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Inducing nontrivial qubit coherence through a controlled dispersive environment
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We show how the dispersive regime of the Jaynes-Cummings model may serve as a valuable tool to the study
of open quantum systems. We employ it in a bottom-up approach to build an environment that preserves qubit
energy and induces varied coherence dynamics. We then present the derivation of a compact expression for the
qubit coherence, applied here to the case of a finite number of thermally populated modes in the environment.
We also discuss how the model parameters can be adjusted to facilitate the production of short-time monotonic
decay (STMD) of the qubit coherence. Our results provide a broadly applicable platform for the investigation of
energy-conserving open system dynamics which is fully within the grasp of current quantum technologies.
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I. INTRODUCTION

Studying and understanding the role of decoherence in
open quantum systems has been a major topic in quantum
technology. At the same time that decoherence is harmful to
quantum information by washing out superposition aspects
of quantum states [1], it can also be helpful in other tasks
such as energy transport in quantum networks [2–4]. In other
scenarios, it might be desirable to engineer it for multiple
applications [5–7]. Several experiments have also unveiled
the essential aspects of decoherence in controlled quantum
systems [8–12]. In a more fundamental level, decoherence
is expected to be involved in the emergence of the classical
world from within the set of quantum rules [13].

In the simplest case, decoherence of a two-level system
(qubit) follows from its linear coupling to a thermal reservoir
consisting of a collection of an infinite number of independent
(noninteracting) quantum harmonic oscillators [14] or two-
level systems [15]. In such descriptions, a lack of control and
accessibility to the degrees of freedom of the environment
is assumed. In this work, we propose the study of qubit
pure dephasing, which is a form of decoherence, in a fully
controllable environment built from the bottom up. In other
words, we blend together the advances in controlled quantum
systems and open systems theory to investigate qubit deco-
herence in a fully controlled and finite environment whose
number of degrees of freedom can be carefully increased.
Other approaches to the engineering of pure dephasing have
been proposed for the harmonic motion of a trapped ion [16]
and, more recently, for the polarization of a photon in an
environment composed by its frequency degree of freedom
[17].

Our approach is based on the multimode version of the
dispersive regime of the Jaynes-Cummings model [18], where
a qubit and a single mode of the electromagnetic field are
considerably out of resonance, preventing transitions between
energy states of the free Hamiltonians. The qubit-mode cou-
pling in this regime manifests itself through induced energy
shifts in such energy levels. The dispersive limit of the Jaynes-

Cummings model has been employed in a myriad of tasks.
Important examples include the generation of superpositions
of coherent states of opposite phases (“Schrödinger’s cat”
states), nondemolition measurements in cavity QED [19], and
more recently, qubit readout in circuit QED [20], just to name
a few. However, much less attention has been given for its
use in the context of open quantum systems. This is precisely
the proposal we put forward in this work: an environment
consisting of N modes dispersively coupled to the qubit,
as depicted in Fig. 1. Interesting enough, the extension of
the dispersive condition to N modes induces a structure in
the environment which now consists of coupled modes, in
contrast to the canonical models of decoherence mentioned
before. The interplay between structure, frequencies, number
of modes, and temperature promotes a very rich scenario
where energy-conserving non-Markovian dynamics can be
studied and applied, for instance, to the production of short-
time monotonic decay (STMD) of the qubit coherence. In
particular, given the lack of energy transitions which is inherit
to the model, the dispersive qubit-mode interaction might
serve as a building block for a qubit dephasing model with
the distinct advantage of being fully controllable in several
setups, as given evidence by the aforementioned applications.

II. MODEL

Let us consider a single qubit interacting with N bosonic
modes. Under the dipole and rotating-wave approximations,
the total Hamiltonian of the system is thus described by the
extended (multimode) Jaynes-Cummings model (h̄ = 1) [21]:

Ĥ = ω0

2
σ̂z +

N∑
j=1

ω j â
†
j â j +

N∑
j=1

g j (σ̂+â j + σ̂−â†
j ), (1)

where ω0 is the frequency of the qubit, σ̂i (i = x, y, z) are
the Pauli matrices, ω j is the frequency of the jth mode
described by the annihilation operator â j , and g j is the
coupling constant. The operators σ̂± = 1

2 (σ̂x ± iσ̂y) are the
ladder operators for the qubit. For the case of an environment
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FIG. 1. Pictorial representation for the extended dispersive
regime. Each mode corresponds to a distinct single-mode resonator.

being composed of a continuum of electromagnetic modes,
Hamiltonian (1) has been exhaustively used to model dissi-
pative qubit dynamics or spontaneous emission [21,22]. This
problem has been tackled with perturbative [21,23,24] and
nonperturbative methods [25], as well as subjected to Markov
approximation [21] and slightly modified to accommodate
structured environments [25,26]. These approaches have in
common the fact that the environment formed by the modes
has a frequency distribution which is essentially centered
around the qubit frequency. In this way, whenever the resonant
or quasi-resonant Hamiltonian (1) is employed to build a
reservoir model, the result is dissipative dynamics. In the
present work, however, we take a different route which aims
at producing a nondissipative open system dynamics, i.e., pure
dephasing with finite N . In order to do it, we will consider that
the modes are far from resonance with the qubit and then take
the dispersive limit of Hamiltonian (1). Not only that, we take
full advantage of the current high level of experimental control
over dispersive interactions to propose a bottom-up approach.
We provide analytical results for the coherence dynamics in
our model.

In the interaction picture with respect to the free part of
Hamiltonian (1), the dynamics follows from

Ĥ I (t ) =
N∑

j=1

g j (σ̂+â je
i� j t + σ̂−â†

j e
−i� j t ), (2)

with � j = ω0 − ω j being the detuning between the qubit and
mode j. The requirement∣∣∣∣ g j

�k

∣∣∣∣ � 1 ( j, k = 1, 2, . . . , N ) (3)

allows one to perform a Magnus expansion [27] on the time-
evolution operator Û I (t ) associated to Ĥ I (t ), which up to
second order produces

Û I (t ) ≈ e−iĤ I
eff (t ), Ĥ I

eff(t ) = �N t σ̂+σ̂− + σ̂z

2
M̂(t ), (4)

where �N = ∑N
j=1 g2

j/� j is the resulting energy shift on the
qubit, and the bosonic part of Eq. (4) is given by

M̂(t ) =
N∑

j,k=1

mjk (t )â†
j âk, (5)

where

mjk (t ) = i
g jgk

� j�k
(� j + �k )

(
1 − ei(ω j−ωk )t

ω j − ωk

)
. (6)

The complete derivation of Eq. (4) and numerical compar-
isons with the dynamics governed by Hamiltonian (1) are
shown in the Appendixes A and B, respectively. It follows
from Eq. (5) that, apart from energy shifts, the dispersive
condition stated in Eq. (3) also promotes interaction among
the modes, see Fig. 1. Quite importantly, this interaction is
dependent on the state of the qubit through σ̂z in Hamiltonian
(4). Also, given that [ω0

2 σ̂z, Ĥ I
eff(t )] = 0, there are no popu-

lation changes in the eigenstates of σ̂z so that the resulting
dynamics will be energy conserving and only changes in the
qubit coherence will be observed.

The initial state of the global system is assumed to be in the
form ρ̂(0) = ρ̂S ⊗ ρ̂E , where the subscript S refers to the qubit
and E to the N-mode environment. We focus on the reduced
dynamics of the qubit described by ρ̂S (t ) = TrE ρ̂(t ). The time
evolution of the coherence in the original Schrödinger picture
is

ρ01(t ) := 〈0|ρ̂S (t )|1〉 = ρ01(0) e−i�N t rN (t ), (7)

with

rN (t ) = TrE [ρ̂E e−i M̂(t )]. (8)

This quantity completely characterizes the open dynamics
of the qubit in our model, regardless of the number of
modes. Furthermore, |rN (t )| is proportional to the well-
known l1-norm measure of coherence [28]. If the environ-
ment is initially at the zero-temperature vacuum state ρ̂E =
|01, . . . , 0N 〉〈01, . . . , 0N |, Eq. (8) reveals that the dispersive
condition inhibits correlations between the qubit and the
modes so that rN (t ) = 1. This is valid regardless of the fre-
quency distribution of the modes as long as the dispersive
condition Eq. (3) is observed.

III. DEGENERATE MODES IN THERMAL EQUILIBRIUM

Now we consider a thermal environment where ρ̂E is the
product of N Gibbs states, one for each mode, and equal
temperature T for all modes. In this case, the thermal occu-
pation of mode k is n̄k = (eωk/T − 1)

−1
, where we considered

the Boltzmann constant kB = 1. We start the analysis of
our model by first considering the degenerate case, where
all modes have the same angular frequency ω j = ω ( j =
1, 2, . . . , N ) and therefore the same thermal occupation n̄ j =
n̄ = (eω/T − 1)

−1
( j = 1, 2, . . . , N ). In this case, the coher-

ence will depend only on the total shift �N and the thermal
occupation number n̄ through (see Appendix C)

rN (t ) = ei�N t

cos(�N t ) + i(2n̄ + 1) sin(�N t )
. (9)

In this case, rN (t ) is periodic in time, with the particular feature
that its frequency of oscillation increases with the number
of modes due to �N = (ω0 − ω)−1 ∑N

j=1 g2
j . Consequently,

the time taken for the total revival of the initial qubit state
shortens as the number of degenerate modes increases. This
behavior is different from what is observed in canonical
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models of decoherence, where recurrences are usually de-
layed with augmentation of the number of subsystems. It is
important to remark that the periodicity of rN (t ) here is not a
consequence of the Magnus expansion but is, indeed, a natural
feature arising from the Hamiltonian (1), provided that the
dispersive condition (3) is fulfilled, as shown numerically in
Appendix B. The Magnus expansion here reveals only the
effective structure of the system-environment coupling. Phys-
ically, the presence of degenerate modes in the environment
is equivalent to the dispersive interaction between the qubit
and a single mode with adjustable coupling constants. Such
two-body interaction naturally produces periodic rN (t ).

An insight about this feature can be obtained through the
diagonalization of operator M̂(t ) defined in Eq. (5). Since
M̂(t ) is Hermitian, there might be a time-dependent unitary
operator V̂ (t ) which diagonalizes it. Given that Hamiltonian
(5) does not promote squeezing, i.e., there are no terms in the
form â j âk or â†

j â
†
k , we can write

M̂d (t ) = V̂ (t )M̂(t )V̂ †(t ) =
N∑

j=1

ε j (t )â†
j â j . (10)

In what follows, M(t ) is the N × N Hermitian matrix whose
entries are mjk (t ) given by Eq. (6). Also, V (t ) is a unitary ma-
trix such that V (t )†M(t )V (t ) = Diag[ε1(t ), . . . , εN (t )]. Then,

V̂ (t )â jV̂
†(t ) =

N∑
k=1

Vjk (t )âk ( j = 1, . . . , N ). (11)

For the degenerate case, mjk (t ) = 2g jgkt/(ω0 − ω), and con-
sequently, M(t ) is actually a dyadic such that its single non-
null eigenvalue is given by ε1(t ) = �Nt . Therefore, the qubit
is only effectively coupled to a single mode, and the remaining
degenerate modes only contribute to the intensity of such
interaction. This constitutes an effective way of controlling
the single-mode dispersive regime within the scope of the
rotating-wave approximation, since the values of gj are kept
fixed. Naturally, the above development is only valid for
finite N .

IV. NONDEGENERATE MODES
IN THERMAL EQUILIBRIUM

The behavior of the coherence is enriched when nonde-
generate modes are used due to the oscillating behavior of
mjk (t ). We now detail the derivation of analytical results for
the coherence, which includes this case.

The evaluation of Eq. (8) is facilitated by evaluating
the trace in the coherent states basis and by expressing ρ̂E

in the P representation [29,30], i.e., ρ̂E = ∫
d2Nα P(α)|α〉〈α|,

where |α〉 = |α1, . . . , αN 〉 is a N-mode coherent state.
Through the diagonalization of M̂(t ), one finds

rN (t ) =
∫

d2Nα P(α)〈α|V̂ †(t )e−iM̂d (t )V̂ (t )|α〉, (12)

and further analytical progress depends now on how we deal
with the action of V̂ (t ) on |α〉. Notice that Eq. (11) implies that

V̂ (t )|α〉 is an eigenvector of â j with eigenvalue α′
j (t ) given by

α′
j (t ) =

N∑
k=1

V ∗
k j (t ) αk . (13)

This means that V̂ (t )|α〉 = |α′(t )〉 = |α′
1(t ), . . . , α′

N (t )〉 is
itself a factorized multimode coherent state. Using now
e−iε j (t )â†

j â j |α′
j (t )〉 = |α′

j (t )e−iε j (t )〉 and the thermal distribution

P(α) = e− ∑N
j=1 |α j |2/n̄ j

πN
∏N

j=1 n̄ j

, (14)

we end up with

rN (t ) = 1∏N
j=1 n̄ j

1√
det A(t )

, (15)

where A(t ) is the 2N × 2N complex matrix

A(t ) =

⎛
⎜⎜⎜⎜⎝

y1(t )I W12(t ) . . . W1N (t )

W 

12 (t ) y2(t )I . . . W2N (t )
... . . .

. . .
...

W 

1N (t ) W 


2N (t ) . . . yN (t )I

⎞
⎟⎟⎟⎟⎠. (16)

The compact and analytical form of the function rN (t ) in
Eq. (15) results from the evaluation of a 2N-dimensional
Gaussian integral. Still, in Eq. (16), I denotes the 2×2 identity
matrix and

Wjk (t ) =
(−u jk (t ) −v jk (t )

v jk (t ) −u jk (t )

)
, (17)

with

y j (t ) = n̄−1
j (n̄ j + 1) −

N∑
l=1

e−iεl (t )|Vjl (t )|2,

u jk (t ) =
N∑

l=1

e−iεl (t )Re[V ∗
jl (t )Vkl (t )], (18)

v jk (t ) =
N∑

l=1

e−iεl (t )Im[V ∗
jl (t )Vkl (t )].

Note that we are not bound to the case of identical thermal
occupations for each mode since n̄ j is a free parameter in (14).

Examples. We start our analysis with the first nontrivial
case which is N = 2. For this choice, Eqs. (15)–(18) allow
one to obtain

r2(t ) = eiε+(t )[n̄1n̄2e−iε+(t ) + (n̄1 + 1)(n̄2 + 1)eiε+(t )

− (n̄1n̄2 + n̄1|V11(t )|2 + n̄2|V12(t )|2)e−iε−(t )

− (n̄1n̄2 + n̄1|V12(t )|2 + n̄2|V11(t )|2)eiε−(t )]−1, (19)

where ε±(t ) = [ε1(t ) ± ε2(t )]/2, and ε1,2(t ) are the eigen-
values of M̂(t ). Moreover, following the described protocol,
the entries of V (t ) satisfy (omitting the time dependence)
|V11|2 = |V22|2 = |m12|2[(ε1 − m11)2 + |m12|2]−1 and |V12|2 =
|V21|2 = (ε1 − m11)2[(ε1 − m11)2 + |m12|2]−1. One can easily
check that Eq. (19) reduces to Eq. (9) when n̄1 = n̄2 and ω1 =
ω2 = ω. For nondegenerate modes, one finds ε+(t ) = �2t
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FIG. 2. Qubit coherence indicator |r2(t )| as a function of the dimensionless time ω0t . Red dotted curves: T = 0.5ω0; purple dot-dashed
curves: T = 1.0ω0; blue dashed curves: T = 2.0ω0. In the left panels, the modes have ω1 = 0.8ω0 and ω2 = 0.7ω0, whereas the coupling
constants are (a) g1 = 0.01ω0 and g2 = 0.02ω0; and (b) g1 = 0.02ω0 and g2 = 0.01ω0. In the center panels, coupling constants are fixed at
g1 = g2 = 0.01ω0, whereas for modes (c) ω1 = 0.8ω0 and ω2 = 0.7ω0; (d) ω1 = ω2 = 0.8ω0 [degenerate case that follows from Eq. (9)]; and
(e) ω1 = 0.8ω0 and ω2 = 0.9ω0. The right panel (f) shows the short-time behavior of |r2(t )| for the same parameters as in (c). In this case, the
colored areas indicate the deviation of |r2(t )| from exponential decays e−2γ t with rates γ = 1.2 × 10−4ω0 (red), γ = 3.6 × 10−4ω0 (purple),
and γ = 8.0 × 10−4ω0 (blue).

and ε−(t ) = g1g2

�1�2
t[( g1

g2
�2 − g2

g1
�1)2 + (�1 + �2)2 f 2(t )]1/2,

with f (t ) = sin [(ω1 − ω2)t/2][(ω1 − ω2)t/2]−1. Therefore,
the time dependence on the induced mode-mode coupling
tends to disturb the periodicity of r2(t ) since ε±(t )/t are in
general dynamically incommensurate. This confers on the
coherence of ρ̂S (t ) an interesting and nontrivial dynamics
which can be engineered through the choices of the system
parameters.

Figure 2 shows |r2(t )| as a function of the dimensionless
time ω0t for different choices of frequencies ω j , coupling
constants g j , and temperature T . As indicated in the left
panels, keeping the modes slightly detuned from each other
is sufficient to make |r2(t )| exhibit irregular oscillations due
to ε+(t ) �= ε−(t ) and n̄1 �= n̄2 in Eq. (19). In the center panels,
for fixed coupling constants g1 and g2, and also for fixed ω1,
we emphasize the sensibility of |r2(t )| with the variation of ω2.
In all plots, the parameters g j/� j essentially dictate the speed
of the oscillations, which is somehow related to the intensity
of the system-environment coupling through Eqs. (4)–(6). On
the other hand, the thermal occupations n̄ j determine the
amplitudes. Physically, larger values of n̄ j cause the qubit
dynamics to be more subjected to the high excited levels of
the modes. Consequently, the effects of decoherence are more
pronounced and the qubit tends to reach states with a lower
degree of purity.

Besides its suitability to the study of decoherence, the
function |rN (t )| also reveals non-Markovianity in the dynamics
through its attempts to recur. For a pure dephasing model,
such as the one considered here, there is a one-to-one cor-
respondence between |rN (t )| and the distinguishability of the
pair of initial states consisting of eigenstates of σ̂x. Any
dynamical increment of distinguishability between these two
initial states indicates non-Markovianity as it is a consequence
of information backflow from the environment to the system
[31–33]. All plots in the left and center panels of Fig. 2
signalize non-Markovianity, which is a direct consequence of
the finiteness of the environment [1].

For engineering of qubit dephasing, with fixed g j , the
nondegenerate case [see Figs. 2(c) and 2(e)] is more appro-
priate than the degenerate case [see Fig. 2(d)], since it allows
one to achieve lower values of |r2(t )| and to maintain them
for longer times, which promotes a delay of the complete
recurrence. The short-time regime is particularly interesting
as it can be used to reproduce qualitatively the influence of
canonical types of environment on the qubit dynamics, from
which a monotonic decay of the coherence is expected. In
our setup, even for very small environments (N = 2), one can
see that proper adjustments of gj , � j , and T may lead to
an approximate monotonic decay of the coherences, typical,
for instance, of the weak interaction of the qubit with a
macroscopic pure dephasing bath [Fig. 2(f)]. In particular, the
temperature T radically affects the quality of the emulation,
as mentioned previously. It is important to remark that the
dynamical map as a whole is non-Markovian and there will
be attempts of recurrence for a finite time.

Further investigation on the behavior of |rN (t )| also allows
one to extract its maximal time of monotonic decay, tmax. This
corresponds to the instant of time before the first recurrence
of the function |rN (t )|, or equivalently, its first local mini-
mum. For the degenerate case, such times can be obtained
analytically from Eq. (9), and it is given by tmax = π/(2�N ).
Considering the nondegenerate case and still with N = 2, in
Fig. 3 we numerically show the dependence of tmax on the
variation of g2 and ω2 for fixed values of g1, ω1, and T . From
the panel 3(a), it is possible to see that tmax is kept almost
constant for very small values of g2, as this situation resembles
the coupling to a single mode. For intermediate values of g2

but still smaller than g1, tmax can be delayed for more than
20% of its values obtained with very small g2. Then, as g2

approaches g1 and eventually becomes larger, tmax decreases
as a result of the faster oscillations of |r2(t )| generated by
the higher values of g2/�2. The effects of such increments to
the behavior of tmax are also present in panel 3(b), where one
notices a smooth decay of tmax for the chosen range of ω2. The
exception occurs in the region close to the resonance (ω2 ≈
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FIG. 3. Plots of tmax (in units of ω−1
0 ) for N = 2. We choose g1 =

0.01ω0, ω1 = 0.8ω0, and T = 0.5ω0. The sensitivity of tmax with the
variations of g2 and ω2 are shown in panels (a) and (b), respectively.

ω1 = 0.8ω0). In this case, tmax falls abruptly, evidencing that
nonresonant modes tend to promote prolonged monotonic
decays of |r2(t )| once one has fixed the coupling constants
g j . Mathematically, this sudden change is a consequence of
the rich behavior of rN (t ) even for N = 2. Just before the
resonance, the curve |r2(t )| develops an inflection at a point
t < tmax, which becomes a new minimum of |r2(t )| as long as
ω2 approaches ω1.

We examine now the behavior of |rN (t )| for larger envi-
ronments. According to Eqs. (15)–(18), the inclusion of more
modes in the environment results in additional oscillating
terms in rN (t ) with amplitudes consisting of products of n̄ j .
If such modes are nondegenerate, more steep depletions of

|rN (t )| are expected when N increases, since all eigenvalues of
the matrix M(t ), ε j (t ), are non-null in general. Such features
can be seen in Fig. 4, where g j and T are kept fixed and the
frequencies of the modes are equally spaced in the interval
[ω1, ωN ]. From the inset plots of Figs. 4(a) and 4(b), it is
also possible to notice that tmax is barely affected by the aug-
mentation of modes, and such time is delayed when greater
detunings � j are present [Fig. 4(a)]. In addition, the presence
of more (distinguished) frequencies in the environment atten-
uates the revivals of |rN (t )|, stabilizing the coherence at low
values for longer times. Consequently, |rN (t )| takes longer to
recur completely to its initial value, which indicates that, for
the chosen parameters, information backflow to the system is
prevented as N increases, in contrast to what is observed in the
complete degenerate case [see Eq. (9) and Fig. 2(d)]. Indeed,
the STMD of the qubit coherence is prone to resemble an
exponential decay as the nondegenerate environment becomes
sufficiently large [see Figs. 4(c)–4(f)].

Now for some comments on the feasibility of observation
of our results in a real setup. In circuit QED, temperatures
about a few dozens or hundreds of mK are easily achieved
using dilution refrigerators [34]. Such temperatures are con-
sistent with our choice T ≈ ω0, i.e., a thermal mode energy
comparable to the typical qubit energies ω0/2π ≈ 10 GHz
[35]. This is the temperature regime adopted in Figs. 2 and
4. Also, in these architectures, qubit coherence times have
reached a few microseconds [36]. Again, given that ω0/2π ≈
10 GHz, a time window of 3000/ω0 would correspond to
some fractions of microseconds, which is well inside the
coherence time of the qubit.

V. CONCLUSION

We have employed the multimode dispersive Jaynes-
Cummings interaction to induce an energy-preserving open
dynamics on the qubit. Closed-form expressions for the
qubit coherence valid for N environmental modes in thermal
equilibrium were obtained. Our investigation is fully within

FIG. 4. Plots of |rN (t )| as a function of the dimensionless time ω0t for different values of N . Temperature and coupling constants are
given respectively by T = 1.0ω0 and gj = 0.01ω0. Frequencies of the modes are equally spaced in the interval [ω1, ωN ], with ω1 = 0.7ω0,
ωN = 0.8ω0 [panel (a)], and ωN = 0.9ω0 [panel (b)]. The inset plots of panels (a) and (b) show tmax (in units of ω−1

0 ) as a function
of N . Panels (c)–(f) show the short-time behavior of |rN (t )| for parameters chosen as in panel (a). Points, dashed, and dot-dashed lines
represent |rN (t )| calculated through Eq. (15), whereas solid lines are exponential fits e−2γ t , with (c) γ = 5.1 × 10−4ω0, (d) γ = 6.4 × 10−4ω0,
(e) γ = 7.6 × 10−4ω0, and (f) γ = 1.4 × 10−3ω0.
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the grasp of current quantum technologies, with particular
interest for circuit QED implementations. Here, the modes
are assumed to be single-mode resonators such that we only
considered finite N . There is an ongoing discussion about
potential divergencies in a multimode resonator as N → ∞
[37,38]. We also discussed issues such as the possibility of
production of short-time monotonic decay of the coherences
according with the parameters of the model, which might be
useful for the simulation of qubit dephasing and the investiga-
tion of its role in quantum protocols and operations. A future
extension of our work might consider the analysis of the long-
time behavior of the coherences when natural dephasing and
dissipation take place. Such studies are relevant for the char-
acterization of steady-state properties of the system [39–43].
Another possibility may focus on the ultrastrong-coupling
regime where g j/ω j > 1 [44]. In this case, a generalized dis-
persive regime beyond the rotating-wave approximation will
have to be considered. Finally, one can also think of fermionic
systems where the transition from finite to infinite elements in
the environment have been recently investigated [45].
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APPENDIX A: DERIVATION OF
THE EFFECTIVE DYNAMICS

Here we detail the derivation of Eq. (4) from the main
text, which describes the effective evolution of a qubit inter-
acting dispersively with N electromagnetic modes. The time-
evolution operator for the interaction-picture Hamiltonian (2)
is expressed as a Magnus series [27,46] in terms of the anti-
Hermitian operator �̂(t ), i.e.,

Û I (t ) = exp[�̂(t )], �̂(t ) =
∞∑

n=1

�̂n(t ). (A1)

Conveniently, the Magnus expansion perturbatively produces
a unitary operator for any desired order, which is not true for
the usual Dyson series [46]. Following [27,46] and using the
Hamiltonian (2), the first two terms of this expansion are

�̂1(t ) = −i
∫ t

0
dt1Ĥ I (t1)

=
N∑

j=1

g j

� j
[(1 − ei� j t )σ̂+â j − H.c.], (A2)

�̂2(t ) = −1

2

∫ t

0
dt1

∫ t1

0
dt2[Ĥ I (t1), Ĥ I (t2)]

= −i�N t σ̂+σ̂− − i
σ̂z

2
M̂(t ) + O2

(
g j

� j

)
, (A3)

where �N and M̂(t ) are both defined in the main text, respec-
tively below Eq. (4) and in Eq. (5).

The generalized dispersive condition |gj/�k| � 1 in (3)
allows one to neglect the higher-order terms in (A3). The
same applies to the terms �̂n(t ) with n > 2 in (A1), since they
involve higher-order commutators [27,46] which give rise to
products of g j/�k . Therefore, up to second order, the time-
evolution operator in (A1) for the interaction-picture Hamil-
tonian (2) is well approximated by Û I (t ) ≈ e�̂1(t )+�̂2(t ). Now,
another important assumption is to neglect the influence of
�̂1(t ) on the dynamics, and this can be understood as follows.
Considering an initial state in the interaction-picture |ψ〉, the
suppression of �̂1(t ) on the dynamics would demand that
〈ψ |e�̂1(t )+�̂2(t )|ψ〉 ≈ 〈ψ |e�̂2(t )|ψ〉. Roughly speaking, this is
obtained if |〈ψ |�̂1(t )|ψ〉| is sufficiently small, which is as-
sured in our case, since �̂1(t ) is an oscillatory function of
the time with amplitudes |g j/� j | � 1, see Eq. (A2). To
some extent, dropping out such terms is what witnesses the
dispersive feature of the model: it inhibits energy exchange
between the qubit and the modes due to the elimination of
terms with σ̂+â j and σ̂−â†

j in (A2). The same is found using
other perturbative approaches for the study of the dispersive
regime, e.g., [47].

On the other hand, the main contribution to the effec-
tive description comes from the energy exchange among the
modes; these are represented by the crossing terms â†

j âk in

�̂2(t ) throughout the operator M̂(t ) defined in (5). Such
terms become essentially linear in time, provided that the
mode detunings |ω j − ωk| are not large, see Eq. (6). This last
condition is also indirectly required for both the dispersive
limit explained above and the rotating-wave approximation
producing (1) to hold.

When these conditions are fulfilled, it is possible to write
an effective evolution for the dispersive limit as in (4). To
certify the validity of the effective description for the param-
eters adopted in the main text, we now provide a numerical
evaluation with the exact Hamiltonian and contrast it with the
results using the effective dispersive one.

APPENDIX B: NUMERICAL CHECKING
OF THE EFFECTIVE DYNAMICS

In order to check the validity of the approximations, in
writing the effective evolution for the qubit in the dispersive
limit, one can numerically determine the evolution governed
by the Hamiltonian (1). The numerical procedure consists in
writing the matrix elements of that Hamiltonian with respect
to the Fock basis of the modes Hilbert space. Since this is
an infinite dimensional space, we perform a truncation on the
space dimension conveniently choosing the number of Fock
states. Specifically, for the case of N = 2 modes, we calculate
|r2(t )| from Eq. (8) and the mean value of 〈σ̂z〉, which are
respectively related to the l1-norm coherence measure and
population inversion for the qubit in the σ̂z eigenbasis. The
results are shown in Fig. 5. For the chosen parameters, they
are the same as in the main text, and the function |r2(t )|
from the Magnus expansion is in close agreement with the
numerical results; small deviations begin to be noticed only
for long times (ω0t ∼ 6000), and this is more apparent in the
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FIG. 5. Comparison of |r2(t )| on the left and 〈σ̂z〉 on the right obtained analytically through the Magnus expansion (red-dashed lines)
with the corresponding curves obtained numerically from the exact Jaynes-Cummings Hamiltonian (blue-solid lines). Temperature is set at
T = 1.0ω0. Panels (a) and (e): g1 = 0.01ω0, g2 = 0.02ω0, ω1 = 0.8ω0, and ω2 = 0.7ω0. Panels (b) and (f): g1 = g2 = 0.01ω0, ω1 = 0.8ω0,
and ω2 = 0.7ω0. Panels (c) and (g): g1 = g2 = 0.01ω0, ω1 = ω2 = 0.8ω0 (degenerate case). Panels (d) and (h): g1 = g2 = 0.01ω0, ω1 = 0.8ω0,
and ω2 = 0.9ω0. The inset in each plot highlights the tiny oscillations in the exact dynamics. The initial state of the qubit is the eigenstate of
σ̂x with eigenvalue 1.

cases with higher values of |g j/�k|, as in Figs. 5(a), 5(c),
and 5(d). As expected, the validity of the effective model is
progressively degraded as |gj/�k| becomes larger, and this
is why the tiny oscillations in the numerical curves are also
more pronounced in the mentioned plots. Furthermore, the
numerical calculations show that values of 〈σ̂z〉 are practically
kept constant, indicating that qubit populations are preserved.
Indeed, such behavior is predicted by the dispersive model, as
explained in the main text.

APPENDIX C: CALCULATION OF rN (t )
FOR DEGENERATE MODES

In this section we detail the derivation of Eq. (9) presented in
the main text. This equation exhibits the function rN (t ) in (8)
for a set of N electromagnetic modes with the same frequency
and in thermal equilibrium. The procedure is based on the
Weyl-Wigner formalism and related to the tools developed in
Refs. [48,49] for the obtainment of the total phase acquired by
a Gaussian state.

In our context, the frequency degeneracy causes M̂(t ) in
(5) to be linear in time, since Eq. (6) becomes mjk (t ) =
2g jgkt/(ω0 − ω), and rN (t ) is the average value of the meta-
plectic operator

R̂(t ) = ei�N t e− it
2 x̂
H x̂, (C1)

i.e., the unitary operator generated by the quadratic Hamil-
tonian 1

2 x̂
H x̂. For convenience we have defined the 2N-

dimensional column vector x̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N )
,
which is composed by the quadrature operators given by

q̂ j = (â†
j + â j )/

√
2 and p̂ j = i(â†

j − â j )/
√

2. Also, H is the
2N × 2N symmetric real matrix given by

H = G ⊕ G, Gi j = 2(ω0 − ω)−1gig j . (C2)

The matrix G is a dyadic and thus has a unique non-null
eigenvalue which is given by 2�N . Considering the orthog-
onal matrix O that diagonalizes G, i.e., GO = OGO
 =
Diag[2�N , 0, . . . , 0], then one is able to write HO = GO ⊕ GO

as the matrix with the eigenvalues of H .
The metaplectic operator R̂(t ) is associated to the symplec-

tic matrix S = eJHt with

J =
(

0N IN

−IN 0N

)
, (C3)

where 0N denotes the N × N null matrix and IN the N ×
N identity. Under the orthogonal transformation O ⊕ O, the
matrix SO = O ⊕ O S(O ⊕ O)
 acquires the form

SO =
(

cos (GOt ) sin (GOt )

− sin (GOt ) cos (GOt )

)
. (C4)

In addition, the Cayley parametrization of S defined by

C = J (I2N − S)(I2N + S)−1 (C5)

under the same transformation reads

CO = J (I2N − SO)(I2N + SO)−1. (C6)

Using the above definitions, considering ρ̂E a Gaussian
state with covariance matrix V and null mean values, we
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resort to the Wigner representation to express an average
value as [48–50] Tr[ρ̂Â] = ∫

dx W(x) A(x), with W (x) being
the Wigner function of ρ̂E and A(x) is the center symbol of Â.
Then one finds

rN (t ) = Tr[ρ̂E R̂(t )] = ei�N t√
det (S + I2N ) det

(
1
2 I2N + iVC

) .

(C7)

If the environmental state ρ̂E is an N-mode thermal state,
then its covariance matrix becomes V = (n̄ + 1

2 )I2N . Insert-
ing this into (C7) and using the fact that det(O ⊕ O) = 1,

since O is orthogonal, Eq. (C7) becomes

rN (t ) = ei�N t√
det (SO + I2N ) det

[
1
2 I2N + i(n̄ + 1

2 )CO
] ,

which leads directly to Eq. (9).
As a final comment, we have implicitly assumed that

det (S + I2N ) �= 0 in (C7). However, if this happens to not be
the case at some instant of time, then such a choice does not
invalidate Eq. (9) but its derivation follows a complementary
procedure based on symplectic Fourier transformations. This
is discussed in depth in Refs. [48,49].
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