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Dissipative Bose-Hubbard system with intrinsic two-body loss
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We report an experimental study of dynamics of the metastable 3P2 state of bosonic ytterbium atoms in an
optical lattice. The dissipative Bose-Hubbard system with on-site two-body atom loss is realized via its intrinsic
strong inelastic collision of the metastable 3P2 atoms. We investigate the atom loss behavior with the unit-filling
Mott insulator as the initial state and find that the atom loss is suppressed by the strong correlation between atoms,
which is attributed to both the on-site interaction and the inelastic loss. Also, as we decrease the potential depth
of the lattice, we observe the growth of the phase coherence and find its suppression owing to the dissipation.
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In recent years, much attention has been paid to novel be-
haviors of cold atoms with dissipation [1–3]. With introducing
several types of dissipation, the influence of the dissipation on
the quantum systems has been revealed. For example, one-
body particle loss was realized by applying an electron beam
[4–6] and using photon scattering process [7,8]. Three-body
loss was implemented by controlling the strength of three-
body recombination by Feshbach resonance [9]. Two-body
loss process was realized by Feshbach molecules [10,11].
Recently, the engineering of two-body loss in a controllable
manner with the photoassociation technique allows for the
systematic investigation of the effect of the dissipation on the
quantum phase transition [12].

Different from these rather artificial ways in introducing
dissipation, a system of two-electron atoms naturally realizes
the dissipative system due to the intrinsic strong inelastic
collision in the metastable 3P2 state [13–16] and the 3P0

state [14,17–19]. However, we encountered the dilemma that
this intrinsic strong inelastic collision also prevents previous
attempts to create a Bose-Einstein condensate (BEC) and a
superfluid (SF) in an optical lattice in the metastable state.
Nevertheless, we have an interesting possibility of the quan-
tum many-body physics taking advantage of the metastable
state. For example, various kinds of the quantum computing
platform using the metastable states for storing and con-
trolling the quantum state are proposed [20–26]. With the
interaction between the 1S0 state and the 3P0 state, two-orbital
Hubbard system is investigated [27–30]. In the presence of the
dissipation, observation of a novel quantum state was recently
reported in the loss behavior of a system of the 3P0 state of
fermionic ytterbium isotope, consistent with the generation of
a highly entangled Dicke state [31].

In the present Rapid Communication, we report an ex-
perimental study of dynamics of the dissipative 3P2 state
of bosonic ytterbium atoms 174Yb in an optical lattice. To
overcome the difficulty of making BEC in the dissipative
metastable state, first we create a BEC in the ground state
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1S0 and form a unit-filling Mott insulator (MI) in the three-
dimensional (3D) optical lattice. Then we coherently transfer
the MI in the 1S0 state into the 3P2 state, resulting in the
successful formation of the MI in the dissipative 3P2 state.
With this MI as an initial state, we investigate the stability
of the system and find that the atom loss is suppressed by
the strong correlation, which is attributed to both the on-site
interaction and the inelastic loss. Also, this novel scheme of
the initial state preparation enables us to observe the growth
of the phase coherence as we decrease the lattice depth,
otherwise impossible to create, and we quantitatively reveal
that the formation of a sizable phase coherence is suppressed
by the dissipation.

The bosonic atoms in the 3P2 state in the optical lattice can
be regarded as the dissipative Bose-Hubbard system described
by a master equation in Lindblad form [32]:

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + L(ρ̂ ), (1)

where Ĥ is the Bose-Hubbard Hamiltonian

Ĥ = Uee

2

∑
j
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and L(ρ̂ ) represents the dissipation due to the inelastic colli-
sion between two atoms in the 3P2 state

L(ρ̂ ) = �ee
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(3)

Uee, J, and �ee represent the on-site interaction, the tunneling
amplitude, and the inelastic collision rate, respectively. ε j is
the confining potential of the site j and μ is the chemical
potential. Index e (g) denotes 3P2 (1S0) state. â j is the annihi-
lation operator of the 3P2 state atoms at a site j and n̂ j = â†

j â j .
〈 j, k〉 represents nearest-neighboring pairs of lattice sites. We
note that there exists the one-body loss process due to the
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FIG. 1. (a) Schematic of the double-excitation spectroscopy. The
on-site interaction strength manifests itself in the shift of the exci-
tation frequency at the doubly occupied sites, which differs from
the excitation frequency of the atoms at the singly occupied site.
(b) The spectrum of the double-excitation spectroscopy. The dashed
line represents the fluorescence count measured after the first excita-
tion, which corresponds to the atoms excited by the first pulse. The
horizontal axis represents the detuning of the second-excitation pulse
frequency from the transition of the atoms in the singly occupied
sites. The resonance observed in the negative detuning corresponds
the de-excitation from the 1S0 + 3P2 state to the 1S0 + 1S0 state and
the peak around +35 kHz represents the excitation for the blue-
sideband. (c) The spectrum of the single-excitation spectroscopy for
comparison.

photon scattering and the spontaneous emission, the loss rate
of which is 1–2 order of magnitude smaller than the two-body
loss rate.

For the full characterization of the system, it is necessary
to measure the strength of the on-site interaction between
the 3P2 state atoms. This has never been done because of
the difficulty associated with the rapid loss of atoms in the
3P2 state due to the large inelastic collision. We determine
the scattering length by establishing a new spectroscopic
technique with double-excitation process by utilizing the
inelastic loss property.

We start with a preparation of the MI state of the 1S0

atoms with singly and doubly occupied sites at the lattice
depth of V0 = 18ER for the 1S0 state. Here, ER = h2/(2mλ2

L )
is a recoil energy, where m is the mass of the 174Yb atom, h
is the Planck’s constant and λL = 532 nm is the wavelength
of the lattice beam. Because the polarizability of the 3P2

state for the 532-nm lattice beam is different from that of
the 1S0 state, the lattice depth depends on the atomic state,
which is taken into account in the determination of the lattice
depth and the calculation of the interaction (see Supplemental
Material [33]).

We then excite a single 1S0 state atom in the doubly -
occupied sites into the 3P2 state by adiabatic rapid passage
(ARP) with a frequency-swept pulse with a 507-nm laser
under a bias magnetic field of 200 mG. We perform the
experiment with the atoms in the magnetic sublevel of mJ =
−2. The atoms in the singly occupied sites are not excited
because of the well-separated resonance frequencies between
the singly and doubly occupied sites due to the interaction [see
Fig. 1(c)]. Subsequently, we apply the second excitation pulse

with a variable frequency. If the second pulse successfully
excites a remaining 1S0 state atom in the doubly occupied
sites, two 3P2 state atoms occupy the same site, resulting in
the strong atom loss due to the inelastic collision with the rate
�ee [Fig. 1(a)]. In the optical lattice, �ee is determined by the
inelastic collision coefficient βee and the confinement of the
lattice potential through the relation �ee = βee

∫ |w(r)|4dr,
where w(r) is the Wannier function of the lowest band. βee

is expected to a half of the inelastic collision coefficient with
a thermal gas β thermal

ee = 5.1(6) × 10−11 cm3/s [16,34].
For the detection, atoms in the 3P2 state are repumped back

to the 1S0 state using repumping lasers of 770 and 649 nm,
which are resonant to the 3P2 − 3S1 and 3P0 − 3S1 transitions,
respectively. The 3P2 atoms absorbing a 770-nm photon is
excited to the 3S1 state. Then the 3S1 atoms decay into the 3PJ

states (J = 0, 1, 2). The atoms which decay to the 3P1 state
return to the 1S0 state emitting 556-nm photon. The atoms
which decay to the 3P0 and 3P2 state are again excited to
the 3S1 state absorbing 649- and 770-nm photon, respectively.
The repumped 1S0 atoms are recaptured by a magnetooptical
trap (MOT) with the 1S0 − 1P1 transition. The fluorescence
from the MOT is detected by an electron-multiplying charge-
coupled-device camera.

Figure 1(b) shows the spectrum of the above-mentioned
double-excitation spectroscopy. We observe a large dip around
+10 kHz detuning from the 1S0 − 3P2 transition of the singly
occupied atoms, which does not have the counterpart in
the spectrum of the low-intensity single pulse spectroscopy
[Fig. 1(c)]. We determine the interaction shifts as (Uee −
Ueg)/h = +10.7(3) kHz and (Ueg − Ugg)/h = −9.70(5) kHz.
From these results and the known scattering length agg =
+104.9(1.5)a0 [35], we obtain aeg = −201.5(1.5)a0 and
aee = +110(8)a0, where a0 is the Bohr radius. This means
that the on-site interaction between the 3P2 atoms is repulsive
and comparable to the dissipation strength: the dimensionless
dissipation strength is h̄�ee/Uee = 0.94(13), which does not
depend on the lattice depth. We note that the on-site inter-
action which can be measured is intrinsically affected by the
coupling to the environment [36].

As the basic property of the dissipative quantum many-
body system, we first study the stability of the unit-filling MI
state in the presence of the two-body dissipation. Here, we
measure the loss rate which varies as a function of the lattice
depth because J , Uee, and �ee depend on the lattice depth.

We first prepare the unit-filling MI state of the 3P2 state
in almost the same manner as in the double-excitation spec-
troscopy, except that the lower atom number is loaded so that
the doubly occupied sites are not created. After ramping up the
lattice, we excite the atoms to the 3P2 state by the ARP. The
remaining 1S0 atoms are blasted by applying 399-nm resonant
light. The atom number in the 3P2 state N (t ) decreases as

Ṅ (t ) = − n0κ

N (0)
N (t )2 − ξN (t ), (4)

where κ is the two-body loss rate and ξ is the one-body
loss rate. n0 is the initial filling factor estimated by the ARP
excitation efficiency, which is typically 90%. The one-body
loss is mainly induced by the photon scattering with the
3P2 − 3S1 transition at 770 nm due to the 532-nm lattice beam,
the rate γsc of which depends on the intensity of the lattice
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FIG. 2. (a) Time dependence of the remaining 3P2 atoms at V =
19ER. The solid line shows a fit of Eq. (4) to the experimental
data.(b) Two-body loss rate as a function of the lattice depth. The
solid line shows a fit of Eq. (5) to the experimental data and the
dashed line is the tunneling rate for comparison. (c) Pair correlation
function g(2) calculated from the data in the loss rate measurement.
The solid line represents the theoretical calculation with βee obtained
from the data in (b). The lattice depths are adjusted for the 3P2 state.

beam. The spontaneous emission rate is γsp = 67(7) mHz
[37]. The one-body loss rate is given by ξ = γsc + γsp, which
is calculated up to ∼0.3 Hz.

Figure 2(a) shows the typical decay of the atom number
of the 3P2 state. By fitting Eq. (4) to the data with the
calculated one-body loss rate ξ , we extract the two-body
loss rate κ [see Fig. 2(b)]. The loss rate κ is suppressed
compared to the tunneling rate 6J/h̄ [see Fig. 2(b)], which
naïvely characterizes the timescale of the creation of the
double occupancy. In the sufficiently deep lattice, κ can be
suppressed to the order of Hz.

This suppression is attributed to the formation of the strong
correlation. When the tunneling is much smaller than the other
energy scales (J � h̄�ee,Uee), κ is given by [10,38]

κ = 16z(J/h̄)2

�ee

[
1 +

(
2Uee

h̄�ee

)2
]−1

. (5)

Here z = 6 is the coordination number. We fit Eq. (5) to the
data with the fitting parameter of βee. The best-fit value is
βee = 2.5(6) × 10−11 cm3/s, which is well agree with the half
of β thermal

ee = 5.1(6) × 10−11 cm3/s [16,34].
The correlation is characterized by the pair correlation

function g(2) ≡ 〈n̂ j (n̂ j − 1)〉/〈n̂ j〉2, which can be estimated
from the experimental result according to the relation g(2) =
κ/�ee [10,38]. Figure 2(c) shows that g(2) is much smaller
than 1, which means strong antibunching correlation, namely,
the creation of the double occupation is strongly suppressed.
Since g(2) = 4zJ2/[(h̄�ee/2)2 + U 2

ee] from Eq. (5), the reduc-
tion of the g(2) is attributed to both of the on-site elastic
interaction Uee and the inelastic loss h̄�ee. In our experimental
parameter of h̄�ee/Uee = 0.94(13), the inelastic interaction
contributes to the formation of the correlation in addition to
the elastic interaction, although the strength of the inelastic
collision does not achieve the quantum Zeno region as the
previous experiments [10–12] in which κ decrease as the
strength of the dissipation increases.

To confirm that the suppression of the doubly occupied
sites is not due to the reduction of the tunneling amplitude
itself but due to the correlation effect as a result of the occu-
pation of the atoms in the nearest-neighboring site, we observe
the tunneling dynamics from the initial state in which there is

FIG. 3. (a) Schematic of the selective excitation using a super-
lattice. The potential difference between the A and B layers created
by the long lattice allows us to excite the atoms only in the A layer.
(b) Time dependence of the atom number in the A layer (white circle)
and B layer (black circle) at V0 = (19.0, 19.0, 19.9)ER for the 3P2

state. We note that the difference of the transfer efficiency between
the A and B layers causes the remaining imbalance for longer times.
The inset shows the initial 0.1 s data of the atom number in the B
layer and the fitting of the exponential function. Note that we also
observe the slow decrease of the atom number due to the two-body
loss at later time that the population imbalance is already reduced.

no atom in the nearest-neighboring sites along one direction.
After preparing the MI state with the 1S0 atoms, we form the
optical superlattice by adding the long lattice with 1064-nm
laser along the x axis with the relative phase between two
lattice beam adjusted to make potential difference between
A and B layers, which separates the excitation frequency
[Fig. 3(a)]. We selectively excite the atoms to the 3P2 state only
in the A layer with ARP and blast the remaining 1S0 atoms.
Then we remove the additional lattice and monitor the atom
number. The detection is also selectively performed with the
coherent transfer to the 1S0 state using ARP. We observe fast
decrease of the atom number in the A layer and increase of the
atom number in the B layer [Fig. 3(b)], which indicates the
tunneling of the atoms along the x axis. We simply describe
the tunneling behavior as follows:

ṄA(t ) = −RNA(t ) + RNB(t ),

ṄB(t ) = RNA(t ) − RNB(t ). (6)

Here NA (B) is the atom number in the A (B) layers, and R
represents the tunneling rate between the A and B layers. With
the initial condition that all atoms are placed in the A layer,
Eq. (6) yields NB(t ) = [1 − exp (−2Rt )]N0/2, where N0 is the
initial atom number. We fit this function to the initial 0.1 s
data of the atom number in the B layer, as shown in the inset
of Fig. 3(b). From the fitting, we obtain the tunneling rate of
R = 42(6) Hz, which is much larger than the observed κ in the
case of the unit-filling MI [see Fig. 2(b)] and is consistent with
the relaxation time scale 4J/h = 50 Hz discussed in Ref. [39].

We also investigate the effect of the dissipation on the
quantum phase transition from the MI to the SF state. We first
prepare the unit-filling MI of the 3P2 state in the same manner
as the preparation of the initial state of the loss rate measure-
ment. The lattice depth is V0 = 20 ER for the 3P2 state. Then
we ramp down the lattice, in which the lattice ramp-down
speed is −2 ER/ms. The atom number and the momentum dis-
tribution during the ramp-down dynamics are obtained from
the density distribution of the time-of-flight (TOF) absorption
image. After ramping down the lattice to the final lattice depth,
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FIG. 4. (a) Absorption images of the atoms. The images are
taken with different final lattice depths. (b) Temporal change of the
atom number during the ramp-down sequence, which is normal-
ized by the initial atom number at the lattice depth of V0 = 20ER.
(c) Visibility of the interference peak of the images and (d) width of
the density distribution. The width is the full width half maximum
obtained by the Gaussian fitting. In these plots, the blue square and
the red circle correspond to the data for the 1S0 state and the 3P2 state,
respectively. The yellow triangle indicates the data for the 3P2 state
after eliminating the effect of the momentum kick.

we suddenly turn off all the trap and take the image after 6-ms
expansion of the atom cloud [Fig. 4(a)]. The atoms in the 3P2

state are repumped back to the 1S0 state 1 ms before taking
the absorption image. For comparison, we observe the atoms
in the dissipationless 1S0 state. We compare the two results as
a function of the lattice depths because the scattering lengths
aee and agg are almost the same within the error aee/agg =
1.05(7). The lattice depth is adjusted for each state.

Without dissipation (the 1S0 state), around V0 ∼ 10 ER we
observe the transition from a MI with a broad distribution
to the SF with a clear interference pattern characterizing the
presence of the phase coherence, which is consistent with
the theoretical value of the critical lattice depth of V0 =
11.29(16) ER. On the other hand, the atom distribution of the
dissipative 3P2 state is modified. Although we still observe the
anisotropic interference pattern in the shallow lattice region,
the interference pattern is unclear.

For the quantitative analysis, we evaluate the atom number,
the visibility of the interference peaks, and the width of the
atom distribution obtained by the TOF images [Figs. 4(b)
to 4(d)]. For the 3P2 system, the number of atoms starts
to decrease around V0 = 10 ER. This significant atom loss
reflects the start point of the melting of the MI, which creates
the double occupation. The visibility of the interference
peaks is defined as v = (Nmax − Nmin)/(Nmax + Nmin) [40],
where Nmax is the sum of the atom number in the regions of
first-order interference peaks, and Nmin is that in the regions at
the same distance from the central peak along the diagonals.
In both cases, v increases with the ramp-down of the lattice.
This increase in the 3P2 state is more moderate compared to
that in the 1S0 state [Fig. 4(c)]. In addition, the narrowing of
the width of the density distribution is also more moderate
in the case of the 3P2 state [Fig. 4(d)]. These results suggest
that the growth of the phase coherence is suppressed by the
intrinsic on-site two-body dissipation. Similar behavior is

TABLE I. Information of the repump transitions [37]. λ is the
wavelength of the transition, �(s) is the decay rate, and Nph is the av-
erage number of the photon emission though the repumping process.
The numerical simulation is performed based on these parameters.

3S1 → 3P0
3S1 → 3P1

3S1 → 3P2

λ [nm] 649 680 770
�(s) [Hz] 9.6 ×106 2.7 ×107 3.7 ×107

Branching ratio 0.13 0.37 0.50
Nph 1.4 1.0 0.36

observed in the previous experiment [12], where the two-body
loss is artificially introduced using the photoassociation tech-
nique and the effect of the dissipation on the coherence and the
phase transition is discussed both in theory and experiment.

We estimate the effect of the momentum kick in the re-
pumping process by the deconvolution analysis of the atom
distribution. Because the repumping laser is irradiated along
the imaging axis, the effect of the recoil due to the absorbing
process of photon is not observed. On the other hand, the
expansion of the distribution of the atoms due to the recoil
of the photon emission is observed because the direction
of the photon emission is random and isotropic. After re-
pumping process, the repumped 1S0 state atoms expand in
the accordance with the sum of the original momentum and
the recoil momentum obtained by the photon emission. We
estimate the width of the expansion of the atom cloud with
calculating the average number of the emitted photons Nph

through the repumping process (Table I) with the assumption
that the repumping process is instantaneously finished. In the
numerical calculation, we obtain the momentum distribution
due to the recoil in the repumping process, which is well
approximated by the Gaussian function with a half width at
half maximum of 1.2 h̄kL. Here, kL = 2π/λL is the wave
number of the lattice beam. After turning off all the trap, the
3P2 atoms expands in 5 ms. Then the atoms get the recoil mo-
menta through the repumping process and expand in 1 ms. We
reconstruct the original atom distribution by deconvoluting
the recoil momentum distribution from the atom distribution
obtained from the TOF image, and estimate original visibility
and width, as shown in the yellow triangles in the Figs. 4(c)
and 4(d), which shows that the effect on the TOF image
is limited and does not change the whole behavior of these
values qualitatively.

We note that, in the case of the 3P2 state, the formation
of the interference pattern is still observed, which suggests
the the growth of the phase coherence in the metastable state.
Because of the strong inelastic collision, it is difficult to create
the BEC in the metastable state and load it into the optical
lattice. On the other hand, in our method with the slow ramp-
down of the lattice, we can load the metastable atoms into the
shallow optical lattice with suppressing the inelastic collision
between atoms.

In conclusion, we realize the dissipative Bose-Hubbard
system with the metastable 3P2 state of 174Yb by first cre-
ating a MI state in the ground state and the subsequent
coherent transfer of the atoms into the 3P2 state, evading the
large inelastic loss process in the state preparation. We fully
characterize the system by measuring the scattering length
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between two 3P2 atoms by developing the double-excitation
method. In the 3D optical lattice, we investigate the atom loss
behavior with the unit-filling MI as the initial state and find
that the atom loss is suppressed by the strong correlation be-
tween atoms, which is attributed to both the on-site interaction
and the inelastic loss. Also, as we decrease the potential depth
of the lattice, we observe the growth of the phase coherence
and find that the formation of a sizable phase coherence is
suppressed by the dissipation.

It is expected that similar behaviors will be observed with
the 3P0 state of Yb [18,19] and other two-electron atomic
species [13,14,17]. The strong suppression of the inelastic
collision between atoms in the metastable state is beneficial to
avoid unwanted losses in the experiment for two-component
many-body physics [30] and the manipulation of the 3P2 atoms
exploiting the magnetic dipole moment [20,23]. Also, our
system will be a candidate for the investigation of the phase

of the non-Hermitian Bose-Hubbard system [41], which is
realized by combination with a quantum gas microscope to
postselect the events that no atomic losses occur. Our spectro-
scopic method for measuring the on-site interaction enables
one to search anisotropy-induced Feshbach resonances [42]
between the 3P2 atoms, which allows for the control of the sign
and the amplitude of the parameter h̄�ee/Uee and systematic
investigation of the effect of the dissipation.
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