lated quantitatively through an information-processing game
played between two parties, Alice and Bob. Alice receives a
randomly generated N-bit string �x = (x0, x1, . . . , xN−1), and
Bob is asked to guess Alice’s ith bit, where i is a random
question from the set {0, 1, 2, . . . , N − 1}. Alice is allowed
to send an M-bit message (M < N). Say Bob’s answer is βi.
Then, the information that Bob can potentially acquire about
the bit xi of Alice is given by the Shannon mutual information
I (xi : βi ). The statement of the information causality principle
is that the total potential information about Alice’s bit string
�x accessible to Bob cannot exceed the quantity of the mes-
sage he received from Alice, i.e., I = ∑N

i=1 I (xi : βi ) � H (M )
[H (M ) being the Shannon entropy of the message]. It is
known that all quantum correlations respect the information
causality principle. For the bipartite two-input and two-output
scenario it was shown that a necessary condition for respect-
ing the information causality principle turns out to be Uffink’s
inequality [22] (one of the first examples of a polynomial Bell
inequality developed further in a recent work [61]). Uffink’s
inequality is as follows,

(C00 + C10)2 + (C01 − C11)2 � 4, (26)

where Cxy = p(a ⊕ b = 0|x, y) − p(a ⊕ b = 1|x, y). There-
fore, any violation of Uffink’s inequality implies that the
information causality principle is violated. A condition that
is both necessary and sufficient for respecting the information
causality principle is not known to date. However, a general-
ization of this principle [13] leads to tighter conditions which
enables detecting some postquantum nonlocal correlations
where Uffink’s inequality fails. On the other hand, it is known
that the set of correlations defined by Uffink’s inequality is a
convex set but it is not closed under wirings [25]; this implies
that some correlations which do not violate Uffink’s inequality
can do so [25,62] by nonlocality distillation [63–65]. We will
focus on testing the necessary condition for respecting the
information causality principle, i.e., Uffink’s inequality.

B. Macroscopic locality principle

The principle of macroscopic locality, in a bipartite sce-
nario, states that if N independent pairs of particles are emitted
from sources such that the information about which source
emitted which pair is lost, and only a coarse-grained measure-
ment is possible on a bunch of N particles at both ends, then if
the number N is very large (i.e., N → ∞), the measurement
statistics of such a coarse-grained (macroscopic) experiment
cannot lead to a violation of any Bell inequality, i.e., the
coarse-grained statistics will have a local hidden-variable
model (see Ref. [14] for more details). Quantum correlations
respect the macroscopic locality principle, however, it is not
true for all NS correlations, for example, the PR box does
not respect this principle. In Ref. [31] it was shown that,
in a bipartite, two-input, and two-output scenario, the set of
correlations generated by level 1 of the NPA hierarchy Q(1) is

exactly those correlations which respect the macroscopic lo-
cality principle. Moreover, this set can be exactly identified by
an analytical condition, which is both necessary and sufficient
for respecting this principle. This condition is as follows: If
Cx �= 1 and Cy �= 1 for all x, y ∈ {0, 1},∣∣∣∣∣∣

1∑
x,y=0

(−1)xy sin−1 Dxy

∣∣∣∣∣∣ � π, (27)

where Dxy = Cxy−CxCy√
(1−C2

x )(1−C2
y )

, Cxy = ∑
a=b p(a, b|x, y) −∑

a �=b p(a, b|x, y), Cx = ∑
b[p(0, b|x, 0) − p(1, b|x, 0)],

Cy = ∑
a[p(a, 0|0, y) − p(a, 1|0, y)]. Otherwise, the correla-

tions are local-deterministic and they respect the macroscopic
locality principle.

C. Set of almost quantum correlations

The set of almost quantum correlation Q(1+ab) was pro-
posed in Ref. [33] as a possible set of correlations which may
possibly exist in nature, however, a recent study [66] by some
of the same authors has demonstrated that this now seems very
unlikely. The set Q(1+ab) corresponds to the 1 + ab level of
the NPA hierarchy, and hence it is an outer approximation
to the quantum set Q. One of the very interesting properties
of the set Q(1+ab), as shown in Ref. [33], is that correlations
which are postquantum but live inside Q(1+ab) cannot be
reproduced (with our current knowledge) by all the so far
proposed physical principles [33].

D. Reproducibility of quantum voids by physical principles

For testing the strength of the outer approximations Q(k)

in reproducing any d-dimensional quantum void, note that,
empowered by Proposition 2, it is now enough to compute the
values of μ

(k)
∗ on any one line segment joining the PR box with

some interior local point xint ∈ ch(SL ). We suitably choose
d local deterministic vertices such that SL = {Li1 , . . . , Lid }
defines the local face of a d-dimensional quantum void. Thus,
for studying these voids it is enough to consider an equal
mixture (center point) of all local deterministic points, i.e.,
Lc = 1

d (Li1 + · · · + Lid ), and then consider the line segment
joining the PR box to the local point Lc. On this line segment,
if μ

(k)
∗ = 0, we conclude that the considered quantum void can

be reproduced by Q(k), otherwise it is not.
On applying the necessary condition for respecting the in-

formation causality principle (26), i.e., Uffink’s inequality and
the macroscopic locality principle (27), we get examples of
the following three possibilities, quantum voids reproducible
by (i) both information causality and macroscopic locality, (ii)
macroscopic locality but not by Uffink’s inequality, and (iii)
neither by Uffink’s inequality nor by macroscopic locality.
Examples of quantum voids for all the three cases exist up
to four-dimensional quantum voids. However, for all five- and
six-dimensional quantum voids neither Uffink’s inequality nor
macroscopic locality could reproduce any of the quantum
voids. In what follows, we give a few examples.

One-dimensional quantum voids. All these quantum voids
are reproducible both by Uffink’s and macroscopic locality
conditions. For example, on considering μPR + (1 − μ)L1,
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both the information causality and macroscopic locality prin-
ciples are violated for all 0 < μ � 1.

Two-dimensional quantum voids. All these quantum voids
are reproducible by the macroscopic locality principle. Some
of these voids can be reproduced by macroscopic locality but
not by Uffink’s inequality, for example, ch{PR, L1, L3}; on
the other hand, some of these voids can be reproduced both
by macroscopic locality and Uffink’s inequality, for example,
ch{PR, L1, L5}.

Three-dimensional quantum voids. Here, we have exam-
ples of all three types. An example of a void reproducible
by both information causality and macroscopic locality is
ch{PR, L1, L5, L6}, an example of a void reproducible by
macroscopic locality but not by information causality is
ch{PR, L1, L3, L4}, and an example of a void which cannot be
reproduced either by Uffink’s inequality or by macroscopic
locality is ch{PR, L1, L4, L5}.

Four-dimensional quantum voids. Here, also we have ex-
amples of all three types. An example of a void reproducible
by both information causality and macroscopic locality is
ch{PR, L1, L2, L5, L6}, an example of a void reproducible
by macroscopic locality but not by Uffink’s inequality is
ch{, L1, L2, L3, L4}, and an example of a void which cannot
be reproduced either by Uffink’s inequality or by macroscopic
locality is ch{PR, L1, L3, L4, L5}.

Five- and six-dimensional quantum voids. For all the five-
and six-dimensional quantum voids, we find that none of these
voids can be reproduced by Uffink’s inequality or macro-
scopic locality conditions. Therefore we checked if some
of these quantum voids can be reproduced by the set of
almost quantum correlations Q(1+ab). We checked the 1 + ab
level of the NPA hierarchy and find that none of the six-
dimensional quantum voids can be reproduced by Q(1+ab). For
example, by considering the six-dimensional quantum void
ch(PR, L1, L2, L3, L4, L5, L7), we find the maximum value
μ

Q(1+ab)

∗ , for the correlations on the line segment μPR +
1−μ

6 (L1 + L2 + L3 + L4 + L5 + L7), over the set of almost
quantum correlations Q(1+ab). For this we wrote a program
in MATLAB, calling the function NPAHierarchy(�p, 1 + ab)
from QETLAB [67], and computed the maximum value of
μ

Q(1+ab)

∗ for the set of almost quantum correlations. We find
that μ

Q(1+ab)

∗ � 0.000 94, which is a strictly positive number.
Then it follows from Proposition 2 that the considered six-
dimensional quantum void cannot be reproduced by the set
of almost quantum correlation Q(1+ab). We get similar results
by considering all the other six-dimensional voids. Our result
shows that, with our actual knowledge, the six-dimensional
quantum voids cannot be reproduced by any of the so far
proposed physical principles.

VIII. PHYSICAL PRINCIPLES AND NONLOCAL
QUANTUM POINTS ON THE FACES

There are many quantum nonlocal points on the faces
which are not quantum voids. On these faces, some of
the known points on the boundary of the quantum set are
the maximally nonlocal Hardy points [52,53], which give a
maximum success probability of (5

√
5 − 11)/2 in quantum

mechanics; we recall that the joint probability appearing in

the condition (14) of the set of conditions leading to Hardy
nonlocal points is termed as the success probability of Hardy’s
nonlocality argument. Interestingly, the quantum state and
measurements leading to these points can be self-tested [52]
so the resulting probability distribution is extremal points of
the quantum set. Being extremal points, these can be gener-
ated by projective measurements on two-qubit pure entangled
states [36,37]. Then it is natural to check the reproducibility
of these points by applying the known physical principles. It
has been shown that these points cannot be reproduced by
applying the physical principles such as the known condition
for information causality [54], macroscopic locality [56], and
local orthogonality [15]. We will show here that even the set
of almost quantum correlations Q(1+ab) [33] cannot reproduce
the maximally (quantum) nonlocal Hardy points.

We consider here only one of Hardy’s nonlocality argu-
ments given by substituting a = x = y = 0 and i = j = 1 in
Eqs. (14)–(17), which is as follows:

p(0, 0|A0, B0) > 0, (28)

p(1, 0|A1, B0) = 0, (29)

p(0, 1|A0, B1) = 0, (30)

p(0, 0|A1, B1) = 0. (31)

The Hardy points given by Eqs. (28)–(31) live on the five-
dimensional face of the NL simplex defined by the con-
vex hull of the PR box and five local deterministic points
{L1, L2, L4, L5, L8}. It turns out that the maximally nonlocal
Hardy point in the quantum set Q can be obtained by two
parties, Alice and Bob, on sharing the two-qubit quantum state

|	H 〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, (32)

where c00 = −
√

5
√

5−11
2 , c01 = c10 = −3+√

5
2 , c11 =

√√
5−1
2 ,

and performing the projective measurements

A0 = B0 = |0〉〈0| − |1〉〈1|, (33)

A1 = B1 = |v〉〈v| − |v̄〉〈v̄|, (34)

where |v〉 = cos α|0〉 + sin α|1〉, |v̄〉 = sin α|0〉 − cos α|1〉,
and α = 2 tan−1(

√
−2 + √

5).
Then, the corresponding quantum probability distribution

can be computed from the Born rule,

p(a, b|x, y) = Tr
[|	H 〉〈	H |�Ax

a ⊗ �
By

b

]
, (35)

where �Ax
a is the projector corresponding to outcome a of

measurement Ax, and �
By

b is the projector corresponding to
outcome b of measurement By. The resulting Hardy probabil-
ity distribution is given in Table I.

In order to check if the set of almost quantum correlations
can reproduce the maximally nonlocal quantum Hardy point,
first we consider a line segment joining the PR box with the
maximal quantum Hardy nonlocal point, say, Qmax

H , and then
extend this line segment to the point LH on the local face. It
turns out that the local point LH can be written as a convex
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TABLE I. The maximal Hardy nonlocal probability distribution
P(ab|xy) in quantum mechanics, corresponding to the Hardy nonlo-
cality argument given by Eqs. (28)–(31).

a b

x y 0 0 0 1 1 0 1 1

0 0 5
√

5−11
2

7−3
√

5
2

7−3
√

5
2

−1+√
5

2

0 1 −2 + √
5 0 7−3

√
5

2
−1+√

5
2

1 0 −2 + √
5 7−3

√
5

2 0 −1+√
5

2

1 1 0 3−√
5

2
3−√

5
2 −2 + √

5

combination of local deterministic points as follows,

LH = 9 − √
5

38
(L1 + L2 + L4 + L5) + 1 + 2

√
5

19
L8. (36)

Now we consider the set of all points on the line segment
joining the PR box to the local point LH , i.e., points generated
by μPR + (1 − μ)LH , where μ ∈ [0, 1]. For these points,
the success probability of Hardy’s nonlocality argument is
pH = μ/2. We know that the maximum success probabil-
ity in quantum mechanics [52] is (pH )Q

∗ = (5
√

5 − 11)/2 �
0.090 17. We find the maximum value of pH in the set of
almost quantum correlations Q(1+ab) on the considered line
segment. For this we wrote a program in MATLAB, calling
the function NPAHierarchy(�p, 1 + ab) from QETLAB [67], and
computed the maximum value of pH for the set of almost
quantum correlations. We find that (pH )Q(1+ab)

∗ � 0.090 24.
Our result shows a clear gap between the quantum and the
almost quantum value.

IX. TURNING QUANTUM VOIDS
INTO DIMENSION WITNESSES

So far we have focused only on the CHSH scenario.
Indeed, the fact that any extremal correlation in the CHSH
scenario can be obtained by projective measurements on qubit
states was crucial in our proof of the quantum voids [36,37].
That no longer holds true for other Bell scenarios, as, for
example, in the generalization where each of the parties
can measure one out of three observables, where we have a
relevant class of Bell inequality [69] given by

I3322 = p(00|00) + p(00|01) + p(00|02) + p(00|10)

+ p(00|11) − p(00|12) + p(00|20) − p(00|21)

− pB(0|0) − 2pA(0|0) − pA(0|1) � 0. (37)

By imposing the condition p7 = p(0, 0|1, 1) = 0 and p4 =
p(0, 1|1, 0) = 0 we know that this will correspond to a six-
dimensional quantum void in the CHSH scenario. Also, it fol-
lows from the proof of the void that any qubit state respecting
these constraints must be separable and then cannot violate
any Bell inequality. Thus, any violation of the I3322 inequality,
respecting the zero probability constraints, necessarily needs
quantum states of dimension 3 or higher. That is precisely
what we get by considering two-qutrit states and rank-1 pro-
jective measurements, that under the constraints p(00|11) = 0
and p(01|10) = 0 achieve a violation of I3322 ≈ 0.2071.

In other terms, the idea of a quantum void can be used
to certify in a device-independent manner the minimum di-
mension of the physical system required to reproduce some
given correlations. Clearly, in any experiment we will never
see (with sufficiently many data points collected) that some of
the probabilities are exactly equal to zero. However, we have
strong numerical evidence for the robustness of the result. If
the probabilities p7 and p4 are close to zero, the maximum
violation of the CHSH inequality will also be small, and in
contrast, violations of the I3322 inequality can be significantly
larger, which leads to witnessing the dimension.

X. DISCUSSION

The understanding of the set of quantum correlations is
important in both fundamental and practical applications. On
one side, it allows us to witness the gap between classical,
quantum, and postquantum predictions, thus giving insights
on quantum theory itself. On the more practical level, it
turns out that understanding the limits of physical theories
is essential to come up with more efficient information pro-
tocols. In our case, the deeper one knows the boundary of
quantum theory, the better one can explore quantum advan-
tages and design enhanced quantum information protocols
outperforming their classical counterparts. Here, we discuss
a concept that analyzes and helps us to understand the set
of Bell correlations, that of a quantum void, faces of a set
of no-signaling correlations where all nonlocal correlations
are postquantum in nature. Working in the simplest possible
Bell scenario, we have given a full characterization of such
quantum voids, their relations to known physical principles,
and also pointed out a potential use for them as dimensional
witnesses. In addition, among the faces which are not quantum
voids, we studied the five-dimensional face derived from one
set of Hardy’s nonlocality conditions. We find that all physical
principles (with our actual knowledge) fail to reproduce the
quantum probability distribution, which gives the maximum
success probability of Hardy’s nonlocality argument in quan-
tum mechanics.

Very little was known about the faces of the no-signaling
set and we hope our results might motivate future research
along this direction. We have focused here on the bipartite
CHSH scenario and thus a natural extension would be to
consider Bell scenarios with more parties, inputs, and outputs.
At the same time, most of the research about the physical
principles has so far focused on very limited regions of
the NS set. This motivates us to pose the following ques-
tion: Is there any principle capable of reproducing all quan-
tum voids? As another interesting venue, we also highlight
the use of quantum voids as device-independent dimension
witnesses.
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APPENDIX: CHARACTERIZATION OF ALL NONLOCAL
FACES OF THE NL SIMPLEX

Here, we present a full characterization all the faces of the
NL simplex into two categories: (i) those that are quantum
voids, and (ii) those that are not quantum voids. For the
cases which are quantum voids, Fig. 3, which follows from
Proposition 1 of the main text, is sufficient to identify all
the faces which are quantum voids, except for two of them
for which we will provide a separate argument. The faces
which are not quantum voids are demonstrated by showing
the existence of quantum nonlocal points on these faces.

1. Faces of dimension less than four

All faces of dimension less than four can be generated
by assigning the value zero to at least five free-variable
probabilities. In all such cases, one can check from Fig. 3
that there will be always an edge connecting at least two
free-variable probabilities which are assigned the value zero.
Therefore, all the considered types of faces are quantum voids.
The number of such quantum voids of dimensions 0, 1, 2, and
3 are, respectively, c8

8 = 1, c8
7 = 8, c8

6 = 28, and c8
5 = 56.

2. Four-dimensional faces

All four-dimensional faces are defined by assigning the
value zero to any four free-variable probabilities. These are
c8

4 = 70 in numbers (each face being the convex hull of the
PR box with four local vertices).

Case 1. The four probabilities are chosen such that at least
one probability is chosen from both S1 and S2; in this case,
from Fig. 3 one can check that there is always an edge between
at least two among the four chosen probabilities. Thus this
case leads to 68 four-dimensional quantum voids.

Case 2. All four probabilities chosen to be zero are either
from S1 or S2. Both the resulting faces also turn out to
be quantum voids. One can prove this in two ways. First,
by considering all possible pure qubit states and projective
measurements [36,37], we maximized the Bell-CHSH ex-
pression (12) under the given zero probability constraints to
find that the maximum value is zero, i.e., the Bell-CHSH
inequality is not violated, and hence there are no quantum
nonlocal points on these faces. Second, we applied the known
analytical condition [31,32] for respecting the macroscopic
locality principle, and then find that all the nonlocal points on
these four-dimensional faces violate the macroscopic locality
principle [14], and hence there are no quantum nonlocal
points on these faces. Our second proof uses Proposition
2 proved in the main text. For example, to prove that the
four-dimensional face defined by assigning the value zero to
all the four probabilities {p1, p2, p7, p8} ∈ S1 (see Fig. 3) is
a quantum void, we consider only correlations on one line
segment joining the PR box to the local point Lc at the center

of the local face, i.e., μPR + 1−μ

4 (L3 + L4 + L5 + L6). We
then showed that the macroscopic locality principle is violated
for all 0 < μ � 1. Then, Proposition 2 in the main text implies
that all nonlocal points on the considered four-dimensional
face are postquantum points.

Therefore, combining both case studies, cases 1 and 2, we
can now conclude that all four-dimensional faces are quantum
voids.

3. Five-dimensional faces

All five-dimensional faces are defined by assigning the
value zero to any three free-variable probabilities. These are
c8

3 = 56 in numbers (each face being the convex hull of the PR
box with five local vertices). In contrast to all previous cases,
here we find both types of five-dimensional faces: Some of
these are quantum voids while other faces are not.

Case 1. All three probabilities chosen to be zero are either
from S1 or S2. There are eight such cases and all the resulting
five-dimensional faces contain quantum nonlocal points. We
checked this by maximizing the Bell-CHSH expression [18]
under given probability constraints over all pure qubit states
and projective measurements, and find that these maximum
values are greater than the local (classical) bound. This clearly
shows that there are many quantum nonlocal points on these
five-dimensional faces.

Case 2. One probability is chosen from S1 and two from
S2. There are 24 such cases: Twenty cases lead to quantum
voids (following from Fig. 3), and the four remaining cases
consist of quantum nonlocal points [examples follow when
considering all types of Hardy nonlocality arguments given
by Eqs. (28)–(31) in Sec. IV of the main text; all these Hardy
nonlocality arguments have quantum solutions].

Case 3. One probability is chosen from S2 and two from
S1. This is similar to case 2: There are 24 possibilities, out
of which 20 lead to quantum voids (follows from Fig. 3),
and four remaining cases consist of quantum nonlocal points
[examples follow when considering all types of Hardy non-
locality arguments given by Eqs. (28)–(31) in Sec. IV of
the main text; all these Hardy nonlocality arguments have
quantum solutions].

To sum up, among all the five-dimensional faces, 40 faces
are quantum voids whereas 16 faces contain quantum nonlocal
points.

4. Six-dimensional faces

All six-dimensional faces are defined by assigning the
value zero to any two free-variable probabilities. These are
c8

2 = 28 in numbers (each face being the convex hull of the
PR box with six local vertices). Here, too, we find both types
of six-dimensional faces: Some of these are quantum voids
whereas others are not. From Fig. 3 one can see that eight
cases lead to quantum voids. In all the remaining 20 cases,
we find quantum nonlocal points, and to show this we simply
note that from all the examples of five-dimensional faces
containing quantum nonlocal points, one can provide exam-
ples of quantum nonlocal points on all these six-dimensional
faces.
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TABLE II. Number of nonlocal faces which are quantum voids.

Dimension Total No. of faces No. of quantum voids

0 1 1
1 8 8
2 28 28
3 56 56
4 70 70
5 56 40
6 28 8
7 8 0

5. Seven-dimensional faces

All seven-dimensional faces are defined by assigning the
value zero to any one free-variable probability. These are
c8

1 = 8 in numbers (each face being the convex hull of the
PR box with seven local vertices). None of these eight faces
is a quantum void [examples follow when considering all
types of Hardy nonlocality arguments given by Eqs. (28)–
(31) in Sec. IV of the main text; all these Hardy nonlocality
arguments have quantum solutions].

We summarize the number of nonlocal faces of the NL
simplex that are quantum voids in Table II.
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