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Theory of Bose condensation of light via laser cooling of atoms
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A Bose-Einstein condensate (BEC) is a quantum phase of matter achieved at low temperatures. Photons,
one of the most prominent species of bosons, do not typically condense due to the lack of a particle number
conservation. We recently described a photon thermalization mechanism which gives rise to a grand canonical
ensemble of light with effective photon number conservation between a subsystem and a particle reservoir. This
mechanism occurs during Doppler laser cooling of atoms where the atoms serve as a temperature reservoir while
the cooling laser photons serve as a particle reservoir. In contrast to typical discussions of BEC, our system
is better treated with a controlled chemical potential rather than a controlled particle number, and is subject to
energy-dependent loss. Here, we address the question of the possibility of a BEC of photons in this laser cooling
photon thermalization scenario and theoretically demonstrate that a Bose condensation of photons can be realized
by cooling an ensemble of two-level atoms (realizable with alkaline-earth atoms) inside a Fabry-Pérot cavity.

DOI: 10.1103/PhysRevA.99.031801

I. INTRODUCTION

A Bose-Einstein condensation (BEC) is a striking exam-
ple of quantum behavior where a macroscopic number of
bosons occupy the same single-particle state. Traditionally,
BEC occurs in systems with particle number conservation,
either represented by a grand canonical ensemble (GCE) or
in a system closed to particle exchange. Thus, we would
expect photons, whose number is not conserved and which
do not generally admit a GCE description, not to condense.
For example, when one cools a blackbody, photons disappear;
instead of forming a condensate, one reaches a vacuum state
at T = 0.

There are several exceptions to this, however. For example,
light can acquire a nonzero chemical potential and form a
BEC via mutual interactions mediated by matter in the form of
hybridized light-matter particles called polaritons [1–7], pho-
tons in a plasma [8,9], cavity photons in a nonlinear resonator
[10], and propagation of light in a nonlinear medium [11–14].
Photons can also thermalize with a number-conserving reser-
voir, and condense [15], in a dye-filled microcavity [16–24],
an optomechanical cavity [25,26], an ideal gas composed of
two kinds of atoms [27], a one-dimensional (1D) microtube
[28], and a fiber [29]. In all of these cases, the average
photon number is approximately conserved either by photon
confinement in a cavity or through the compensation of loss
via nonequilibrium pumping.

On the other hand, interactions between atoms and optical
cavities have made possible novel atom-cooling mechanisms
[30–38] as well as peculiar states of light [39]. We recently
found a different photon thermalization mechanism that oc-
curs in Doppler laser cooling of a high optical depth atomic
ensemble [40], which requires neither matter-matter nor effec-
tive photon-photon interactions. Specifically, in our scenario
the laser-cooled atoms serve as a thermal reservoir while the

laser photons serve as a particle reservoir for the reemitted
photons, leading to a grand canonical ensemble of photons
at the atomic temperature and with a chemical potential very
close to the energy of a single laser photon. Here, we extend
our previous work by considering a cavity-photon density of
states and showing that this thermalization mechanism can
lead to a Bose condensation of photons, with added features in
contrast to typical analyses of trapped atomic or photon BEC:
First, our chemical potential is controlled, rather than the
particle number; second, photon scattering leads to energy-
dependent loss mechanisms.

To give a practical setting for our work, we adopt the
now standard approach to controlling the photon dispersion
relation by using a Fabry-Pérot cavity where transverse excita-
tions of a single longitudinal mode can be mapped onto a two-
dimensional (2D) massive bosonic gas with a harmonic trap-
ping potential. While previous theoretical analyses of BEC
have been mostly focused on the identification of a critical
temperature or critical number (density) [16,19,20,41–43],
here we consider the photon condensate fraction as a function
of temperature and chemical potential (set effectively by the
cooling laser detuning from the cavity). By carefully treating
the modification due to loss, we are able to construct a phase
diagram as a function of laser frequency and field strength,
showing condensate, thermal, quasithermal, and gain regimes
for cavity photons with calculated values appropriate for the
Yb intercombination transition.

II. PHOTON THERMALIZATION

Consider three-dimensional (3D) Doppler cooling of non-
interacting two-level atoms in a long cavity [i.e., the cavity
subtends a small solid angle as illustrated in Fig. 1(a)]. The
cavity separates the emitted photons into long-lived cavity
modes and lossy, free-space modes. When the atom is excited
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FIG. 1. (a) Schematic of an ensemble of two-level atoms which
are Doppler cooled by laser fields (green arrows) and free-space
photon modes (red arrows), while also interacting with cavity-photon
modes (blue arrows within the light-blue region). (b) The state
degeneracy g(E ) (equivalent to the density of states) of the transverse
cavity modes is equivalent to that of a 2D massive particle in a
harmonic trapping potential with a lower cutoff energy h̄ωc = h̄ωq‖00

including polarization. The green line shows the energy of a single
laser photon h̄ωL . (c) The scattering process in which an atom is
excited by the laser field and then emits a cavity photon. (d) The
scattering process in which an atom absorbs a cavity photon and then
scatters back into the laser field.

by a laser photon, it is most likely to deexcite by emitting
a photon into free space, and this scattering process induces
the Doppler cooling of atoms [44–46]. A rarer event is the
spontaneous emission into the cavity. However, the high
quality of the cavity mirrors allows those cavity photons to
be reabsorbed by the atoms and preferentially emitted into
the cooling beam, if the cooling laser is sufficiently intense.
Both processes produce light whose coherence is described
as thermal, in the quantum optics sense of having a pho-
ton autocorrelation that is peaked at short times. However,
multiple scattering also leads to photon thermalization in
an energetic sense across different transverse cavity modes.
Photons thermalize with the atomic motion in an approximate
particle number-conserving way where the cooling laser acts
as a photon reservoir.

In the low excitation limit for Doppler cooling, �2 �
|�̄L + i�/2|2 [47], the scattering between the red-detuned
laser fields and the free-space modes will lead to the cooling of
atoms to a temperature kBT = β−1 = h̄(�̄2

L + �2/4)/2|�̄L|
[48]. Here, 2� is the Rabi frequency of the cooling laser field,

�̄L = ωL − ωA − h̄k2
L

2mA
< 0 is the laser detuning including the

recoil shift h̄k2
L

2mA
; �, ωA, and mA are the natural linewidth,

two-level transition frequency, and the mass of the atoms;
ωL and h̄kL are the frequency and momentum of the laser
photons. Here, we have neglected the effect of atom-cavity
interactions on atomic motions since the atom-free space
coupling is dominant in the case of a long cavity.

In addition to the timescale set by photon scattering rate
in the Doppler-cooling process there is the slower dynamics
associated with emission and absorption of the cavity photons
by atoms. In the large detuning and high-power limit |�̄L|2 �
�2 � �2, the dominant processes involving the creation and
annihilation of cavity photons are the scatterings between a
laser photon and a cavity photon as illustrated in Figs. 1(c)
and 1(d). For a single longitudinal mode with a longitudinal
momentum q‖ = q‖ẑ, the transverse modes of the cavity can
be expressed in terms of Laguerre-Gauss modes labeled by
the radial index l ∈ N and azimuthal index m ∈ Z [49,50].
According to Fermi’s golden rule, the total rate that an atom
scatters laser photons into a cavity mode with mode frequency
ωq‖lm [49] [Fig. 1(c)] is, in the large detuning limit,

(nq‖lm + 1)�+
q‖lm,L ≈

∑
p

2π

h̄

h̄2�2α2
q‖

|�̄L|2 (nq‖lm + 1)

× δ(h̄ωL + K (p) − h̄ωq‖lm − K (p′)),
(1)

where α2
q‖ is the spatial average of α2

q‖lm (2αq‖lm is the single-
photon Rabi frequency of the transverse cavity mode q‖lm),
nq‖lm is the cavity-photon occupation number, �+

q‖lm,L is the
single-cavity-photon emission rate mediated by the laser, p
and p′ = p + h̄kL − h̄q‖ are the atomic momentum before and
after the scattering event, and K (p) = p2/2mA is the kinetic
energy of the atom. We are working in the paraxial limit so
that qq‖lm ≡ ωq‖lm/c ≈ q‖. Furthermore, the atoms are taken
to have a uniform spatial distribution within the cavity mode
volume so that the spatial average of α2

q‖lm is independent of l
and m.

Similarly, the total rate that an atom scatters cavity photons
into the laser field [Fig. 1(d)] is

nq‖lm�−
q‖lm,L ≈

∑
p′

2π

h̄

h̄2�2α2
q‖

|�̄L|2 nq‖lmδ(h̄ωq‖lm

+ K (p′) − h̄ωL − K (p)), (2)

where �−
q‖lm,L is the single-cavity-photon absorption rate

mediated by the laser, p′ is the atomic momentum before
the scattering event, and p = p′ + h̄q‖ − h̄kL is the atomic
momentum after the scattering event.

Equilibration between the emission and absorption of cav-
ity photons mediated by the cooling laser will lead to a
detailed balance condition such that Eq. (1) equals Eq. (2),
which gives

n̄q‖lm + 1

n̄q‖lm
=

�−
q‖lm,L

�+
q‖lm,L

=
∑

i

e−βK (p′
i )

e−βK (pi )
= eβ h̄(ωq‖ lm−ωL )

. (3)

Here, n̄q‖lm is the mean number of photons under detailed
balance. The Boltzman factor is picked up by each pair of pi
and p′

i satisfying the energy conservation condition K (p′
i ) −

K (pi ) = h̄(ωL − ωq‖lm) when summing over the atomic mo-
mentum distribution. This equilibration condition can be
understood within the framework of photon thermalization
with a parametrically coupled bath [40,51–53], where the
conservation of the total number of cavity plus laser photons
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during the scattering processes imposes a nonzero chemical
potential h̄ωL to the cavity photons. For ωq‖lm > ωL, one
has n̄q‖lm = 1

e
β h̄(ωq‖ lm−ωL )−1

corresponding to a grand canonical

distribution; for ωq‖lm < ωL, one expects gain or lasing instead
of an equilibrium steady state since �+

q‖lm,L > �−
q‖lm,L .

In reality, cavity photons also suffer from losses either due
to scattering into the free-space modes or dissipations at the
cavity mirrors. Based on the theoretical tools developed in
Ref. [40], assuming perfect cavity mirrors (working in the
regime N�±

q‖lm,L � κ , where N is the total number of atoms
and κ is the cavity linewidth), the detailed balance condition is
modified by the loss caused by scattering of the cavity photons
into the free-space modes to

n̄q‖lm + 1

n̄q‖lm
≈ eβ h̄(ωq‖ lm−ωL ) + �

�2

|kL − q‖|√
2πβmA

× e
β

2mA
(− mA

|kL−q‖| (ωq‖ lm−ωL )− h̄|kL−q‖|
2 )2

. (4)

This loss-modified result represents a small correction to
the grand canonical form Eq. (3) in the high-power limit
� � �, which is the focus of this Rapid Communication.
Furthermore, the correction depends on the cavity mode fre-
quency, and is larger for larger transverse cavity modes (when
the frequency difference between the given cavity mode and
the laser, ωq‖lm − ωL, is larger). At large but finite power, we
can incorporate the corrections from the second term on the
right-hand side of Eq. (4) into a shifted chemical potential
h̄ωL − δμ and a mode-dependent effective temperature β−1

eff ,
where, formally, δμ and βeff are defined by the equations [40]

1 = e−βδμ + �

�2

|kL − q‖|√
2πβmA

e
β

2m ( mAδμ

h̄|kL−q‖| −
h̄|kL−q‖|

2 )2

, (5)

eβeff (h̄ωq‖ lm−h̄ωL+δμ) = n̄q‖lm + 1

n̄q‖lm
. (6)

Equation (6) predicts a transition from equilibrium to gain at
the shifted frequency ωq‖lm = ωL − δμ/h̄. Larger transverse
cavity modes are subject to lower effective temperatures since
the scattering rates between laser and cavity photons become
smaller for larger transverse modes, while the scattering loss
rate into free space stays approximately the same over dif-
ferent modes. For low power, � < �c for some critical value
�c, the photon loss is large enough such that Eq. (5) has no
solutions. In that case, δμ and βeff are no longer well defined
and only quasithermal light (where the photon distribution
cannot be described by a single well-defined temperature) is
expected.

III. 2D PHOTON BEC IN A CAVITY

Restricting the cavity-photon states to ωq � ωc > ωL −
δμ/h̄, for a cavity cutoff frequency ωc equal to the lowest
transverse mode frequency, can prevent the regime of gain and
take us towards a photon BEC. Specifically, we control the
photon density of states with a cavity and, further, consider a
Fabry-Pérot cavity with curved mirrors to realize a quadratic
dispersion relation for the energy of photons, as has been used
to create a BEC of light [10,54]. In contrast to prior work,
here we consider a long cavity subtending a small solid angle,

which makes the atoms emit mostly into the free-space modes,
enabling Doppler cooling [Fig. 1(a)].

Specifically, the frequency of a cavity photon in a
Laguerre-Gauss mode (q‖, l, m) is given by [49,50]

ωq‖lm ≡ cq‖ + c

D0
(2l + |m| + 1) cos−1

(
1 − D0

R

)
, (7)

where D0 is the distance between cavity mirrors and R is
the radius of curvature of the mirrors. The transverse energy
spectrum and the density of states of a single longitudinal
mode inside the cavity is identical to that of a Hamiltonian
for a (fictitious) massive 2D particle in a harmonic potential
trap,

Ĥ⊥ = (h̄q̂⊥)2

2Mph
+ 1

2
Mphω

2
T r̂2

⊥, (8)

where Mph = h̄q‖/c is the mass of the 2D particle, h̄q̂⊥ and r̂⊥
are the corresponding momentum and position operators, and
the trapping frequency is ωT = c

D0
cos−1(1 − D0/R).

As with 2D massive bosons in a harmonic trap, the cavity
photons can undergo Bose condensation into the ground mode
(the lowest transverse mode, which sets the cutoff frequency
ωc ≡ ωq‖00 to the cavity modes). To make a direct connection
to the typical BEC theory, we define a displaced chemical
potential μ = h̄(ωL − ωc) to compare the original chemical
potential with the ground mode energy, such that in the
absence of loss the whole system is in thermal equilibrium
for μ < 0, achieves BEC in the the thermodynamic limit [55]
at μ = 0, and exhibits gain when μ > 0. The critical tempera-
ture of condensation is given by Tc ≈ h̄ωT

√
3ntot/πkB, where

ntot is the steady-state average photon number [41,42,54].
In contrast to many prior theoretical discussions of trapped
atomic and photon BEC, there are two distinguishing features
in photon BEC transitions under this laser cooling scenario.
First, our system is better treated in the context of a grand
canonical ensemble with a controlled chemical potential.
Second, the energy-dependent loss mechanisms can affect
the transition. We will first explore lossless BEC physics
under the framework of a number reservoir with a controlled
chemical potential, and later include the effect of loss.

In our laser cooling scenario, one can control T and μ

independently by setting an approximately fixed temperature
kBT ≈ h̄|�̄L|/2 for a large detuning from the atomic transi-
tion, and adjusting μ by the small laser detuning from ωc.
The analogous 2D massive bosonic gas experiences a fixed
trapping frequency ωT determined by the geometry of the
cavity. We note that ntot is determined jointly by T , μ, and ωT ,
and we explore the BEC transition in the context of a fixed T
and ωT while varying μ.

For the ideal (lossless) grand canonical ensemble of a 2D
massive Bose gas in a harmonic trap, ntot is

ntot =
∞∑

l=0

∞∑
m=−∞

2

eβ{(2l+|m|)h̄ωT −μ} − 1
=

∞∑
j=0

2( j + 1)

eβ( jh̄ωT −μ) − 1
,

(9)

where the factor of 2 comes from polarization degeneracy and
j = 2l + |m|. Each cavity mode with frequency ωc + jωT has
degeneracy 2( j + 1) as one expects for a 2D harmonic oscil-
lator. The corresponding cavity state degeneracy is illustrated
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FIG. 2. (a), (b) The condensate fraction n0/ntot [shown in (a)]
and the total average number of photons ntot [shown in (b)] at a fixed
temperature as a function of the loss-shifted chemical potential μ̃

plotted on a logarithmic scale. The ideal grand canonical ensemble
result is shown in black lines, and the colored lines represent the
modified results with two different Rabi frequencies. The critical
points representing the onset of the BEC phase are identified by dots.
We take parameters for the 1S0-3P1 Yb intercombination transition
[57], ωL/2π ≈ ωA/2π = 539 THz, �/2π = 180 kHz, Er,kL /h =
3.74 kHz, and assume |kL − q| ≈ √

2|kL|, �̄L ≈ −157�, and a
cavity trapping frequency ωT /2π = 231 kHz. (c) The condensate
fraction n0/ntot as a function of temperature while keeping the total
number of photons fixed. The ideal grand canonical distribution is
shown in black lines while the colored lines indicate loss-modified
results with two different Rabi frequencies. We take parameters for
the Yb intercombination transition with ωT /2π = 231 kHz for ntot =
103 and ωT /2π = 73 kHz for ntot = 104 such that ntot (ωT /2π )2 =
5.33 × 1013 s−2, proportional to the 2D number density, is fixed,
which leaves the critical temperature essentially unchanged.

in Fig. 1(b). Defining n0 as the average photon number in
the ground mode, the black lines in Figs. 2(a) and 2(b) show
the numerically calculated curves of the condensate fraction
n0/ntot and ntot as a function of μ in the absence of loss with
T and ωT fixed. In our finite system we do not have a sharp
transition; we define the transition to BEC to be at the in-
flection point, where d2(n0/ntot )/d[log(μ)]2 = 0 in Fig. 2(a).
Treating the total number of excited photons in the continuous
limit [42], the phase transition according to this definition
[56] occurs at the critical value μ = −3h̄2ω2

T /π2kBT , which
coincides with the condition n0/ntot ≈ 1/2. The total number
of photons at the transition point in this lossless limit for these
parameters is ≈26 000.

The position of the inflection point in n0/ntot [Fig. 2(a)]
will shift in the presence of loss—due to both cavity loss and
scattering into the free-space modes—whose effects become
important at lower laser power. In the regime we focus on in
this Rapid Communication, the cavity loss at the mirrors can
be neglected because the effective optical depth is taken to
be large enough that the cavity photons will interact with an
atom before being lost at the mirrors. The effect of cavity-
photon loss by scattering into the free-space modes can be

suppressed by increasing the cooling laser intensity. However,
higher-order effects will need to be considered if one works
beyond the low excitation limit �2 � |�̄L|2.

For � > �c, the loss-modified total number of photons is
given by replacing μ with μ̃ ≡ (h̄ωL − h̄ωc − δμ), which is
the loss-modified displaced chemical potential, and replacing
β with βeff [ j] in Eq. (9). The effective temperature βeff [ j]−1

is mode dependent, and decreases as j = 2l + |m| increases.
We study the BEC transition with scattering loss numerically
as shown in the colored lines in Fig. 2. For scenarios with
a fixed total number of photons, which is a closer analogy
to atomic BEC, the condensate fraction n0/ntot is shown as
the colored lines in Fig. 2(c). The modified curves resemble
qualitatively the ideal grand canonical ensemble case [black
lines in Fig. 2(c)] at large ntot and large �/|�̄L|, but with a
higher transition temperature. The increase in the transition
temperature arises from the loss-induced truncation of the
populations of the higher-frequency modes leading to these
modes no longer being in thermal equilibrium. These popu-
lations are significantly lower than would be predicted by a
single temperature equal to the atom temperature (see Fig. 5 in
Ref. [40]). Thus, for a fixed ntot and T , the mode occupation of
the lower modes is significantly higher than in the untruncated
case, which increases the transition temperature. Just as in a
trapped atomic gas BEC, higher central density (ground mode
occupation) leads to a higher transition temperature.

The loss-modified condensate fraction and the correspond-
ing total number of photons as a function of μ̃, at fixed T
and ωT , are shown in colored lines in Figs. 2(a) and 2(b).
The transition between solid and dotted segments marks the
distinction between GCE-like and quasithermal regimes as
described below. The solid segments of the colored lines
are qualitatively similar to the ideal result (black) with the
inflection points of Fig. 2(a) left-shifted, which also arises
from the loss-induced truncation of the populations of the
higher-frequency modes. On the other hand, the dotted part
of our modified result is showing drastically different features
from the ideal curve: Instead of being a monotonic function
of μ̃, the modified n0/ntot reaches a minimum, then eventually
increases to 1 when μ̃ decreases further away from zero. The
total number of photons also decreases substantially in this
regime. This behavior is due to the fact that higher-frequency
modes have lower effective temperatures because of loss; the
occupation will tend toward the limit of n0/ntot = 1 for large,
negative μ̃ not because of a high degree of condensation, but
rather because only one mode survives the loss. We again
define the BEC boundary to be at the inflection points of
the condensation fraction curves. We then define an empirical
condition that separates the GCE-like (solid line) region from
the quasithermal (dotted line) region in Figs. 2(a) and 2(b): We
define a grand canonical ensemble phase in which −1/2 �
log10 ( Teff [5]

To
) � 0, where To is a reference temperature at the

equilibrium-to-gain transition, such that there are at least∑5
j=0 2( j + 1) = 42 modes that can be effectively described

by a single temperature. For larger negative μ̃ or lower laser
intensities, the scattering loss prevents a detailed balance of
the cavity photons with atomic motion, and only quasithermal
light (where the photon distribution cannot be described by
a single temperature even for a moderate number of modes)
is expected. For μ̃ > 0, one expects the onset of gain for
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FIG. 3. Calculated phase diagram of cavity photons as a function
of � and μ. At high power, photon generation can exceed loss
leading to gain (green region) and possibly lasing; cavity photons can
be described as a grand canonical ensemble (yellow) at equilibrium,
and we find the formation of a photon BEC (orange) within the GCE
area and near the gain boundary. For low power, photon loss prevents
equilibration of photons to a single temperature corresponding to that
of the atomic motion, and only quasithermal light (blue) is expected.
In this diagram we use the same parameters as in Fig. 2(a).

the ground mode. The calculated phase diagram of the cavity
photons is summarized in Fig. 3 with the phase boundaries
defined above.

What can one observe in an experiment? In atomic BEC
experiments, a typical technique to observe a BEC transition
is to use the time-of-flight method to measure the momentum
distribution of atoms. Here, the photonic version of “time
of flight” is the far-field distribution of light emitted from
the cavity, which reflects the momentum distribution of the
cavity transverse modes. Simulations of the photonic “time-
of-flight” images according to Eq. (4) are shown in Fig. 4. One
expects a sharp central peak when μ̃ is near zero, representing
condensation into the ground mode.

IV. SUMMARY AND OUTLOOK

We have shown that Doppler cooling of a dilute, two-
level, atomic ensemble inside an optical cavity can lead to

FIG. 4. Simulations of the far-field photonic “time-of-flight” im-
ages and corresponding cross sections through the center, where r⊥
is the far-field transverse position. The parameters are the same as in
Fig. 2(a) with � = 0.3|�̄L|.

2D Bose-Einstein condensation of light. By studying the
condensate fraction and the total photon number with values
appropriate for the Yb intercombination transition, we have
constructed a phase diagram as a function of laser frequency
and field strength showing gain, condensate, thermal, and
quasithermal regimes for cavity photons. The simplicity as
well as the high degree of control of our approach open up
opportunities in exploring quantum phenomena with light.
In particular, the thermalization arguments can be directly
generalized to include nonlinear interactions, and thus are
relevant to applications such as Rydberg-polariton thermaliza-
tion with laser-cooled Rydberg atoms, photon superfluidity,
and nonequilibrium phase transitions.
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