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Non-Markovian dynamics of a system of two-level atoms coupled to a structured environment
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In this work, taking N noninteracting two-level atoms coupled to an anisotropic three-dimensional photonic
crystal into account, we study exact non-Markovian dynamics of the atoms with the photonic crystal as an
environment. We find that there exists a threshold number NCR for the identical atoms, beyond which the system
environment has a bound state regardless of how weak the system-environment coupling is. This means all
identical atoms do not dissipate to the ground state. Further, when the whole system has no bound state, we find
that the amplitude of collective excitation approaches a limit value 2/3 as the number of atoms approaches to
infinity. For nonidentical atoms with different transition frequencies, there exist N bound states at most that lead
to N-wave mixing in the system dynamics. The present prediction is possible to observe in the recent circuit
QED experiment, and the results suggest that coherence in a many-body system can be maintained in bound
states by manipulating the environment.
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I. INTRODUCTION

No quantum systems are fully isolated from their sur-
roundings [1,2]. This unavoidable coupling would lead to
decoherence and it is the main difficulty in quantum informa-
tion processing. The dynamics of open system has attracted
considerable attention in recent decades because it provides us
with a model to understand numerous physical and chemical
phenomena. Decoherence is the major obstacle that hinders
the processing of quantum information in various physical
implementations [3–5], and then the control of decoherence
for open quantum systems is one of the challenging problems
in the field of quantum information science [6,7].

Due to the strong memory effect of the environment, the
non-Markovian decoherence dominates in nanoscale solid-
state devices [8–10]. Besides, in the electron transport in
semiconductors [11,12], the trapped atom coupled to an en-
gineered reservoir [13], the dissipative light transport in pho-
tonic crystals [14], and in the structured environment [15–19],
the non-Markovian decoherence appears possibly, because of
where the correlation time of the environment is comparable
with the time scale of the system.

Since coherence is the key resource in quantum informa-
tion processing, it is natural to ask how to suppress the non-
Markonvian decoherence. Is it different from that in a Marko-
vian system? In fact, many schemes have been proposed
for decoherence suppression including the non-Markovian
coherent feedback control [20–22], the dynamical decoupling
control [23–31], relaxation via dephasing [32], decoherence
suppression induced by formation of bound states [33–54],
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bound states in the continuum [55–61], two-dimensional
structured reservoirs [62–64], and three-dimensional state-
dependent optical lattices [65] to mention a few.

The works of decoherence suppressions in non-Markovian
systems are mainly based on the physics with a single two-
level system subjected to the effects of structured environment
[66–72], where the formation of system-environment bound
state suppresses the decoherence induced by the feedback
of environment on the system. However, system-environment
bound state only exists when the coupling strength exceeds its
threshold, which restricts the suppression of decoherence.

In this paper, taking a quantum system consisting of N
noninteracting two-level atoms coupled to the structured en-
vironment into account, we show that the non-Markovian
dissipation processes are effectively suppressed regardless
of how weak the system-environment coupling is. We de-
rive an analytical expression for the spectral density for
the environment, and find that in the atoms there exists a
threshold number beyond that the system-environment bound
state always exists. This means all N identical atoms (same
transition frequency) do not damp to their ground states. For
nonidentical atoms with different transition frequencies, there
exist at most N bound states, which leads to N-wave mixing
of localized modes. It arises from the quantum interference of
these bound states. Observations of the prediction in the recent
circuit QED experiment can be realized in Refs. [36,73,74].

The remainder of this paper is organized as follows. In
Sec. II, we introduce a model to describe N noninteracting
two-level atoms subjected to the effects of an anisotropic
three-dimensional photonic crystal (i.e., the environment), and
derive coupled dynamical equations set in the single excitation
space. In Sec. III, we study non-Markovian dynamics for N
atoms. Section IV is devoted to derivations of bound states
for the total system and a threshold of the number of atoms
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is given. In Sec. V, we investigate non-Markovian dynamics
for the atoms and find there exist N bound states at most,
which leads to N-wave mixing of localized modes. Finally,
we conclude in Sec. VI.

II. NON-MARKOVIAN DYNAMICS FOR N
NONINTERACTING TWO-LEVEL ATOMS SYSTEM

The system under study is composed of N noninteracting
two-level atoms coupled to a three-dimensional structured
waveguide (Fig. 1). The waveguide is set along the x axis
and supports a continuum of photonic modes. Then the dis-
persion relation near the band edge could be expressed as
approximately in quadratical relations with the wave vector
k [75]. The system is modeled as N two-level atoms system,
where ground state |g〉 and excited state |e〉 of the jth atom are
separated in frequency by ω j ( j = 1, 2, . . ., N). Losses in the
system are taken into account by coupling the N atoms to an
infinite electromagnetic environment. The Hamiltonian of the
total system can be expressed as

Ĥ = Ĥ0 + ĤI , (1)

where

Ĥ0 =
N∑

j=1

h̄ω j σ̂
+
j σ̂−

j +
∑

k

h̄�kâ†
k âk (2)

ω1 ωNω2
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FIG. 1. Band structures of photonic crystals and localized photon
modes. Setup: (a) N two-level atoms with transition frequencies ω j

coupled to a three-dimensional anisotropic photonic crystal with fre-
quencies �k , where the atoms can be tuned by the waveguide vacuum
modes subjected to coupling coefficient Vj,k . It can be realized in
recent circuit QED experiment [36,73,74]. (b) The spectral density
J (ω) in Eq. (14) of the two-level atoms coupled to photonic crystals,
which can be derived in Appendix A. The spectrum is divided into
three regimes: photonic band gap (PBG), the vicinity of the photonic
band edge (PBE), and the photonic band (PB). (c) Dispersion relation
(13) with photonic band edge ωe for the system.

and

ĤI =
N∑

j=1

∑
k

h̄Vj,k σ̂
−
j â†

k + h̄V ∗
j,kâk σ̂

+
j , (3)

in which σ̂+
j (σ̂−

j ) is the raising (lowering) operator of the jth

atom with transition frequencies ω j and âk (â†
k) is the annihila-

tion (creation) operator of the kth field mode with frequencies
�k . Also, the strength of coupling between the jth atom and
the kth field mode is represented by Vj,k . Hamiltonian (1)
is analytically solvable due to the total excitation number
N̂ = ∑

j,k σ̂+
j σ̂−

j + â†
k âk being conserved. For simplicity, we

initially prepare N atoms in a linear superposition of states
with one exciton

|ψ (0)〉 =
N∑

j=1

c j σ̂
+
j |GS〉, (4)

where the normalized condition requires
∑N

j=1 |c|2j = 1.
|GS〉 denotes the ground state of N atoms; simultane-
ously all the modes of the environment are all in the
vacuum state, i.e., |GS〉 = |g〉1 ⊗ |g〉2 ⊗ · · · ⊗ |g〉N ⊗ |0〉1 ⊗
|0〉2 ⊗ · · · ⊗ |0〉∞. After time t > 0, the Schrödinger equation
ih̄ d

dt |ψ (t )〉 = Ĥ|ψ (t )〉 drives the initial state (4) to evolve to
the following one:

|ψ (t )〉 =
N∑

j=1

C j (t )σ̂+
j |GS〉 +

∑
k

Rk (t )â+
k |GS〉, (5)

where σ̂+
j |GS〉 means that all of the atoms are in the ground

state |g〉 except for the jth atom which is in the excited state |e〉
with the probability |C j (t )|2. â+

k |GS〉 denotes the environment
only one excitation in the kth field mode with the probability
|Rk (t )|2, but all other modes in environment are in the vacuum
state. The probability amplitude for the jth atom is given by
the following integro-differential equation [1]:

dC j (t )

dt
= −iω jC j (t ) −

N∑
m=1

∫ t

0
F jm(t − τ )Cm(τ )dτ, (6)

where j = 1, 2, . . ., N , and the correlation function

F jm(t − t ′) =
∫

dωJ jm(ω)e−iω(t−t ′ ), (7)

with the spectral density of the structured environment given
by

J jm(ω) =
∑

k

V ∗
j,kVm,kδ(ω − �k ), (8)

which characterizes all the back-actions between the atoms
and photonic crystals and can be determined uniquely by the
coupled strength |Vj,k|2 between atoms and photonic crystals
through the fluctuation dissipation relation (7). With the help
of the probability amplitudes in Eq. (5) and the time-evolution
equation (6), we can now express the reduced density matrix
ρ(t ) of N atoms by tracing out the structured environment as
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follows:

ρ(t ) =
N∑

j=1

|C j (t )|2σ̂+
j σ̂−

j +
N∑

m=1,n �=m

Cm(t )C∗
n (t )σ̂+

m σ̂−
n

+
⎛
⎝1 −

N∑
j=1

|C j (t )|2
⎞
⎠|GS〉aa〈GS|, (9)

where |GS〉a denotes the ground state of N atoms, i.e.,
|GS〉a = |g〉1 ⊗ |g〉2 ⊗ · · · ⊗ |g〉N .

In the following several sections, based on the coupled
dynamical equation set given by Eq. (6), we will discuss the
non-Markovian dynamics for the identical (Secs. III and IV)
and nonidentical atoms with different transition frequencies
(Sec. V) in the anisotropic three-dimensional photonic crystal
environment, respectively.

III. NON-MARKOVIAN DYNAMICS FOR N
IDENTICAL ATOMS

A. Analytical expression of probability amplitude

In this section, we consider the N atoms are all identical
(same transition frequency), i.e., ω j ≡ ωc. Via considering
explicitly N atoms coupled dissipatively to a bosonic envi-
ronment, we show that the bound states can be formed by
modulating the number of atoms N . This implies that the non-
Markovian dynamics can be controlled through engineering
the bound state via manipulating the number of atoms of the
quantum system. To grasp qualitatively the physics behind the
threshold in the non-Markovian effect, we first solve Eq. (6)
by Laplace transformation [76–79] that yields

C j (s) = C j (0) − ∑N
m=1 F jm(s)Cm(s)

s + iωc
, (10)

where

F jm(s) =
∫ J jm(ω)

s + iω
dω. (11)

In the anisotropic three-dimensional photonic crystal [80],
the coupling coefficient Vj,k takes

Vj,k = (ω jd j/h̄)
√

h̄(2ε0�kV )�ek ·�u j, (12)

where k represents both the momentum and the polarization of
the modes. d j and �u j are the magnitude and unit vector of the
atomic dipole moment of the transition. V is the quantization
volume.�ek are the transverse unit vectors for the environment
modes and ε0 denotes the vacuum dielectric constant. If a
three-dimensional anisotropic photonic crystal has an allowed
point-group symmetry, the dispersion relation near the band
edge could be expressed approximately with [75]

�k = ωe + A
∣∣�k −�k j1

0

∣∣2
, (13)

where ωe is the cutoff frequency of the band edge. �k j1
0

are the finite collections of symmetry related points, which
are associated with the band edge. The parameter A is
the model-dependent constant. Using the dispersion rela-
tion (13), and converting the mode sum over transverse
plane waves into an integral and performing the integral,

we analytically derive spectral density of the structured en-
vironment J jm(ω) = γ

3/2
jm

√
ω − ωeφ(ω − ωe)/(πω), where

γ
3/2
jm = (ω jd j )(ωmdm)

∑
j1

sin2(θ j1 )/(4πε0 h̄A3/2) with θ j1 be-
ing the angle between the dipole vector of the atom and the
j1th k j1

0 . φ(ω − ωe) is an unit step function, i.e., φ(ω − ωe) =
1 for ω � ωe; otherwise, φ(ω − ωe) = 0. For simplicity, and
without loss of generality, below we assume γ jm ≡ γ since we
can make the atomic dipole moments of two transitions par-
allel to each other and appropriately adjust the magnitude for
atomic dipole moment dj, dm and atomic transition frequency
ω j, ωm. Therefore, the spectral density of the structured envi-
ronment is reduced to

J (ω) = γ 3/2

π

√
ω − ωe

ω
φ(ω − ωe), (14)

where γ denotes the effective coupling constant between
atomic system and structured environment. More details of
Eq. (14) can be found in Appendix A.

Substituting Eq. (14) into Eq. (11), we obtain frequency-
domain correlation function

F (s) = −iγ 3/2

√
ωe + √−is + ωe

, (15)

where the phase angle of s is defined by −π < arg(s) < π ;
the phase angle of

√−is + ωe in F (s) is defined by −π
2 <

arg
√−is + ωe < π

2 . The excited-state amplitudes C j (t ) of jth
atom can then be obtained by means of an inverse Laplace
transformation

C j (t ) = 1

2π i

∫ σ+i∞

σ−i∞
C j (s)est ds, (16)

where C j (s) is given by Eq. (B2). The real number σ is
conditionally chosen so that s = σ lies to the right of all
the singularities (poles and branch points) of functions C j (s).
With the help of complex function integration and the residue
theorem, we can obtain the expression of the probability
amplitude for the jth atom:

C j (t ) = I j (t ) + 1

N
C(t ), (17)

where the collective probability amplitude

C(t ) = C(0)

{∑
m

ex(1)
m t

G ′(x(1)
m

) +
∑

n

ex(2)
n t

L′(x(2)
n

) + 1

2π i

×
∫ ∞

0
dy μ(−y − iωe)e−yt−iωet

}
(18)

describes the global motion for N identical atoms, where
C(0) = ∑N

j=1 C j (0). The contribution from the initial popu-
lation is given by

I j (t ) = e−iωct

[
C j (0) − C(0)

N

]
, (19)

where G(s) and L(s) can be found in Eq. (B4) and Eq. (B6) in
Appendix B. μ(s) = L−1(s) − G−1(s), where G ′(s) and L′(s)
are derivatives of functions G(s) and L(s), respectively. x(1)

m
and x(2)

n are the roots of G(s) = 0 and L(s) = 0, respectively.
The dynamics can be calculated from the sum of different

contributions shown in Fig. 2(a). Contour of integration for
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FIG. 2. Contour of integration for anisotropic three-dimensional
photonic crystal environment taking one detour at the band edges
s = −iωe to avoid the branch cuts. (b) Contributions to the collective
dynamics at steady state for a situation with ωe = γ as a function
of the detuning �: bound state [corresponding to the first term
of Eq. (18), red square], nonlocalized mode [corresponding to the
second term of Eq. (18), green-right-deltoid], nonexponential damp
[corresponding to the third term of Eq. (18), blue diamond]. The
parameters chosen are N = 1 (b), N = 3 (c), and N = 100 (d).

photonic crystal environment takes one detour at the band
edges s = −iEBS to avoid the branch cuts. The second term
C(t ) of Eq. (17) denotes the collective exciton dynamics,
which is different from those in Refs. [81–88], where no
bound states are formed. This can be seen from Hamiltonian
(1). If we define the collective annihilation and creation opera-
tors Ŝ− = ∑N

j=1 σ̂−
j and Ŝ+=(Ŝ−)†, respectively, Hamiltonian

(1) reduces to Jaynes-Cummings model (Vj,k → Vk)

Ĥeff = h̄ωcŜz +
∑

k

h̄�kâ†
k âk +

∑
k

h̄VkŜ−â†
k + h̄V ∗

k âk Ŝ+.

(20)

In order to illuminate the collective effect of the number of
atoms on the photonic crystal system, and avoid confusion for

the influence of initial states on the evolution, we assume that
the initial population is c j ≡ N−1/2, which leads to I j (t ) ≡ 0
given by Eq. (19). In this case, the time-evolution state (5) can
be written as

|ψeff (t )〉 = C(t )

N
Ŝ+|GS〉 +

∑
k

Rk (t )â+
k |GS〉. (21)

From Hamiltonian (20) and whole time-evolution state (21),
we can see that they are independent of any specific atoms.
Therefore, C(t ) can be seen as a collective motion to the jth
atom, so that in this system the total atoms present the same
dynamical behavior-collective motion.

The first term in Eq. (17) denotes the contributions of the
initial atoms population on the system dynamics. The first
term in Eq. (18) corresponds to localized modes with s =
−iEn (En are real numbers, which correspond to the energy
spectrum of the whole system), which appears as a conse-
quence of the so-called photon bound states [see red square
lines in Fig. 2(b)]. The localized modes exist if and only
if the environmental spectral density has band gaps located
at the pure imaginary zeros with G(−iEn) = 0 [see point P
in Fig. 2(a)]. These localized modes do not decay, which
give dissipationless non-Markovian dynamics. The nonlocal-
ized mode contains two parts. One is the second term in
Eq. (18) [see green-right-deltoid lines in Fig. 2(b)], which is
the oscillating damping process due to the complex roots in
L(s) = 0 in the regime of [Re(s) < 0 and Im(s) < −ωe]. The
other is the integral part, i.e., the nonexponential parts will
oscillate rapidly in time [see blue diamond lines in Fig. 2(b)].
This rapidly oscillating damping originates from the terms
containing e−iωet in Eq. (18). Therefore, the nonlocalized
mode parts in Eq. (18) are the contribution of the allowed
bands, which usually generate exponential decays.

We show that the probability amplitudes in Eq. (17) from
the Lebesgue-Riemann lemma [89] in the long-time regime
(t → ∞) reach

C j (t → ∞) = I j (t ) + C(0)

N

∑
m

ex(1)
m t

G ′(x(1)
m

) , (22)

whose probability represents a periodic function that changes
over time, which does not fully dissipate to the structured
environment. Equation (17) is of vital importance in study-
ing the system dynamics, which is the key element to time
evolution of the jth atom. So far, we have presented a deriva-
tion for the non-Markovian dynamics of N identical atoms.
Since Eq. (17) only depends on the initial state (4), in the
next section we only study the collective dynamics to the
system.

B. Collective dynamics

Since in this model all atoms are indistinguishable, they
behave identically. Independent of the number of atoms N ,
there are thus just N independent components of the steady-
state density matrix within the single-excitation subspace.
In fact, the localized mode and the nonexponential damping
indicates the existence of the non-Markovian memory dynam-
ics. As one can see in Fig. 3, where the number of atoms
N = 1, when the atom frequency is tuned far away from the
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FIG. 3. Time evolution of the population for one atom coupled
to a three-dimensional anisotropic photonic crystal with different
detuning � = ωc − ωe. The parameters chosen are ωe = γ , N = 1.

PBG (� = 2γ ), the collective amplitude of atoms is rapidly
damped. When the atom frequency lies in the vicinity of the
PBE, the nonexponential non-Markovian damping dominates
the photon dynamics. When the atom frequency is tuned
deeply inside the PBG, the atom has almost no damping,
and thus photons can be confined in the defect of the pho-
tonic crystal. In fact, the photon dissipative non-Markovian
dynamics produces the same results with regard to atomic
population trapping (inhibition of spontaneous emissions) and
atom-photon bound states in the vicinity of the photonic band
gap, obtained by John and others [33,35,80] when an atom
is placed in the defect. Figure 4 shows the numerical result
of long-time |C(t → ∞)| in the different detuning �. One
can check that |C(t → ∞)| just represents the time evolution
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FIG. 4. (a) Steady state |C(t → ∞)| in different detuning �.
(b) Energy spectrum of the atom-environment system, where the red
regime denotes the energy band. Here ωe = γ , N = 1.
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FIG. 5. Time evolution of the population for N identical atoms
coupled to a three-dimensional anisotropic photonic crystal with the
number of atoms in fixed atom-photonic crystal parameters, where
� = 2γ and ωe = γ . With these parameters, we can obtain the
threshold NCR = 3 obtained from Eq. (33). From the figure, we find
the collective probability amplitude in the excited state increases
with the increase of the number of atoms N , which originates from
the formation of atoms-photonic crystal with the increase of the
number of atoms (N � 3). From the figure, we find the excitation
population reaches the steady value 0.6671 when the number of
atoms is N = 100 000 000.

of one atom. It is interesting to find that, for �/γ < 1, the
atom can be partially stabilized in its excited state even in the
presence of the dissipative environment.

Interestingly, for the number of atoms N > 1 with fixed
atom-photonic crystal environment parameters, we set � =
2γ . It has been shown that there is no bound state in this sys-
tem for N = 1, which leads to the collective amplitude damp-
ing to the ground states. However, when we increase the num-
ber of atoms to very large values, e.g., N = 3, 5, 120, 1000,
the values of |C(t )| tend to stabilize [see Fig. 5(a)]. As the
number of atoms increases further, e.g., N = 100 000 000,
the population no longer changes and is fixed to 0.6671 [see
green-dotted line in Fig. 5(b)]. To gain more insight into
the N-atoms-manipulated non-Markovian dynamics shown in
Figs. 3 and 5, we below give the physical origin behind the
dynamics.

IV. FORMATION OF BOUND STATES
FOR THE TOTAL SYSTEM

A. Formation of bound states for N-atoms environment

We show that the non-Markovian dynamics of an open
system connects closely with the energy-spectrum signatures
of the whole system (system plus environment). Therefore, the
investigation of the energy spectrum may provide us insight
to understand its dynamics. In a single atom coupled with
the environment, it is known that the whole system (system
plus its environment) can form a bound state [36–38], which
is actually a stationary state with a vanishing decay rate during
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the time evolution. If such a bound state is formed, then
it will lead to a dissipationless dynamics. In this section,
we point out that the system-environment bound states are
easily controlled by tuning the number of atoms and atomic
transition frequency. Since the total exciton of the whole
system N̂ is conserved, the Hilbert space splits into inde-
pendent subspaces with definite N̂ . For our zero temperature
non-Markovian environment, only the subspaces with N̂ =
0 and 1 are involved in the dynamics. Besides the trivial
eigenstate |ψ0〉 = |GS〉 with E0 = 0 for the N̂ = 0 subspace,
we can obtain the eigenstate of the N̂ = 1 subspace as |ψBS〉 =∑N

j=1 D j σ̂
+
j |GS〉 + ∑

k Skâ+
k |GS〉 satisfies eigenequation

Ĥ|ψBS〉 = E |ψBS〉. (23)

After simple calculations, we obtain the closed equation about
eigenvalues as follows:

ED j = ω jD j +
N∑

m=1

∑
k

V ∗
j,kVm,kDm

E − �k
. (24)

It is very difficult to solve Eq. (24) due to the j dependence
of the coupling strength Vj,k . In order to study the properties
of the bound state for the whole system, in this section we
assume that Vj,k does not depend on subscript j for the jth
atom. In this case, the condition for the jth atom probability
amplitude D j having nontrivial solutions is that the determi-
nant of the coefficient matrix of Eq. (24)

A =

⎡
⎢⎢⎢⎢⎢⎣

ω1 + Z1 − E,Z1, · · ·Z1

Z1, ω2 + Z1 − E, · · ·Z1

...
...

...

Z1,Z1, · · · ωN + Z1 − E

⎤
⎥⎥⎥⎥⎥⎦

N×N

(25)

is equal to zero [i.e., det(A) = 0 for N � 2]. This will lead to
the identity Z1 ≡ Z1(E ) = Z2(E ), where

Z1(E ) =
∑

k

|Vk|2
E − �k

(26)

and

Z2(E ) =
∏N

m=1(E − ωm)

χN
(27)

where,

χN =
N∑

k=1

(−1)N−kkEk−1
∑

m1<m2<···m
ωm1ωm2 · · · ωm︸ ︷︷ ︸

m=N−k

. (28)

In this case, by imposing Eq. (26) being equal to Eq. (27), we
can obtain N solutions for the bound states at most (also see
the discussion of Sec. V).

Especially, for N identical atoms, i.e., ω j ≡ ωc [43],
Eq. (24) will lead to a compact form as

B(E ) ≡ ωc − N
∫ ∞

ωe

J (ω)dω

ω − E = E, (29)

where J (ω) is given by Eq. (14). Solution of Eq. (29) highly
depends on the particular choice of the spectral density of the
structured environment and the number of atoms. It is clear
that the existence of a bound state in the spectrum of Eq. (23)
requires that Eq. (29) must have at least a real solution in the
energy range: E < ωe. In general, existence of bound states in
the spectrum of the total Hamiltonian depends on the fact that
Eq. (29) must satisfy the condition B(ωe) < ωe, i.e.,

ωc − N
∫ ∞

ωe

J (ω)dω

ω − ωe
< ωe. (30)

Otherwise, the bound state is not formed. To simplify the
discussion, with the spectral density J (ω) given by Eq. (14),
we define parameter η as

η ≡
∫ ∞

ωe

J (ω)dω

ω − ωe
= γ 3/2

√
ωe

. (31)

Then Eq. (30) can be reduced to

� < Nη, (32)

where � = ωc − ωe. Especially, for N = 1, the whole system
forms a bound state if � < η (see �/γ < 1 for formation of
the bound state with ωe = γ in Figs. 3 and 4).

For N > 1 and �/η > 1, inequality in Eq. (32) is broken
if 1 � N < [[�/η + 1]] ([[x]] denotes the integer party of x).
In this case, the whole system does not form a bound state,
which leads to the excited-state probability amplitude C(t )
decaying to zero in the long-time limit. However, there exists
a bound state in the system no matter how large the ratio �/η

for N � [[�/η + 1]], where Eq. (32) is satisfied. Therefore,
the threshold for the number of atoms

NCR = [[�/η + 1]] ≡
[[

�
√

ωe

γ 3/2
+ 1

]]
(33)

can be regarded as a critical number of atoms. With the defi-
nition above, we show that the condition N � NCR guarantees
the whole system to form a bound state, which leads to strong
non-Markovian dynamics in any coupling regime.

Keeping the system parameters fixed, the greater the num-
ber of atoms (regardless of the weakness of coupling), the
stronger the non-Markovianity. An interesting fact arises that
as � > η (i.e., when all the N atoms are all in large detuning
regimes from the environment), the whole system can still
form bound states if N � NCR = 3 in Fig. 5. Moreover, the
weaker the N atoms coupled to the environment, the greater
the number N of atoms required to guarantee the onset of
non-Markovian dynamics. For N = 2 < NCR, the two atoms
are not enough to resist the decay of the environment, and
finally all damp to the ground states (see x line in Fig. 5).
For N = 3 � NCR, the effective coupling strength of the three
atoms exceeds the critical coupling strength, allowing the
system environment to form a bound state. In the long-time
limit, the collective amplitude has a certain probability in
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the excited state:

|C(t → ∞)| = 1

1 + γ 3/2N

2
√

ωe−EBS(
√

ωe+
√

ωe−EBS )
2

, (34)

where the EBS denotes the bound states given by Eq. (B4) via
the replacement s = −iEBS, i.e., G(−iEBS) = −iEBS + iωc +
NF (−iEBS) = 0. In principle, the system’s non-Markovian
dynamics can always be obtained by just adding a sufficiently
large number of atoms as long as �/η is finite. As the
number of atoms increases further, the excited state of the
atom reaches a limit value. Taking the limit to atoms number
N → ∞, we analytically verify

|C(t → ∞)|N→∞ = 2
3 ≈ 0.667, (35)

which is consistent with the result 0.6671 obtained by taking
the number of atoms N = 100 000 000 [see the green-dotted
line in Fig. 5(b)]. Our results are different from those obtained
from Refs. [90–93]. In Refs. [90,91], the authors discussed
a case where full emission occurs for one atom whereas
population trapping occurs with two atoms, but our result is
generalized to unlimited number of atoms. References [92,93]
showed the superradiance emission exists near a photonic
band edge in a structured reservoir. In our case, from Eq. (B1),
if we define effective coupling strength γeff = Nγ , the collec-
tive amplitude C(t ) reduces to the case of single atom coupled
with the environment, but the coupling strength γ is replaced
by the effective coupling strength γeff . In this case, γeff is
increased indefinitely with fixed γ by adding the number of
atoms in nonzero detuning � �= 0. When the number of atoms
N exceeds this threshold NCR, the effective coupling strength
γeff exceeds the critical coupled strength, which means that the
system-environment bound state always exists regardless of
the weakness of system-environment coupling strength. This
means N all-identical atoms do not dissipate to the ground
state of N identical atoms. Physically, the back action of
the environment experienced by each atom is enhanced by
the action of other atoms, as the number of atoms increases
indefinitely. This enhanced feedback from the non-Markovian
environment to the system makes the population of the collec-
tive atom reach a stable value. Based on Eqs. (17) and (35),
we obtain the steady probability amplitude for the jth atom:

C j (t → ∞) = e−iωct

[
Cj (0) − 1

N

]
+ 2C(0)

3N
e−iEBSt . (36)

Therefore, in the long-time limit, each atom exhibits the
behavior of periodic oscillations, which originates from the
quantum interference of bound-state and atom resonance
state. This means that there are two mechanisms of informa-
tion backflow at work: (1) the excitation dissipations induced
by the coupling between the atom and photonic crystal and
(2) the formation of bound states between the atoms and
the environments. The competition between the two effects
determines the finite maximum value of populations.

B. Concurrence

We now investigate time evolution of entanglement for two
atoms. In this case, the structure of the bound state (23) can
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FIG. 6. Behavior of the concurrence of the two atoms as a func-
tion of the time t with different detunings. The parameters chosen are
ωe = γ , N = 2.

be reduced to the Bell-like state

|ψBS〉12 =
√

2|�BS〉 ⊗ |GS〉 + ϕ̂|GS〉, (37)

where ϕ̂ = ∑
k Skâ+

k , and |�BS〉 is the (maximally entangled)
Bell state:

|�BS〉 = 1√
2

(|eg〉 + |ge〉)12. (38)

This is a key feature which enables entanglement generation
by atom-photon interaction.

In the long-time limit, the atomic density matrix ρ(∞)
approaches

ρ(∞) = 2D2|�BS〉〈�BS| + (1 − 2D2)|gg〉12〈gg|, (39)

which denotes the dominate role of the ρ(∞) formed in the
long-time steady state. On the contrary, if no bound states
formed, then ρ(∞) = |gg〉12〈gg|. The results verify analyti-
cally from the point of view of the dynamics the validity of
our expectation that the reduced state of the formed bound
state is of our decoherent system. The preserved steady-state
population matches well with Tr[ρ(∞)

∑
j=1,2 σ̂+

j σ̂−
j ] = 2D2

calculated analytically from Eq. (34), which verifies unam-
biguously that the initial state evolves exclusively to the steady
state ρ(∞) obtained in Eq. (39).

In Fig. 6, we plot the evolution of the entanglement
between the two atoms. The entanglement is quantified by
concurrence [94], which for the state is Concurrence =
2|C1(t )C2(t )|. We find that the parameter regimes in unformed
bound state N < NCR, where a vanish entanglement occurs
and match exactly well with the blue-circle line in Fig. 5.
With the further decrease of detuning so that the parame-
ter satisfies the bound-state condition, e.g., � = γ , a finite
concurrence is obtained (blue-∗ line). The concurrence ap-
proaches the analytical value 2|D|2, which is just the concur-
rence calculated from the steady state (39). It demonstrates
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well the distinguished role played by the formed bound-state
dynamics and steady-state behavior.

C. Emission spectra near the anisotropic three-dimensional
photonic crystal band edge

In order to illuminate the effect of the number of atoms
on the photonic crystal system, we calculate the emission
spectrum of the system. In order to achieve this goal, we
assume that the initial population takes c j ≡ N−1/2, which
leads to I j (t ) ≡ 0 and C(0) = √

N . In this case, the whole
state (21) does not depend on I j (t ). Therefore, in this sys-
tem the total atoms present the same dynamical behavior-
collective motion. The emission spectrum of the system S(ω)
is defined by the Fourier transformation of the correlation
function 〈Ŝ+(t )Ŝ−(0)〉 through the Wiener-Khintchine rela-
tion as [95–97]

S(ω) =
∫ ∞

−∞
e−iωt ′ 〈Ŝ+(t ′)Ŝ−(0)〉dt ′ + c.c., (40)

where c.c. stands for the complex conjugate of the leading
term. If we used the initial condition C(0) = 1 and assumed
the ensemble average was stationary, which meant indepen-
dent of time, this spectrum can be written as

S(ω) = 2 Re

{∫ ∞

−∞
e−iωt ′C(t ′)dt ′

}
= 2 Re{C(s = −iω)}.

(41)

Taking the real part of C(s = −iω), we analytically get the
emission spectrum

S(ω) =
{

0, ω � ωe,

2γ 3/2Nω
√

ω−ωe

γ 3N2(ω−ωe )+[(�−ω+ωe )ω−γ 3/2N
√

ωe]2 , ω > ωe.

(42)

The emission spectra behavior of the anisotropic photonic
crystal system could also be studied through the emission
spectrum shown in Fig. 7. This figure is plotted according to
Eq. (42), where the definition of emission spectrum is based
on the Wiener-Khintchine relation [95–97]. This spectrum
exhibits no emission of radiation in the photonic band gap
(N � NCR = [[�/γ + 1]]) and the allowed band (N < NCR =
[[�/γ + 1]]) (see circle lines in Fig. 7) because of the ab-
sence and abundance of photon spectrum density in these two
regions. For the large atoms N � NCR region [see Figs. 7(c)
and 7(d)], this spectrum changes from the allowed band to
the photonic band gap, which are in good agreement with
those given by time-evolution dynamics for identical atoms
in Fig. 5.

V. NONIDENTICAL ATOMS WITH DIFFERENT
TRANSITION FREQUENCIES

In the previous section, we systematically studied the exact
non-Markovian dynamics of N identical atoms. Equation (17)
provides general solutions of the non-Markovian dissipative
dynamics for the system consisting of N identical atoms
in three-dimensional photonic crystal structures. It shows
that the atoms dynamics in photonic crystal always contains
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FIG. 7. Emission spectra near an anisotropic band edge of a
photonic crystal for several atomic detuning frequencies from the
band edge in units of γ . From Eq. (33), with ωe = γ , we find
NCR = [[�/γ + 1]]. Therefore, systems with positive atomic detun-
ing frequencies have atomic frequencies lying within the allowed
band, while those with negative ones � < 0 inside the PBG under
N = 1. We find, with the increase of the number of atoms, positive
atomic detuning frequencies � > 0 all enter the PBG.

two parts: a localized photon mode (the second term) where
there is at most one bound state and nonlocalized mode (the
other terms except the second term) photon damping. The
corresponding frequency-energy spectrum always exists
within the PBG. This nonlocalized mode damping is a short-
time non-Markovian memory effect, and it will become an
exponential decay in the PB region. Below we will point out
that there exist two (three) bound states at most for two (three)
nonidentical atoms with different transition frequencies
(ω1 �= ω2 �= ω3), which leads to very interesting dynamical
behaviors fully different from the case of N identical atoms.
For two nonidentical atoms, we analytically obtain probability
amplitudes

C1(t ) =
∑

m

h1
(
s(1)

m

)
es(1)

m t

G ′
2

(
s(1)

m
) +

∑
n

h3
(
s(2)

n

)
es(2)

n t

L′
2

(
s(2)

n
)

+ 1

2π i

∫ ∞

0
dy μ1(−y − iωe)e−yt−iωet ,

C2(t ) =
∑

m

h2
(
s(3)

m

)
es(3)

m t

G ′
2

(
s(3)

m
) +

∑
n

h4
(
s(4)

n

)
es(4)

n t

L′
2

(
s(4)

n
)

+ 1

2π i

∫ ∞

0
dy μ2(−y − iωe)e−yt−iωet , (43)

where the relevant coefficients can be found in Appendix C.
For three atoms, we obtain probability amplitudes

C1(t ) =
∑

m

g1
(
s(1)

m

)
es(1)

m t

G ′
3

(
s(1)

m
) +

∑
n

g4
(
s(2)

n

)
es(2)

n t

L′
3

(
s(2)

n
)

+ 1

2π i

∫ ∞

0
dy ν1(−y − iωe)e−yt−iωet ,
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FIG. 8. Time evolution of the population for two atoms with
different transition frequencies (ω1 �= ω2). The red-solid and blue-
dotted lines denote the population |C j (t )| for atom 1 and atom
2, respectively. The initial state takes C1(0) = 1, C2(0) = 0. This
figure corresponds to complete decay, no inversion, and periodic
oscillation, respectively. The parameters chosen are ω1 = 5γ , ω2 =
7γ for (a) and (d), ω1 = 5γ , ω2 = 0.7γ for (b) and (e), and ω1 =
0.5γ , ω2 = 0.7γ for (c) and (f). The energy spectrum E is scaled in
units of γ . The points of intersection of the Z1(E ) and Z2(E ) denote
the bound states in the system.

C2(t ) =
∑

m

g2
(
s(3)

m

)
es(3)

m t

G ′
3

(
s(3)

m
) +

∑
n

g5
(
s(4)

n

)
es(4)

n t

L′
3

(
s(4)

n
)

+ 1

2π i

∫ ∞

0
dy ν2(−y − iωe)e−yt−iωet ,

C3(t ) =
∑

m

g3
(
s(3)

m

)
es(5)

m t

G ′
3

(
s(3)

m
) +

∑
n

g6
(
s(4)

n

)
es(6)

n t

L′
3

(
s(4)

n
)

+ 1

2π i

∫ ∞

0
dy ν3(−y − iωe)e−yt−iωet , (44)

where relevant coefficients can also be found in Appendix C.
For two and three nonidentical atoms with different transi-

tion frequencies, we summarize four independent regions as
follows.

(i) Complete decay of atoms. We discuss in details the
features of four different regimes for two atoms in Fig. 8
and three atoms in Fig. 9. First, in the PB region, where the
localized mode vanishes due to there being no real root in PB,
the exciton dynamics undergoes a full dissipation process [see
Figs. 8(a) and 9(a)]. It can be approximately characterized as
a nonlocalized mode, which contains two parts. One is the
second term in Eqs. (43) and (44), which is the oscillating
damping process due to the complex roots in L2(3)(s) = 0
in the regime of [Re(s) < 0 and Im(s) < −ωe]. The other is
the integral part, i.e., the nonexponential parts will oscillate
rapidly in time. This rapidly oscillating damping originates
from the terms containing eiωet in Eqs. (43) and (44).

(ii) No inversion of population. The nonlocalized mode
parts will rapidly approach zero within the PBG according to
the Lebesgue-Riemann lemma. In this case there is only one
real energy spectrum; therefore, the population Eqs. (43) and
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FIG. 9. Time evolution of the population for two nonidenti-
cal atoms (ω1 �= ω2 �= ω3). The red-solid, green-dashed, and blue-
dashed-dotted lines denote the population |C j (t )| for atom 1, atom 2,
and atom 3, respectively. The initial state takes C1(0) = 1, C2(0) =
1 = 0, C3(0) = 0. This case corresponds to complete decay, no
inversion, periodic oscillation, and three-wave mixing, respectively.
The parameters chosen are ω1 = 5γ , ω2 = 7γ , ω3 = 9γ for (a) and
(e), ω1 = 5γ , ω2 = 7γ , ω3 = 0.9γ for (b) and (f), ω1 = 5γ , ω2 =
0.7γ , ω3 = 0.9γ for (c) and (g), and ω1 = 0.5γ , ω2 = 0.7γ , ω3 =
0.9γ for (d) and (h). The energy spectrum E is scaled in units of γ .
The points of intersection of the Z1(E ) and Z2(E ) denote the bound
states in the system.

(44) can be obtained [see Figs. 8(b) and 9(b)] after a long time:

|C j (t → ∞)| = h j (−iEBS2)

G ′
2(−iEBS2)

, (45)

where EBS2 is a pure imaginary root of G2(s = −iEBS2) [see
Fig. 8(e)]. For three atoms

|C j (t → ∞)| = g j (−iEBS3)

G ′
3(−iEBS3)

, (46)

where EBS3 is a pure imaginary root of G3(s = −iEBS3) [see
Fig. 9(f)]. We find that population holds a nonzero steady
value after a long time. This is also understandable based
on the fact that the bound state, as a stationary state of the
whole system, has a vanishing decay rate and the coherence
contained in it would be preserved during the time evolution.

(iii) Periodic oscillation of atoms with different transition
frequencies. Interestingly, in this case, the quantum interfer-
ence effects between the two localized modes after large time
t lead to periodic oscillation behaviors of the dynamics. The
amplitudes of periodic oscillations do not decrease in time.
From Eqs. (43) and (44), we obtain the populations for two
atoms in the long-time regime for two atoms,

|C1(t → ∞)| = ε2
1ε

2
2 + ε1ε2 cos[(EBS1 − EBS2)t], (47)

and for three atoms,

|C1(t → ∞)| = ε2
3ε

2
4 + ε3ε4 cos[(EBS3 − EBS4)t], (48)

whose periodic is T = 2π/(EBS1 − EBS2) or 2π/(EBS3 −
EBS4). Here EBS1 and EBS2 is a pure imaginary root of
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FIG. 10. Comparison of |C1(t )| calculated by solving Eq. (43)
[(a) and (b)] (red circles) and Eq. (44) [(c) and (d)] (red circles)
and by evaluating the steady solution (49) (blue ×) in two atoms
[(a) versus (45) and (b) versus (47)], and three atoms [(c) versus (46)
and (d) versus (49)]. Other parameters are ω1 = 5γ , ω2 = 7γ for (a),
ω1 = 0.5γ , ω2 = 0.7γ for (b), ω1 = 5γ , ω2 = 7γ , ω3 = 9γ for (c),
and ω1 = 0.5γ , ω2 = 0.7γ , ω3 = 0.9γ for (d).

G2(s = −iEBS) [see Fig. 8(f)] and EBS3 and EBS4 is a pure
imaginary root of G3(s = −iEBS) [see Fig. 9(g)]; these coef-
ficients take ε1 = h1(−iE2 )

G ′
2(−iE2 ) , ε2 = h1(−iE3 )

G ′
2(−iE3 ) , ε3 = g1(−iE2 )

G ′
2(−iE2 ) , ε4 =

g1(−iE3 )
G ′

2(−iE3 ) . The dynamics reaches periodic oscillation behaviors.
In other words, the nonlocalized mode will approach zero
after some time due to the localized exciton dynamics. The
short-time dynamics is given by Figs. 8(c) and 9(c). The
changes from complete decoherence to decoherence suppres-
sion and then to periodic oscillation results from the existence
of bound states in the model itself (see Figs. 8 and 9).

(iv) Three-wave mixing of three atoms with different tran-
sition frequencies. In this subsection, we give the analytical
population for the first atom

3∑
j=1

∣∣A2
j

∣∣ + 2
3∑

m<n=1

|AnA∗
m| cos[(EBSm − EBSn)t + ϕm], (49)

where Aj = g1(−iEBS j )
G ′

3(−iEBS j )
and EBS j ( j = 1, 2, 3) are three pure

imaginary roots of G3(s = −iEBS j ). The conditions of bound
states in three atoms at most exist as three bound states, which
leads to three-wave mixing mediating the conversion of a
photon with different frequencies. This can be exhibited in
Fig. 9(d) [Fig. 9(h) shows that there are three bound states in
this case].

Figure 10 depicts the results of |C1(t )|. The results are
obtained by solving Eq. (43) [(a) and (b)] (red circles) and
Eq. (44) [(c) and (d)] (red circles), by evaluating the steady
solution (49) (blue ×) in two atoms [(a) versus Eq. (45) and
(b) versus Eq. (47)], and three atoms [(c) versus Eq. (46)
and (d) versus Eq. (49)]. Comparing these results, we find
that the numerical result, except the small difference in short-
time regime, coincides exactly with the steady result in the

long-time limit. When only two bound states are formed
for two atoms, |C1(t )| shows the perfect oscillation with the
period T = 2π/(EBS1 − EBS2) [see Fig. 10(b)]. When three
bound states are formed, |C1(t )| shows the three-wave mixing
oscillation with multiple frequencies determined jointly by
EBS1, EBS2, and EBS3 due to the interference between the
three bound states [see Fig. 10(d)]. The comparison validates
unambiguously the bound-states mechanism in governing the
atoms with different transition frequencies induced by the
anisotropic three-dimensional photonic crystal environment.

VI. CONCLUSIONS

In summary, we have investigated non-Markovian dy-
namics for N noninteracting two-level systems coupled to
an anisotropic three-dimensional photonic crystal. We show
that the dissipation of N atoms can always be effectively
suppressed as long as the number of atoms exceeds the
threshold, beyond which the system-environment exists the
bound state. This is quite different from the situation with
single atom. For atoms with different transition frequencies,
there exist N bound states at most, which leads to N-wave
mixing of N localized modes. This discovery is attributed to
the formation of a bound state between each atom and its
quantum environment. The result provides us with an active
way to realize the control of the quantum many-body system
by engineering the environment [36,73,74].

Our results are observable in the circuit QED platform
[36,73,74], where the bound state has been observed already.
Note that current studies might be extendable to a nonrotating
wave system [98], as well as other spectral densities (e.g.,
the Ohmic spectrum) [99]; hence it is interesting for the
community of quantum physics.
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APPENDIX A: SPECTRAL DENSITY OF PHOTONIC
CRYSTAL ENVIRONMENTS

With Eqs. (8) and (12), we can calculate spectral density of
the structured environment as follows:

J jm(ω) =
∑

k

V ∗
j,kVm,kδ(ω − �k )

= ε jm

2ε0 h̄V

∑
k

(�ek ·�u j )(�ek ·�um)

�k
δ(ω − �k )

= ε jm

2ε0 h̄V

∑
k

1 − (�k ·�u j )(�k ·�um)/k2

�k
δ(ω − �k )

= ε jm

16π3ε0 h̄

∫
[1−(�k ·�u j )(�k ·�um)/k2]d3�k

�k
δ(ω−�k ),

(A1)
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where ε jm = (ω jd j )(ωmdm), and we have replaced the sum
by an integral via

∑
k → V (2π )−3

∫
d3�k and (�ek ·�u j )(�ek ·

�um) = 1 − (�k ·�u j )(�k ·�um)/k2. Near the band edge, the disper-
sion relation may be expressed approximately by �k = ωe +
A|�k −�k j1

0 |2. We only consider that the atomic dipole moments
are parallel [100]; it was shown that a system can emulate
to a large degree a system with parallel dipole moments, and
systems with parallel dipoles can be realized in Ref. [101].
Therefore, the angle between the dipole vector of the jth atom
and the j1th �k j1

0 is all θ j1 . The angle between the dipole and �k
near �k j1

0 is replaced approximately by θ j1 . Then Eq. (A1) is
reduced to

J jm(ω) = ε jm

16π3ε0 h̄

⎛
⎝∑

j1

sin2θ j1

⎞
⎠∫

d3�q

(ωc + A|�q|2)

× δ(ω − ωc − A|�q|2)

= ε jm

4π2ε0 h̄

⎛
⎝∑

j1

sin2θ j1

⎞
⎠ ∫ ∞

0

q2dq

(ωc + Aq2)

× δ(ω − ωc − Aq2). (A2)

In the continuum limit, J jm(ω) can be written as

J jm(ω) = ε jm

4π2ε0 h̄

⎛
⎝∑

j1

sin2θ j1

⎞
⎠ ∫ ∞

0

q2dq

(ωc + Aq2)

× δ(ω − ωe − Aq2). (A3)

According to the properties of the Dirac delta function, we
have

J jm(ω) = γ
3/2
jm A3/2

π

∑
n

q2
n(ω)

ω

∣∣∣∣A dq2

dq

∣∣∣∣−1

q=qn (ω)

, (A4)

where γ
3/2
jm = ε jm

∑
j1

sin2(θ j1 )/(4πε0 h̄A3/2), and the corre-
sponding wave numbers qn(ω) are determined by

ω = ωe + Aq2(ω).

Substituting the above results into Eq. (A4), we can obtain
the spectral density (14) for the anisotropic three-dimensional
photonic crystal environment.

APPENDIX B: CALCULATION OF THE COLLECTIVE
AMPLITUDES C(t )

The amplitude C(t ) = ∑N
j=1 C j (t ) can be obtained by

means of the inverse Laplace transform,

C(t ) = 1

2π i

∫ σ+i∞

σ−i∞
C(s)est ds

= 1

2π i

∫ σ+i∞

σ−i∞
ds est C(0)

s + iωc + NF (s)
, (B1)

where C(s) is given by

C(s) = C(0)

s + iωc + NF (s)
. (B2)

With the integration contours as shown in red-solid line of
Fig. 2(a), we have

C(t ) =
∑

m

C(0)ex(1)
m t

G ′(x(1)
m

) − C(0)

2π i

{∫ −iωe+0

−iωe−∞
+

∫ −i∞+0

−iωe+0
ds est

× C(0)

s + iωc + NF (s)

}
, (B3)

where the function

G(s) = s + iωc + NF (s), (B4)

where x(1)
m is the root of the equation G(s) = 0 in the region

[Re(s) > 0 or Im(s) > −ωe], the real number σ , and the real
number s = σ lies to the right of all the singularities x(1)

m . The
last term can be calculated with the integration contours in
red-dashed line as shown Fig. 2(a):

1

2π i

∫ −i∞+0

−iωe+0
ds est C(0)

s + iωc + NF (s)

= 1

2π i

∫ −i∞

−iωe

ds est C(0)

s + iωc + NF1(s)

= −
∑

n

C(0)ex(2)
n t

L′(x(2)
n

) − C(0)

2π i

×
[∫ −iωe+0

−iωe−∞
ds est C(0)

s + iωc + NF1(s)

]
, (B5)

where

L(s) = s + iωc + NF1(s), F1(s) = −iγ 3/2

√
ωe − i

√
is − ωe

,

(B6)

where x(2)
n is the root of the equation L(s) = 0 in the re-

gion [Re(s) < 0 and Im(s) < −ωe]. From Eqs. (B1), (B3),
and (B5), we can obtain the amplitudes (18) by setting
s = −y − iωe.

APPENDIX C: RELEVANT COEFFICIENTS FOR TWO
ATOMS AND THREE ATOMS

For nonidentical atoms with different transition frequen-
cies, enjoying the similar methods as one atom above, we
can derive the exact non-Markovian dynamics (43) and (44)
for two and three atoms, respectively. Below we list these
coefficients. For the case of two atoms, they are

G2(s) = s2 + F (s)(2s + iω1 + iω2) + isω1 + isω2 − ω1ω2,

L2(s) = s2 + F1(s)(2s + iω1 + iω2) + isω1 + isω2 − ω1ω2,

h1(s) = C1(0)[F (s) + s + iω2] − F (s)C2(0),

h2(s) = F (s)[C2(0) − C1(0)] + C2(0)(s + iω1),

h3(s) = C1(0)[F1(s) + s + iω2] − F1(s)C2(0),

h4(s) = F1(s)[C2(0) − C1(0)] + C2(0)(s + iω1),

F (s) = −iγ 3/2/(
√

ωe + √−is + ωe),

F1(s) = −iγ 3/2/(
√

ωe − i
√

is − ωe),
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μ1(s) = h3(s)/L2(s) − h1(s)/G2(s),

μ2(s) = h4(s)/L2(s) − h2(s)/G2(s).

While for three atoms, we list the coefficients as follows:

G3(s) = (s + iω1)(s + iω2)(s + iω3) + F (s)

× [3s2 − ω1ω2 − ω1ω3 − ω2ω3

+ 2is(ω1 + ω2 + ω3)],

L3(s) = (s + iω1)(s + iω2)(s + iω3) + F1(s)

× [3s2 − ω1ω2 − ω1ω3 − ω2ω3

+ 2is(ω1 + ω2 + ω3)],

g1(s) = C1(0)(s + iω2)(s + iω3) − F (s)

× [C3(0)(s + iω2) + C2(0)(s + iω3) − C1(0)

× (2s + i(ω2 + ω3))],

g2(s)=C2(0)(s+iω1)(s + iω3)−F (s)[C3(0)(s+iω1)

+ C1(0)(s + iω3) − C2(0)(2s + i(ω1 + ω3))],

g3(s)=C3(0)(s+iω1)(s+iω2) − F (s)[C2(0)(s+iω1)

+ C1(0)(s + iω2) − C3(0)(2s + i(ω1 + ω2))],

g4(s) = C1(0)(s + iω2)(s + iω3) − F1(s)

× [C3(0)(s + iω2) + C2(0)(s + iω3) − C1(0)

× (2s + i(ω2 + ω3))],

g5(s) = C2(0)(s + iω1)(s + iω3) − F1(s)

× [C3(0)(s + iω1) + C1(0)(s + iω3) − C2(0)

× (2s + i(ω1 + ω3))],

g6(s) = C3(0)(s + iω1)(s + iω2) − F1(s)

× [C2(0)(s + iω1) + C1(0)(s + iω2) − C3(0)

× (2s + i(ω1 + ω2))],

ν1(s) = g4(s)/L3(s) − g1(s)/G3(s),

ν2(s) = g5(s)/L3(s) − g2(s)/G3(s),

ν3(s) = g6(s)/L3(s) − g3(s)/G3(s).

For N nonidentical atoms with different transition
frequencies (N > 3, ω1 �= ω2 �= · · · �= ωN ), following the
similar methods as above, we also can obtain the exact
non-Markovian dynamics under the single excitation space.
In this paper, we are not going to have further discussions
about it.
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