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Deuteron charge radius from the Lamb-shift measurement in muonic deuterium
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The deuteron charge radius is calculated from the measurement of the Lamb shift in muonic deuterium,
taking into account the electron vacuum polarization correction to the nuclear-structure effects. This correction
is unexpectedly large and gives a mean-square charge-radii difference r2

d − r2
p = 3.817 47(346) fm2, which is

now consistent with that obtained from the ordinary H-D isotope shift in the 1S-2S transition. This suggests that
the long-standing discrepancy in the proton charge radius obtained from electronic and muonic systems is due
to an underestimated uncertainty in ordinary hydrogen spectroscopy.
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Atomic measurements are at the frontier of low-energy
tests of fundamental interactions, which include the search
for electric dipole moment in molecules such as thorium
monoxide [1], measurements of parity violation in cesium
[2], and the possible dependence of the fundamental constants
on time [3]. So far, none of these methods has indicated
any new physics. Recently, an approach based on the com-
parison of the nuclear charge radius obtained in different
ways, such as from muonic and electronic systems, has shown
promising results. Due to the very precise theoretical de-
scription of the hydrogenic spectra, the charge radius can be
extracted from the corresponding spectroscopic experiments.
The value of the proton radius rp obtained from measurements
in muonic hydrogen (μH) [4,5], which is a bound system
of the muon and the proton, is in 5.6σ discrepancy with the
world-averaged value [6] obtained from ordinary hydrogen.
Because every relevant contribution in the current theory was
taken into account, such disagreement may suggest unknown
effects or unknown interactions that could not be explained
by a straightforward modification of the standard model [7].
This led to extending the study of muonic systems to more
complex nuclei, such as muonic deuterium (μD) [8] and
helium (μHe) [9]. In the case of deuteron, the charge radius
rd inferred from muonic measurements also deviates by 5.6σ

from the CODATA14 world-averaged value [6] obtained in
ordinary deuterium, and by 3.5σ from the radius extracted
in the recent analysis [10] of spectroscopy measurements in
ordinary deuterium only.

Because the determination of the deuteron charge radius
depends on the proton charge radius, the discrepancy in the
rp affects results for rd . Therefore, we think that a better
way to compare electronic and muonic systems is to combine
the results for μD and μH into a mean-square charge-radii
difference r2

d − r2
p that can be matched against the similar

value inferred from very precise measurements [11] of the
ordinary H-D isotope shift in the 1S-2S transition. In this ap-
proach, the proton contribution cancels out and the difference
depends mostly on the deuteron structure radius. According to
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the latest estimate [12], the mean-square charge-radii differ-
ence r2

d − r2
p deviates by 2σ between muonic and electronic

systems.
Several recent experiments in ordinary hydrogen [13,14]

favor the smaller proton size and agree with muonic measure-
ments [4,5], which seems to resolve the discrepancy. In this
work we show that, in the case of deuteron, incorporating a
missing theoretical contribution resolves the 2σ discrepancy
mentioned above. Natural units (h̄ = c = ε0 = 1) are used
throughout.

Theoretical prediction of the 2P1/2-2S1/2 splitting, known
as the Lamb shift, in muonic deuterium can be expressed, fol-
lowing Ref. [15], as the sum of the precisely calculated QED
contribution [16,17] in the point-nucleus limit, the part pro-
portional to the mean-square charge radius r2

d of the deuteron
[16,18,19] and the nuclear polarizability contribution �Epol

[20–24], with the total splitting expressed as

ELS = 228.7766(10) meV + �Epol

− 6.110 25(28)r2
d meV fm−2, (1)

where �Epol is the main limiting factor in the precise theo-
retical description. Nuclear polarizability can be split into two
terms

�E th
pol = δTPEEpol + δHOEpol, (2)

where δTPEEpol contains terms from the two-photon exchange,
which are of fifth order in the fine-structure constant α, and
additionally the Coulomb distortion correction. According to
the latest analysis [12] this part amounts to

δTPEEpol = 1.715(23) meV. (3)

However, recent calculations [25] of the nucleon polarizability
alter this value. Previously, the authors in Ref. [12], following
Ref. [15], assumed that single-nucleon interactions amount
to 0.0471(101) meV. On the other hand, based on dispersive
calculations in Ref. [25] we obtained, through the proper
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scaling,

δE1nucl = m3
r (μD)

m3
r (μH)

0.3066(287) meV

8
= 0.0448(42) meV,

(4)

which is similar but more than twice as accurate. The reduced
muon-nucleus mass is given by

mr (μN) = mμmN

mμ + mN
, (5)

where mμ is the muon mass and mN denotes the mass of the
appropriate nucleus. Henceforth mr ≡ mr (μD).

Replacing the single-nucleon interaction contribution to
Eq. (3) with the result of Eq. (4) gives the new value of the
α5 two-photon exchange correction,

δTPEEpol = 1.713(21) meV. (6)

All contributions, excluding the Coulomb distortion correc-
tion, that are of higher order than α5 constitute δHOEpol. They
were not included in the calculation of �E th

pol in Refs. [12,15],
and the only higher-order contribution that has been calculated
is the three-photon exchange [26]. Unfortunately, its value is
too small to resolve the 2σ discrepancy.

We report the calculation of the missing contribution,
which comes from the unexpectedly large electron vac-
uum polarization (eVP) correction to the dominant nuclear-
structure term.

The leading nuclear polarizability correction is described
by the two-photon exchange between the muon and the nu-
cleus. The dominating term comes from the nonrelativistic
limit, where, because the distance from the proton to the
nuclear center of mass is very small compared to that of the
muon, the leading contribution comes from the electric dipole
excitations

δE = 〈ψ φN |�R · �∇
(α

r

)

× 1

EN + E0 − HN − H0

�R · �∇
(α

r

)
|ψ φN 〉, (7)

where H0 = p2/(2mr ) − α/r is the nonrelativistic Coulomb
Hamiltonian for the muon with reduced mass mr, HN is the
deuteron Hamiltonian, �R is the position of the proton with
respect to the nuclear center of mass, ψ is the muon wave
function, and φN is the nuclear wave function. All values of
the fundamental physical constants are from Ref. [6].

The average nuclear excitation energy E is much larger
than the atomic one, so we perform expansion in the large
parameter E/(mr α2) in Eq. (7). The leading term is the dipole
polarizability

δEpol0 = 4πα2

3
ψ2(0)

∫
ET

dE

√
2mr

E
|〈φN |�R|E〉|2. (8)

It contributes to the Lamb shift by δEpol0 = 1.910 meV, which
is at least an order of magnitude larger than any other nuclear-
structure effect (see Table I in Ref. [21]). Therefore, we
considered the eVP correction δvpEpol only to this dominating
term.

The leading electron vacuum polarization correction
δvpEpol to Eq. (7) is of the order α6 and has two components,

δpotEpol and δwf Epol. The first corresponds to the modification
of the photon propagator, which effectively replaces one of
the Coulomb potentials V = −α/r with the term δV from the
Uehling potential [27],

Vvp = V + δV = −α

r

(
1 + 2α

3π

∫ ∞

1
dξ ρ(ξ )e−2r meξ

)
, (9)

where ρ(ξ ) is a dimensionless function

ρ(ξ ) =
√

ξ 2 − 1
2ξ 2 + 1

2ξ 4
. (10)

Neglecting the Coulomb distortion and deuteron quadrupole
moment, and approximating ψ (r) with ψ (0), the leading
correction in α is expressed as

δpotEpol = 2
4mrα

3

9π
ψ2(0)

∫
ET

dE |〈φN |�R|E〉|2
∫ ∞

1
dξ ρ(ξ )

×
∫

d3 p

(2π )3

4π

p2 + 4 m2
e ξ 2

4π

p2 + 2 mr E
, (11)

where E denotes the nuclear excitation energy and the com-
binatorial factor 2 at the beginning is due to the modification
of one of the two Coulomb potentials. The result of Eq. (11)

depends on the large parameter
√

Emr
2m2

e
∼ 20. From the first two

terms of the expansion, we obtain

δpotEpol = 8α3

9
ψ2(0)

∫
ET

dE |〈φN |�R|E〉|2
√

2mr

E

×
[

ln

(
E

2mr

)
+ 2 ln

2mr

me
− 5

3
+ 3π me

4 mr

√
2mr

E

]
.

(12)

The numerical value, calculated with the AV18 potential
[28], is

δpotEpol = 0.0201 meV. (13)

The second correction δwf Epol is the result of perturbing the
muon wave function ψ in Eq. (7) with the potential δV defined
in Eq. (9),

ψ̃ (0) = −
∫

d3r G2S(0,�r)δV (r)ψ (r), (14)

where G2S (0,�r) is a special case of the reduced Coulomb
Green’s function, defined as

Gn(�r1,�r2) = 〈�r1| 1

(H0 − En)′
|�r2〉, (15)

where the prime in the denominator denotes the exclusion of
the state n with the corresponding energy En. The explicit
form of formula (15) for the 2S atomic state was derived in
Ref. [29],

G2S (0,�r) = αm2
r

4π

e−x/2

4 x
[(8 + 12x − 26x2

+ 2x3 + 8(x − 2)x(γ + ln x)], (16)
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where x = mrαr. After integration, Eq. (14) gives the value of
the perturbed wave function of the 2S state at the origin

ψ̃ (0) = 0.726 15
( α

π

)
ψ (0). (17)

The contribution to the Lamb shift is obtained through the
substitution ψ2(0) → ψ∗(0)ψ̃ (0) in Eq. (8),

δwf Epol = 2
ψ̃ (0)

ψ (0)
δEpol0 = 0.0064 meV, (18)

where the factor 2 is from the perturbation of the left and right
wave functions.

The total electron vacuum polarization correction to the
nuclear structure is the sum of terms in Eqs. (13) and (18),

δvpEpol = 0.0265(3) meV, (19)

where, following Ref. [21], we assign 1% uncertainty.
Together with the inelastic three-photon-exchange correction
δ3peEpol = 0.008 75(92) meV, from Ref. [26], it gives the
higher-order part δHOEpol = δvpEpol + δ3peEpol of the nuclear
polarizability,

δHOEpol = 0.035 25(97) meV. (20)

The total correction, as expressed in Eq. (2), with the α5

contribution from Eq. (6) and the higher-order terms from
Eq. (20), gives

�E th
pol = 1.748(21) meV, (21)

where most of the uncertainty comes from an insufficient
understanding of electromagnetic interactions of nucleons
inside the nucleus.

Measurement in muonic deuterium [8] gives the experi-
mental value of the Lamb shift,

E expt.
LS = 202.8785(31)stat (14)syst meV. (22)

The mean-square charge radius of deuteron is obtained
through Eq. (1), with the updated theoretical polarizability
from Eq. (21),

r2
d = 4.524 53(53)prot (346)rest fm2, (23a)

where (53)prot is the uncertainty from the proton polarizability
only and (346)rest is the remainder. The new deuteron charge
radius is

rd = 2.127 10(82) fm. (23b)

In order to reliably compare this result with elec-
tronic measurements, we use the proton charge radius rp =
0.840 87(39) fm inferred from muonic hydrogen experiments
[4,5] to calculate the mean-square charge-radii difference,

r2
d (μD) − r2

p(μH) = 3.817 47(346) fm2, (24)

where the dependence on the proton polarizability cancels out,
as does the uncertainty from the proton in Eq. (23a). This
result is consistent with the very precise value obtained from
the ordinary H-D isotope shift in the 1S-2S transition [11],
which, modified by the three-photon exchange in Ref. [26], is

r2
d (eD) − r2

p(eH) = 3.820 70(31) fm2. (25)

Agreement in the deuteron charge radius suggests that
we have sufficient knowledge of the nuclear-structure effects
in the Lamb shift to perform calculations of the nuclear
polarizability contributions in heavier elements, such as 3He,
4He, 6Li, and 7Li. We note, however, that the spin-dependent
part of the nuclear polarizability is not well understood,
which is reflected in the recently observed 5σ discrepancy
between the theoretical prediction [30] and the experimental
measurement [8] of the 2S hyperfine splitting in muonic
deuterium. In general, to reduce the uncertainty further and
increase the accuracy of the test, we should better understand
electromagnetic interactions of nucleons inside the nucleus.

We note that the electron vacuum polarization is not
the only radiative correction to the nuclear-structure effects.
Muonic and nuclear self-energy (SE) corrections are present
as well, but we argue that they are significantly smaller
than the eVP correction in Eq. (19). The nuclear SE is not
only small, but also it is partially included in the heuristic
proton-neutron potential [28] and effective electromagnetic
moments of the nucleus. The μSE is of the order ( α

π
) relative

to the leading term in Eq. (8) but does not have the mr/me

enhancement, in contrast to the correction discussed in this
work. Moreover, in the point nucleus limit, the value of μSE
is very small (see Table I in Ref. [15]) in comparison with
the electron vacuum polarization, which is the leading term in
the Lamb shift of muonic systems. It indicates that radiative
corrections to the nuclear-structure effects, other than the eVP,
can be neglected with the current level of precision.

In summary, we calculated the electron vacuum polariza-
tion correction to the leading nuclear polarizability effect in
muonic deuterium, which, combined with other recent results
[12,25,26], gives a new muonic mean-square charge-radii dif-
ference. Its value is in agreement with the very precise result
from the ordinary H-D isotope shift in the 1S-2S transition.
This consistency is strong evidence for the correctness of
measurements in muonic hydrogen and deuterium. Therefore,
it suggests that the current disagreement in the determination
of the proton charge radius is caused exclusively by underes-
timated uncertainty in ordinary hydrogen spectroscopy.
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