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Eddy magnetization from the chiral Barnett effect
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We discuss the spin, the angular momentum, and the magnetic moment of rotating chiral fermions using a
kinetic theory. We find that, in addition to the chiral vortical contribution along the rotation axis, finite circular
spin polarization is induced by the spin-momentum correlation of chiral fermions, which is canceled by a change
in the orbital angular momentum. We point out that the eddy magnetic moment is nonvanishing due to the g
factors, exhibiting the chiral Barnett effect.
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I. INTRODUCTION

The Barnett effect refers to the magnetization induced
by mechanical rotation of a charge neutral object [1]. The
Einstein–de Haas effect is an inverse phenomenon [2], that
is, a finite rotation attributed to a change in the magnetization.
We can regard these two closely related effects as realization
of transmutation between the spin S and the orbital angular
momentum L via the LS coupling. Because of the conser-
vation law of the total angular momentum J, a change in
the magnetization or S must be compensated by a change
in L. For a historical summary of the theory and the experi-
ments, Ref. [3] is one of the most comprehensive reviews, in
which the gyromagnetic effects, including not only the above-
mentioned two effects but also Maxwell’s experiment and the
gyromagnetic magnetization by rotating magnetic fields are
explained from a general point of view.

Before relativistic generalization of the Barnett effect,
which is the central subject studied in the current work,
it would be useful to review key equations briefly for the
conventional Barnett effect. A finite rotation with the angular
velocity vector ω would shift the one-particle energy by ω · J.
This energy shift should be equated to the magnetic energy
of μ · Heff , with the magnetic moment μ and the effective
magnetic field Heff corresponding to the magnetization. We
note that the vacuum permeability is μ0 = 1 in our conven-
tion of the natural unit. With the magnetic susceptibility χB,
the magnetization is given as M = χBHeff and the magnetic
moment is μ = γ J, where γ denotes the gyromagnetic ratio.
Combining these relations to eliminate Heff and μ, we finally
get the well-known formula, i.e., M = (χB/γ )ω.

The Barnett and Einstein–de Haas effects have attracted
attention in general physics fields including condensed-matter
physics for years. Theoretical studies are found, for example,
in the rotational states of nanostructured magnetic systems
[4–7]. It has also been pointed out in Refs. [7–9] that both
the Barnett and the Einstein–de Haas effects are governed by
the same gyromagnetic tensor components which satisfy the
Onsager reciprocal relations, i.e., the gyromagnetic relation.
In experiments, therefore, confirming one of them could be
sufficient instead of measuring both effects for the same physi-

cal system. Here, we lay out several examples of experimental
realization: The Einstein–de Haas effect has been observed
in thin film deposited on a microcantilever [10]. There are
several proposals for experiments in an atomic gas with Bose-
Einstein condensate [11,12] and in a ferromagnetic insulator
with phonons [13]. In contrast to the Einstein–de Haas effect,
the Barnett effect has been measured in systems such as
magnetic nanostructures [14], nuclear magnetic resonance
[15], paramagnetic materials [16], etc. Furthermore, circular
spin-current generation has been theoretically predicted as a
result of spin-orbit interaction and the mechanical rotation
[17–19], which has an analogous feature to what we are going
to discuss in the present work. Interestingly, the theoretical
predictions have been experimentally confirmed recently, see
Refs. [20–22]. For more details, interested readers can consult
a recent textbook [23].

Possible extension of the Barnett effect to systems with
massless or chiral fermions is an intriguing problem, and
theoretical investigations are demanded by recent experimen-
tal developments. In high-energy experiments with almost
massless quarks involved, the most pertinent effort lies in the
measurement of � and �̄ global polarization conducted by the
STAR Collaboration of the Relativistic Heavy-Ion Collider
(RHIC) [24,25]. In noncentral collisions, two nuclei collide
with a huge orbital angular momentum [26–31], creating the
“most vortical fluid” and inducing a nonzero value of � and
�̄ global polarization.

Many works have been published to formulate the transfer
from the orbital angular momentum to the spin carried by
hot and dense hadronic matter. Some examples include the
microscopic spin-orbital coupling model [26–28], the statisti-
cal hydrodynamical model [32–38], and the quantum kinetic
theory with Wigner functions [39–41]. Moreover, it was pro-
posed in Refs. [26,27] that the local polarization of � and
vector mesons could also be experimentally sensitive to the
net orbital angular momentum. For more relevant references
and discussions, see the review of Ref. [42]. Although there
are theoretical simulations for the observed polarization of
hadrons, to deepen our understanding from the fundamen-
tal level, it would be instructive to analyze an idealized
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environment of noninteracting and rotating chiral fermions,
as done in this work.

In relativistic systems the chiral anomaly plays an impor-
tant role for inducing an imbalance with respect to chirality
[43,44]. A clear manifestation of the chiral anomaly can be
found in a system with electromagnetic fields and/or finite
vorticity: one can easily understand the chiral anomaly in such
a system in terms of helicity conservation, and the helicity
of fermions can be interchanged with the magnetic helicity
and/or the fluid helicity. Then helicity transmutation results in
the chiral magnetic effect (CME) [45–47], the chiral vortical
effect (CVE) [48–50], and related topological effects (see
Refs. [51–53] for reviews). These topological effects induce
nondissipative currents and survive in the hydrodynamic limit.
Thus, the quantum anomaly could be macroscopically mani-
fested. Interestingly, it has been argued within the framework
of hydrodynamics [54] that the transmutation between the he-
licity of fermions and the fluid helicity, which is related to the
CVE, can be regarded as an analog of the Barnett/Einstein–de
Haas effects.

In this paper we will first discuss the properties of rotating
chiral fermions using the kinetic theory and then address
a possible connection to the hydrodynamic counterpart. We
take this strategy since in this way a physical interpretation
of the spin and the orbital parts would be transparent com-
bined with field-theoretical considerations. The Boltzmann
equation assumes a quasiparticle approximation, which is a
semiclassical treatment of dynamics. Recently it has been
established how to implement the spin degrees of freedom
in the Boltzmann equation. Such an augmented Boltzmann
equation is commonly called the chiral kinetic theory (CKT)
in the high-energy physics community. There are a number
of literature sources using different ways to derive the CKT—
e.g., effective field theories [55–58], path integrals [59–61],
and Wigner functions [62–68].

Once we have the CKT, it is straightforward to derive
the macroscopic currents and the energy-momentum tensor.
By integrating physical observables weighted with the dis-
tribution function over the momentum, one will obtain the
expectation values of the observables such as the vector and
axial vector currents with quantum corrections, which are
identified as the CME and the CVE [39,60–63]. Remarkably,
the correct transport coefficient of the CVE contains two
origins. The first one comes from a shift in the particle energy
dispersion modified by the rotation. The nontrivial Lorentz
transformations for massless particles, called the side-jump
effects [61–64], make the second contribution to the CVE
coefficient. Since the description of the CVE in terms of the
CKT has been fully established, it is natural for us to employ
the CKT for the Barnett effect that is related to the CVE.

The present paper is organized as follows. In Sec. II we
will give a brief review on the total angular momentum, the
orbital angular momentum, and the spin of chiral fermions.
In Sec. III we will write down the expressions of the orbital
angular momentum and the spin operators in the kinetic theory
language. In Sec. IV we will consider the CKT in a globally
rotating chiral system and will compute the orbital angular
momentum and the spin. Next, we will relate our results to the
Einstein–de Haas and the Barnett effects and will discuss their
chiral extensions in Sec. V. We will also make a comment

on the anomalous hydrodynamics in Sec. VI. Finally we
summarize our results in Sec. VII. Throughout this paper we
use the natural unit for the speed of light, c = 1, while we
retain h̄.

II. ANGULAR MOMENTUM DECOMPOSITION

The angular momentum is a conserved quantity, but its
decomposition into the spin and the orbital components is not
unique in relativistic theories. In this section, we clarify our
convention and explain its physical interpretation. Let us start
with a free Dirac field (where the generalization to include
interaction is not difficult by ∂μ → Dμ), whose Lagrangian
density is

L = ψ̄ (ih̄γ μ∂μ − m)ψ. (1)

This Lagrangian is invariant under an infinitesimal rotation,

xμ → x′μ = xμ + εμ
νxν, (2)

where εμ
ν is an antisymmetric tensor whose magnitude is

infinitesimally small. The angular momentum tensor is the
Noether current associated with rotation symmetry. We note
that, under Eq. (2), the spinor transforms as

ψ (x) → ψ ′(x′) = ψ (x) − i

2
εμν	

μνψ (x), (3)

where 	μν = (i/4)[γ μ, γ ν]. Correspondingly, the Noether
current with current index λ gets two contributions: the co-
ordinate part from Eq. (2) and the spinor part from Eq. (3) as

Jλμν = Lλμν + Sλμν. (4)

We can express the first term Lλ μν using the canonical energy-
momentum tensor,

T μν = ∂L
∂ (∂μψ )

∂ψ

∂xν

= ψ̄ ih̄γ μ∂νψ, (5)

as the following form:

Lλμν = xμT λν − xνT λμ

= ψ̄ ih̄(γ λxμ∂ν − γ λxν∂μ)ψ. (6)

For the second term of Eq. (4), the explicit form reads,

Sλμν = ∂L
∂ (∂λψ )

[
− i

2
	μνψ (x)

]
= 1

4
ψ̄ ih̄γ λ[γ μ, γ ν]ψ. (7)

One could also obtain another form of the spin tensor
from the symmetrized Dirac Lagrangian, L = ih̄

2 (ψ̄γ μ−→
∂μψ −

ψ̄γ μ←−
∂μψ ), that is, Sλμν = 1

8 ψ̄ ih̄{γ λ, [γ μ, γ ν]}ψ , but we are
interested in S0μν components for later discussions, and the
difference from Eq. (7) is vanishing and the choice of the
Lagrangian is irrelevant for physical quantities as it should.

Now, the total-angular-momentum tensor is

Jλμν = ψ̄ ih̄
(
γ λxμ∂ν − γ λxν∂μ + 1

4γ λ[γ μ, γ ν]
)
ψ, (8)

whose λ = 0 component is the conserved charge density, i.e.,
the conserved angular momentum. Using the Dirac equation,
we can easily check that

∂λLλμν = −∂λSλμν = ψ̄ ih̄(γ μ∂ν − γ ν∂μ)ψ, (9)
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from which ∂λJλμν = 0 immediately follows. If the surface
term is irrelevant, we can then arrive at the angular momentum
conservation law:

d

dt

∫
d3x J0μν = 0. (10)

One might have thought that the above identification of L0μν

and S0μν as the orbital and the spin components would be the
most natural. Indeed, in the nonrelativistic limit, L0μν and S0μν

amount to the orbital and the spin components, respectively.
Nevertheless, in relativistic theories, no unique decomposition
is guaranteed.

Actually, the energy-momentum tensor always has ambi-
guity by an arbitrary antisymmetric tensor 	μνλ as

�μν = T μν + ∂λ	
μνλ. (11)

It is obvious that �μν also satisfies the conservation law, so
it is equally qualified as the energy-momentum tensor. In
particular, with an appropriate choice of 	μνλ, one can make
�μν symmetric as

�μν = 1
2 ψ̄ ih̄(γ μ∂ν + γ ν∂μ)ψ. (12)

The corresponding “orbital” component of the angular mo-
mentum, deduced from Eq. (6) with T μν replaced by �μν , is

L̃λμν = 1
2 Lλμν + 1

2 ψ̄ ih̄[(xμγ ν − xνγ μ)∂λ]ψ, (13)

and the “spin” component is inferred from S̃λμν = Jλμν −
L̃λμν . Interestingly, using the Dirac equation again, we can
prove

∂λL̃λμν = ∂λS̃λμν = 0. (14)

In contrast to Eq. (9), the above relation (14) indicates that, in
this construction, the orbital and the spin components of the
angular momentum are separately conserved (see Ref. [69] for
a related discussion on electron vortices), while the canonical
ones, Lλμν and Sλμν , are not. However, this fact does not
mean any superiority of L̃λμν and S̃λμν , because neither of
them is a true symmetry generator alone. The situation is
quite similar to the decomposition of the optical spin and the
optical orbital angular momentum. For free electromagnetic
fields one can generally define individually conserved spin
and the orbital-angular-momentum operator, but due to the
transversality constraint, only their combination, i.e., the total
angular momentum, is the physically meaningful quantity
[70,71].

Throughout this work we adopt the canonically defined
spin Sλμν and orbital angular momentum Lλμν , because these
are the definitions with most natural connection to their non-
relativistic counterparts. Another advantage is that S0i j , or S,
turns out to be nothing but the axial current,

S0i j = εi jk h̄

2
ψ̄γ kγ5ψ = εi jk jk

5

2
, (15)

Sk ≡ 1
2εi jkS0i j . (16)

Thus it has an interpretation evidently related to the chiral
anomaly. Similarly, we define the orbital-angular-momentum
vector L as

Lk ≡ 1
2εi jkL0i j . (17)

Equation (15) also implies that, if the axial current is a
measurable physical observable, so will S and then L be.

III. TRANSCRIPTION TO KINETIC THEORY

Since we will deal with our problem in terms of kinetic
theory, we should seek corresponding expressions for Lλμν

and Sλμν involving the distribution function, f (p, x, t ). We
note that the spin and the orbital angular momentum are the
properties of matter in equilibrium unrelated to the collisions,
once the corresponding operators for Lλμν and Sλμν are iden-
tified. Although we discuss the kinetic theory transcription,
we are not studying the off-equilibrium dynamics, but we are
considering the operators in terms of the kinetic theory in this
section and in terms of hydrodynamics in Sec. VI.

To this end, we consider the single-particle angular mo-
mentum tensor as done in Refs. [58,72], i.e.,

Jμν = xμ pν − xν pμ + Sμν, (18)

where pμ = (p = |p|, p). Comparing Eq. (18) with Eq. (8),
given the correspondence of ih̄∂μ → pμ, we can identify
the first two terms as the orbital part L0μν of our choice.
Then, the last term represents the spin part, whose specific
form, according to Refs. [58,63,64], is fixed up to a frame
vector nβ . We choose the laboratory frame with nβ = (1, 0),
which simplifies the concrete expression of Sμν , leading to the
following operator decomposition:

L = x × p, S = h̄λ

(
p̂ − h̄λ

p̂
p

× ∇
)

. (19)

Here λ is the helicity, i.e., λ = ±1/2, and p̂ = p/|p| is the unit
momentum vector.

We emphasize the importance of the second term in S to
make the computation consistent with the CVE and the rela-
tion (15). This additional term originates from a gyromagnetic
effect and is nothing but a familiar Rashba spin-orbit coupling.
Another way to think of the field-theoretical origin of this term
is the current expectation value as a derivative with respect to
the vector potential. Then, as discussed in Refs. [61,63,64],
the current reads

j =
∫

p

(
p̂ − h̄λ

p̂
p

× ∇
)

f , (20)

where the second term in the parentheses appears from a
magnetic-dependent term, −λ p̂ · B/|p|, in the energy disper-
sion relation, which is eventually transcribed into the addi-
tional term in S as seen above. An interesting point worth
mentioning is that ∇ is the spatial derivative and a finite
rotation would indeed induce spatial inhomogeneity.

We note that one can understand Eqs. (19) and (20) easily
from the well-known Gordon decomposition on the vector
current with Dirac spinors at momentum p [73], i.e.,

ĵ = h̄ψ̄γψ = h̄

2ip
[ψ†∇ψ − (∇ψ†)ψ] + h̄

2p
∇ × (ψ†�ψ ),

(21)
where 	k = εi jk	i j . This is the mathematical background for
Eq. (20). Because extra γ5 is irrelevant for a system with either
left- or right-handed particles only, the argument on the vector
current can be straightforwardly translated to the axial current
in Eq. (19).
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It should be noted that L and S have the same physical
unit, but h̄ in L is hidden in the momentum p, which looks
like O(h̄0) in a semiclassical treatment. Such h̄ counting
is consistent with our intuition that the spin is a quantum
effect but the orbital angular momentum is a macroscopic
observable, while the full consistent treatment would require
the derivative expansion.

IV. ROTATING CHIRAL FERMIONS

In this work we study the effect of bulk rotation of chiral
matter at constant angular velocity ω rather than a fluid
with local vorticity. We turn electromagnetic fields off for
simplicity, and if necessary, the generalization including elec-
tromagnetic fields is straightforward.

For an equilibrium state in the absence of rotation, the
distribution function f is homogeneous in coordinate space
and isotropic in momentum space, which means that f should
be a function of single-particle energy ε, i.e., f = f (ε).1

Let us consider what would change if we introduce ω �= 0
into the system. For this purpose we put ourselves into a
comoving frame that rotates together with matter. We can
thereby postulate that the local thermal equilibrium is reached
after a sufficiently long time so that f = f (εrot ) with εrot

defined in the comoving frame (which is implicitly assumed
in the implementation of finite-temperature field theory in
Ref. [48]). We can solve a free Weyl equation in the rotating
frame to find εrot as

εrot = p − ω · (x × p + h̄λ p̂) (22)

using the laboratory-frame (nonrotating) coordinates x and
momenta p. We note that the energy shift in Eq. (22) takes a
standard cranking form, −ω · J. In terms of laboratory-frame
variables f (εrot ) is neither homogeneous in coordinate space
nor isotropic in momentum space due to finite rotation; thus
the spin and the orbital angular momentum derived from
f (εrot ) can be nonzero. We begin with calculating the spin
expectation value under an assumption that ω is small. Up to
the linear order of ω we get

〈S〉 =
∫

p
λh̄

(
p̂ − λh̄

p̂
p

× ∇
)

f (εrot )

≈ − h̄λ(ω × x)
∫

p

p

3
f ′(p) − h̄2λ2ω

∫
p

f ′(p), (23)

where f ′(p) = ∂ f (p)/∂ p. It should be mentioned that our
“expectation value” involves only the momentum integration,∫

p = ∫
d3 p/(2π h̄)3, but not the coordinate integration, which

is denoted later by
∫

V = ∫
d3x.

Here, we briefly mention the difference between setups in
Refs. [58,61] and ours. If the rotation effects are introduced by
a local vorticity vector as in Refs. [58,61], physical quantities

1According to some references [61,63,64] our assumption corre-
sponds to the “global equilibrium” case because our distribution
function is independent of nβ up to the h̄ order. In the “local
equilibrium” case the distribution function may depend on nβ , which
is generally a function of spatial coordinates. For more discussions
on polarization effects in the local equilibrium case, see Ref. [72].

can be homogeneous. However, to characterize the Einstein–
de Haas effect, we implicitly assume a finite-size system
for which the center of rotation is well defined. Then, the
velocity of rotating particles depends on the distance from the
center of rotation, and physical quantities, including the spin
expectation value, can be dependent on x, as seen in the first
term in Eq. (23).

We shall make a remark about our power counting of h̄
order. In the last section we found the operators for the spin
and the orbital angular momentum in a heuristic way. In prin-
ciple, one could utilize the Wigner function to take account of
quantum corrections systematically in the h̄ expansion. Then,
S and εrot may have O(h̄3) and O(h̄2) corrections, respectively,
and they contribute to an O(h̄3) correction to Eq. (23).

We next turn to the orbital angular momentum. In the same
way we expand the distribution function with respect to ω and
obtain

〈L〉 ≈
∫

p
(x × p) f ′(p)(−ω) · (x × p + h̄λ p̂)

= − x × (ω × x)
∫

p

p2

3
f ′(p) + h̄λ(ω × x)

∫
p

p

3
f ′(p).

(24)

Equations (23) and (24) are our central results in this paper.
In the following sections we shall expound their physical
interpretations.

V. APPLICATIONS—CHIRAL EINSTEIN–DE HAAS
AND BARNETT EFFECTS

We utilize our results for 〈L〉 and 〈S〉 to discuss the
relativistic extension of the Einstein–de Haas effect and the
Barnett effect.

A. Chiral Einstein–de Haas effect

The physical meaning of Eq. (23) becomes transparent
once we add up both left-handed and right-handed contribu-
tions. After an integration by parts, the first term in Eq. (23),
which is denoted by 〈S〉⊥ hereafter, takes the following form
as

〈S〉⊥ = − h̄
∑
R,L

λ(ω × x)
∫

p

p

3
f ′
λ(p)

= h̄

2
(ω × x)

∫
p
[ fR(p) − fL(p)] = h̄

2
(ω × x) n5, (25)

where fR and fL refer to the distribution functions of right-
handed and left-handed particles, respectively, and thus n5 =
nR − nL means the chirality density. Such a rotation-induced
spin alignment is intuitively understood as follows. For mass-
less fermions, the spin and the momentum directions are
locked up. In this way, the angular momentum is related to the
translational motion. Therefore, if we macroscopically move
our chiral matter with the velocity u = ω × x, the spin will be
tilted along u. In this sense 〈S〉⊥ is a unique result inherently
for chiral fermions. Interestingly, this transverse eddy spin
alignment requires a finite chiral imbalance. We present a

032105-4



EDDY MAGNETIZATION FROM THE CHIRAL BARNETT … PHYSICAL REVIEW A 99, 032105 (2019)

FIG. 1. A schematic illustration for an intuitive picture to under-
stand the circular spin polarization and the associated eddy mag-
netization μ in a rotating chiral system with the angular velocity
vector ω. For simplicity we consider only the right-handed fermions
in the illustration. The red arrows stand for the direction of particle
momentum and spin.

schematic illustration in Fig. 1 to explain how 〈S〉⊥ appears
in a rotating chiral system.

After similar algebra, we rewrite the orbital angular
momentum Eq. (24) as

〈L〉 = x × (ω × x)
4

3

∫
p

p[ fR(p) + fL(p)] − 〈S〉⊥
= 〈L〉mech − 〈S〉⊥. (26)

Here, 〈L〉mech represents the first term involving ω × x in
the above expression. We shall illuminate the physical in-
terpretation of 〈L〉mech in what follows. For concreteness we
will consider a cylindrically symmetric system which rotates
rigidly around the z axis, i.e., ω = ωẑ. Then in such a setup
the volume integration of 〈L〉mech yields∫

V
〈L〉mech = ωẑ

∫
V

r2 4

3

∫
p

p[ fR(p) + fL(p)]. (27)

Since p is the energy for chiral fermions, the p integration
gives the energy density or the mass distribution, together with
which the volume integration leads to the moment of inertia.
To see this clearly, let us assume that the distribution function
features Fermi degeneracy to a chemical potential μ, and then
the energy density E is calculated as E = 3

4μn, where n is the
number density. Consequently, 4

3

∫
p p[ fR(p) + fL(p)] reduces

to a relativistic counterpart of the mass density, μRnR + μLnL.
From this argument it is clear that 〈L〉mech corresponds to the
mechanically induced orbital angular momentum, which is
naturally of O(h̄0).

Next, we delve into the second term in 〈L〉 given by
−〈S〉⊥. This term has an intriguing interpretation as the “chi-
ral Einstein–de Haas effect.” Let us consider the following
thinking experiment. We rotate the fermionic system from
the initial condition, 〈L〉 = 〈S〉 = 0. Apparently, the total
angular momentum carried by rotating chiral matter should be
〈J〉 = 〈L〉mech. However, as mentioned above, due to the
spin and momentum lockup, the transverse motion results in

〈S〉⊥ �= 0. This nonzero 〈S〉⊥ must be canceled by a change
in the orbital part so that the total-angular-momentum conser-
vation can be satisfied. In this way, a shift by −〈S〉⊥ should
arise in 〈L〉. Such a physical mechanism is comparable to
the Einstein–de Haas effect. In the nonrelativistic case the
spin is controlled by an external magnetic field, but it can
be changed by the momentum direction for chiral fermions,
which induces an orbital rotation.

We make two comments on the second term in Eq. (23).
The first one is that this term corresponding to the CVE can be
also exactly canceled in a finite-size system by surface states
not to violate the angular momentum conservation [74]. The
second comment is that, if we consider the zero n5 limit, the
second term in Eq. (23) would dominate and lead to the local
spin polarization proposed in Ref. [39].

B. Chiral Barnett effect

Along similar lines, we can apply our formula to address
the Barnett effect for chiral fermions. That is, a finite magne-
tization is generated by rotation [1], which can be quantified
with our results. For this purpose we need the gyromagnetic
ratio to convert the angular momentum into the magnetic
moment. For nonrelativistic fermions, the gyromagnetic ratio
is derived from the Dirac equation as

μ = μL + μS = gL
qe

2m
L + gS

qe

2m
S, (28)

where qe and m are, respectively, the electric charge and
the mass of the considered particle. For noninteracting Dirac
fermions the g factors are gL = 1 and gS = 2. Since gL �= gS ,
the right-hand side of Eq. (28) is not parallel to J = L + S.
Once one takes an expectation value with the J2 and Jz

eigenstates, however, one can show that the right-hand side
is projected onto the J direction, which is guaranteed by the
Wigner-Eckart theorem, and the effective g factor becomes the
Landé g factor.

For chiral fermions Eq. (28) should be modified. In the
chiral limit Eq. (28) turns into (see Refs. [73,75])2

μ = μL + μS = gL
qe

2p
L + gS

qe

2p
S. (29)

The g factors remain the same, and from now on we plug gL =
1 and gS = 2 into μL and μS . We note that Eq. (29) is a local
relation, and so we compute the expectation value as we did
in the previous sections. The results up to h̄ order are

〈μL〉 = −qe

6
x × (ω × x)

∫
p

p f ′(p)

+ h̄λ
qe

6
(ω × x)

∫
p

f ′(p), (30)

〈μS〉 = −h̄λ
qe

3
(ω × x)

∫
p

f ′(p). (31)

2Infrared singularity in Eq. (29) is regularized by the Debye
screening in many-body systems. In other words, the momentum
convoluted with a distribution function has an infrared cutoff by
gT , where g is the coupling constant of the theory and T is the
temperature.
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We can immediately identify the first term of 〈μL〉 as the
mechanical contribution. The integration by parts makes it
more visible as

〈μL〉mech = 1
2 x × (ω × x) ne, (32)

where ne represents the electric charge density. Given that
ω × x is the velocity vector associated with the rotating
motion, the above expression is exactly the one known as the
magnetic dipole moment from the Ampére loop in classical
electromagnetism.

The second term of 〈μL〉 is at the same order as 〈μS〉, but
they do not cancel out. The total magnetization reads

〈μ〉 = 〈μL〉 + 〈μS〉 = 〈μL〉mech − h̄λ
qe

6
(ω × x)

∫
p

f ′(p).

(33)

This result exhibits the chiral Barnett effect. What is nontrivial
in the relativistic case is the second term. It is proportional
to ω × x, and thus has the circular orientation around the
rotation axis, just like previously discussed 〈S〉⊥ as shown
in Fig. 1. Since the magnetic moment is a source for the
magnetic field, we can expect a generation of eddy magnetic
field in rotating chiral media. Further exploration on this
point and applications to astrophysical objects will be reported
elsewhere [76].

VI. COMMENTS ON HYDRODYNAMICAL
FORMULATION

In this section we briefly address the problem of calculating
the orbital angular momentum in anomalous hydrodynamics
[50]. In the framework of anomalous hydrodynamics, the
energy-momentum tensor reads (see Refs. [39,77])

T μν

hydro = (E + P)uμuν − P gμν + h̄ n5(uμων + uνωμ), (34)

where E and P are the energy density and the pressure,
respectively, and uμ = γ (1, u) denotes the fluid velocity. For
simplicity we assume the small velocity limit, i.e., |u| � 1
and uμ ≈ (1, u). In such a limit the vorticity is ων =
1
2εναβγ uα∂βuγ ≈ (0, ∇ × u) + O(|u|2) by definition. Using
this energy-momentum tensor to define the hydro-orbital an-
gular momentum, we find

Li j
hydro = xiT 0 j

hydro − x jT 0i
hydro

= xi[(E + P)u j + h̄ n5ω
j] − (i ↔ j). (35)

For a mechanically rotating fluid, we specify uμ = (1,ω × x)
and ωμ = (0,ω), which leads to

Lhydro = (E + P)(x × u) − h̄ n5(ω × x). (36)

To see the connection between Eq. (36) and our results in
a kinetic picture, we remember that massless noninteracting
systems have the equation of state as P = E/3, and in a kinetic
framework E can be expressed as

E =
∫

p

(u · p)2

p0
( fR + fL ) ≈

∫
p

p ( fR + fL ). (37)

Then, eventually, the hydroangular momentum takes the form
of

Lhydro = x × (ω × x)
4

3

∫
p

p( fR + fL ) − 2〈S〉⊥. (38)

Now we can make a direct comparison between Eq. (38) and
our results in Eq. (26). We find that the first term correspond-
ing to 〈μL〉mech exactly agrees, but the coefficient for 〈S〉⊥ is
different.

This discrepancy originates from different definitions of
the energy-momentum tensor. The energy-momentum tensor
operator T μν obtained from the Noether theorem in Eq. (5) is
not symmetric and does not correspond to the hydrodynamic
energy-momentum tensor in Eq. (34). In fact, it is the sym-
metrized energy-momentum tensor operator �μν in Eq. (12)
that corresponds to Eq. (34). Such a symmetrized defini-
tion is prevalently adopted in anomalous hydrodynamics (see
Refs. [58,63,64] for examples). Accordingly, for the orbital
angular momentum, Lhydro corresponds to L̃0μν in Eq. (13)
rather than the canonical one L0μν in Eq. (6) used for our CKT
computation.

Here we make a comment on the approximate spin conser-
vation law. Under such circumstances as massless fermions
and vanishing electromagnetic fields, the axial current jμ5
is conserved and so does the spin. In hydrodynamics one
can show that this conservation law of 〈S〉 follows from the
expansions with respect to h̄ and ω. In terms of the fluid
velocity uμ and the vorticity ωμ, the conservation law of jμ5
is [39,50]

∂μ jμ5 = ∂μ(n5uμ + h̄ ξ5 ωμ) = 0, (39)

where ξ5 is the CVE coefficient as a function of the temper-
ature, the chemical potentials, etc. For a slowly rotating fluid
with uμ ≈ (1,ω × x), Eq. (39) tells us that

d

dt
n5 = −∇ · (n5ω × x) + h̄ ∂μ(ξ5ω

μ). (40)

Then, for small ω, it is easy to verify that

d

dt

∫
V
〈S〉 = h̄

2

∫
V

d

dt
(n5ω × x) + O(h̄2) = O(h̄2, ω2). (41)

We thus conclude that, under the approximation to drop terms
of O(ω2) and/or O(h̄2), both our 〈L〉 in the canonical defini-
tion and 〈L〉hydro are equally qualified as the orbital angular
momentum. It should be noted that in the above argument
we implicitly assumed that x is of the order of unity. This
means that the system size must not be as large as 1/h̄ or 1/ω;
otherwise, the surface state is not negligible [74].

VII. CONCLUSION

In this work we systematically discussed the spin, the
angular momentum, and the magnetic momentum for rotating
chiral fermions using the framework of the CKT. First, we
gave a brief review of deriving the angular momentum tensors
as Noether’s currents. Although the decomposition into the
orbital and the spin components is not unique, we adopted
the canonical definition in which the spin is directly related
to the axial current. Next, we considered a globally rotating
chiral system. Combining the contributions from a shift in the
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particle energy dispersion and an extra spin-orbital coupling
term in the CKT, we identified the expectation values of the
spin [see 〈S〉 in Eq. (23)] and the orbital angular momentum
[see 〈L〉 in Eq. (24)].

Based on these two expressions for 〈S〉 and 〈L〉, we de-
veloped a physical picture of the relativistic extension of the
Einstein–de Haas effect. Up to O(h̄) terms, the circular spin
alignment is induced by the mechanical rotation as illustrated
in Fig. 1, which can be intuitively understood through the fact
that the rotation is accompanied by the axial current. Then, a
shift in 〈L〉 is caused by 〈S〉 to maintain the conservation law
of the total angular momentum, which can be regarded as a
relativistic counterpart of the Einstein–de Haas effect realized
in a chiral medium.

Furthermore, we applied our results to address the Bar-
nett effect for chiral fermions. We computed the magnetic
moments, 〈μL〉 and 〈μS〉, proportional to the orbital angular
momentum and the spin, respectively. The leading-order term
in 〈μL〉 of O(h̄0) is exactly the one from the magnetic dipole
moment obtained in classical electromagnetism. The next
order terms in 〈μL〉 and 〈μS〉 of O(h̄) will not cancel out, and
this nonvanishing magnetic moment exhibits what we call the
chiral Barnett effect.

Before closing our discussions in the end, we supple-
mented some discussions on the anomalous hydrodynamics.
We pointed out that the symmetric energy-momentum tensor
adopted in the anomalous hydrodynamics does not correspond
to the canonical one derived from the Noether theorem. Us-
ing the hydrodynamical energy-momentum tensor, we could
define another form of the orbital angular momentum Lhydro,
which is approximately a conserved quantity of O(h̄).

There will be many possible extensions and applications of
our work. As discussed in Sec. V B, the rotation may induce
the eddy magnetic fields, which could explain the internal
structures of the neutron star [78]. In astrophysics, generally,
the magnetic field and the rotation are commonly found in
macroscopic objects, and the chiral Barnett effect may play
an intriguing role [76]. Another interesting direction lies in
possible generalization to the nonequilibrium situation. In
this study we assumed only a near-equilibrium distribution
function to compute 〈S〉 and 〈L〉 in a steady state. The full
real-time evolution of 〈S〉 and 〈L〉 starting with some initial
condition would be a challenging future problem.

In the future approximations made in the present work
should be relaxed. Our treatment of fermions is limited to the
massless case only, and the inclusion of finite mass effects
would be a crucial step toward phenomenological applications
to relativistic heavy-ion collision experiments. In this work,
we neglected surface terms, and we should amend this with
finite-size effects taken into account. So far, our analysis is
only up to O(h̄) apart from the CVE term. Thus, we have not
included higher-order nontrivial effects, e.g., the local spin-
polarization effect [39]. We are currently making progress to
incorporate these effects dropped in the present work.
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