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In this Reply we briefly clarify the main points of our method to construct coherent-state path integrals in
the continuum and we reply to the critique raised by in the preceding Comment by Kochetov [Phys. Rev.
A 99, 026101 (2019)]. By using definite examples, we prove that our approach is capable of resolving the
inconsistencies accompanying the standard coherent-state path-integral representation of interacting systems.
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I. INTRODUCTION

The Feynman path-integral formalism has been proved
one of the most powerful methods for the study of quantum
mechanics, quantum field theories, and statistical mechan-
ics [1,2]. The extension of path integration into the complex
plane C1 through the Glauber coherent states [3], in the
complex nonflat manifold C̄1 utilizing the SU(2) spin coherent
states [4–6], and to fermionic systems via the fermionic
coherent states [1,7] has expanded tremendously its range
of applications. However, and despite the progress and the
many illuminating contributions [6,8–16], integration over
paths constructed in terms of the overcomplete coherent state
bases seems to suffer from inconsistencies, even from anoma-
lies [17]. In order to face the pitfalls appearing in coherent-
state path integrals, we proposed [18,19] a rather simple way
that bypasses the standard construction by making use of the
Feynman phase-space integral. In the preceding Comment,
Kochetov [20] suggested that our approach to achieve a
time-continuous formulation of path integration in complex
manifolds still carries the inconsistencies first reported in [17].
In this Reply to the preceding Comment we will prove, in
Sec. II, that we did not make the illegal replacements or the
unjustified approximations the author suggests we made. In
Sec. III we prove that, in contrast to author’s allegations,
our approach is capable of resolving the coherent-state path-
integral (CSPI) inconsistencies in the presence of interactions,
inconsistencies that persist when the prescription advocated
in [20] is followed.

II. CONSTRUCTING THE PATH INTEGRAL

A main point of the criticism in [20] is that in constructing
the CSPI representation we replace Weyl symbols of powers
by powers of Weyl symbols. To prove that this is not the case
we will consider as a system of reference the toy Hamilto-
nian Ĥ0 = n̂2, with n̂ = â†â, where [â, â†] = 1. The partition
function of this system is readily found to be

Z = Tre−βĤ0 =
∞∑

n=0

e−βn2
. (1)

To represent this function as a path integral we follow the
standard technique of slicing β/(N + 1) = ε → 0, but we
do not fill the gaps by using the overcomplete coherent-state
basis. Instead, in our approach, we rely on the complete bases
{|p〉, |q〉} of the Hermitian quadratures q̂ = (â† + â)/

√
2 and

p̂ = i(â† − â)/
√

2. In terms of these operators, the Hamilto-
nian is written as Ĥ0 = ( p̂2 + q̂2 − 1)2/4. Thus, to arrive at
the final result we must deal with amplitudes of the form

Un,n−1 = 〈qn|e−ε( p̂2+q̂2−1)2/4|qn−1〉, ε → 0. (2)

This is a point where misunderstandings have arisen as the
handling of powers of noncommuting operators is not a trivial
task. However, in the present case, we have to deal with
the second power of a Hermitian operator that possesses a
complete set of eigenstates. Thus, we can use the Hubbard-
Stratonovich transformation [21–23] to write

〈qn|e−ε( p̂2+q̂2−1)2/4|qn−1〉

∼
∫ ∞

−∞
dσ e−εσ 2/4〈qn|eiεσ ( p̂2+q̂2−1)/2|qn−1〉. (3)

Due to the fact that εσ = O(
√

ε), we can make the approxi-
mation

〈qn|eiεσ ( p̂2+q̂2 )/2|qn−1〉
≈

ε→0
〈qn|eiεσ q̂2/2eiεσ p̂2/2eiε2σ 2(q̂ p̂+p̂q̂)/4|qn−1〉

= e−ε2σ 2/4
∫ ∞

−∞

d pn

2π
eipn (qn−qn−1 )

×eiεσ (p2
n+q2

n )/2+iε2σ 2 pnqn−1/2. (4)

Upon integrating over σ and omitting O(ε2) terms, it is a
trivial task to arrive at the integral

Tre−βĤ0 =
∫

Dp
∫

q(0)=q(β )
Dq

× exp

{
−

∫ β

0
dτ

[−ipq̇ + HF
0 (p, q)

]}
. (5)

Here the function HF
0 (p, q) = (p2 + q2 − 1)2/4 is the classi-

cal counterpart of the quantum Hamiltonian Ĥ0 = H0( p̂, q̂).
Although it seems that we have performed the unjustified
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replacement [( p̂2 + q̂2 − 1)2]W = [( p̂2 + q̂2 − 1)W ]2 as sug-
gested in [20], this is not the case. Instead, for the Hamilto-
nian Ĥ0 = ( p̂2 + q̂2 − 1)2/4, which is the square of a sim-
ple harmonic-oscillator Hamiltonian, we legally used the
Hubbard-Stratonovich transformation to transcribe the orig-
inal system to an effective harmonic-oscillator system

e−βĤ2
0 ∼

∫
Dσ exp

(
−1

4

∫ β

0
dτ σ 2(τ )

)

× exp

(
−i

∫ β

0
dτ σ (τ )Ĥ0

)
. (6)

Then, as explicitly noted in Eq. (4), we neglected the com-
mutator terms having relied on approximations well justi-
fied [1] for the simple effective system and for the complete
bases we used. We never claimed that the phase-space path
integrals are in general indifferent to the quantum Hamil-
tonian ordering prescription, quite the contrary. We claimed
that for the specific system, and consequently for the Bose-
Hubbard model [24], neglecting the commutator terms in
the discretization process given by Eq. (4) is a legitimate
approximation. The quantum content of the system has not
been lost as suggested in [20]. Instead, it is present in the
nondifferentiability of the paths q(t ) that must be integrated
out. It is for this reason that the exact calculation of the
integral of Eq. (5) yields the correct quantum mechanical
result. Up to this point, we have bypassed the difficulties
associated with the use of the coherent-state basis. Before
proceeding, we must strongly underline the fact that the
lattice structure beneath the continuous expression given by
Eq. (5) has been fixed to be the symmetric form appearing in
Eq. (4). This is quite important, as the invariance of classical
mechanics under canonical transformations must be reflected
in path integrals [1]. This structure permits the canonical
change of variables q = (z̄ + z)/

√
2 and p = i(z̄ − z)/

√
2 that

transcribes the integral of Eq. (5) in terms of the complex
coordinates (z̄, z),

Z =
∫

periodic
D2z exp

{
−

∫ β

0
dτ

[
z̄ż +

(
|z|2 − 1

2

)2]}
. (7)

This formula is again a source of misunderstandings concern-
ing our approach. It looks like we have replaced (n̂2)W by
n̂W n̂W . However, this is not the case, as we have explicitly
demonstrated in the preceded analysis. The function that plays
the role of the Hamiltonian in the last integral is not taken
to be the continuum limit of a discretized expression of the
form 〈zn|Ĥ |zn−1〉/〈zn|zn−1〉, where Ĥ is a properly (normal,
antinormal, Weyl, or otherwise) ordered quantum Hamilto-
nian. The reason we avoided this limit is that it contains
symplectic terms and calls for unwarranted approximations
that mix ordering and continuity [25]. Thus, the integral (7)
is an inevitable result of the whole construction and not the
result of an assumed linearized Weyl reordering of the original
quantum Hamiltonian or a retrospective choice for resolving
inconsistencies. The construction we followed has bypassed
the ambiguities connected with the overcomplete coherent
state basis and the classical action has unambiguously been
determined. The lattice prescription, associated with the in-
tegral of Eq. (7), has been inherited, via a canonical trans-

formation, from the Feynman phase-space integral and has
been fixed to be the symmetrical form |zn|4, |zn|2 ↔ |z|4, |z|2.
With all these clarifications we will easily confirm, in the next
section, that the evaluation of the integral of Eq. (7) produces
the correct quantum result.

III. EVALUATION OF THE PATH INTEGRAL

In [20] it is claimed that our approach is not justified
for interacting systems. Although not explicitly stated, the
method reviewed in this Comment is advocated as capable
of resolving the CSPI inconsistencies even in the presence of
interactions. However, the calculations prove that what really
happens is quite the contrary. For this and for defending the
efficiency of our approach, first, we will briefly sketch the
calculation of the coherent-state path integral, pertaining to
the toy model in hand, by using the prescription presented
in [20] for different orderings of the quantum Hamiltonian,
proving that a wrong result is produced in all the cases. Next
we will prove that our approach for defining the coherent-
state path integral yields the correct answer. The orderings
we will examine are the original Ĥ0 = (â†â)2 = n̂2 and the
Weyl one [Ĥ ]W = [(â†â)2]W = n̂2 + n̂ + 1/2. By following
the standard discretization procedure we find that the func-
tions that represent these Hamiltonians in the coherent-state
path integral are H0(z̄, z) = |z|4 + |z|2 and HW (z̄, z) = |z|4 +
2|z|2 + 1/2, respectively. The technical difficulty in the calcu-
lation of the relevant path integrals is the nonlinearity of these
functions, a difficulty that can be faced by using the identity

exp

(
−

∫ β

0
dτ |z|4

)

= C
∫

Dσ exp

(
−

∫ β

0
dτ (σ 2/4 + iσ |z|2)

)
, (8)

where C−1 = ∫
Dσ exp(− ∫ β

0 dτ σ 2/4). In this way, the
coherent-state path integral that must be calculated possesses
the form

Z� =
∫

periodic
Dz̄ Dz exp

(
−

∫ β

0
dτ z̄[∂τ + �(τ )]z

)
. (9)

In this integral the time-dependent frequency is � = μ + iσ ,
where μ = 1, 2 for the original and the Weyl orderings,
respectively. The calculation of the integral in Eq. (9) can
be easily performed [1], and by adopting the prescription
presented in [20] we find that

Z� = 1

1− exp
(− ∫ β

0 dτ �
) =

∞∑
n=0

exp

(
−n

∫ β

0
dτ �

)
.

(10)

Integrating out the auxiliary field σ , we immediately
find for the original Hamiltonian the result Z0 =∑∞

n=0 e−βn(n+1) and for the Weyl ordered one the result
ZW = e−β/2 ∑∞

n=0 e−βn(n+2). Evidently, both of these
outcomes are wrong. Within our approach the function
that plays the role of the Hamiltonian in the path integral is,
for the original ordering, HF

0 = (|z|2 − 1/2)2 and for the Weyl
one HF

W = (|z|2 − 1/2)2 + (|z|2 − 1/2) + 1/2 = |z|4 + 1/4.
Introducing the auxiliary field σ , the coherent-state path

026102-2



COMMENTS PHYSICAL REVIEW A 99, 026102 (2019)

integral that must be calculated reads

Z�F =
∫

periodic
Dz̄ Dz exp

[
−

∫ β

0
dτ z̄[∂τ + �F (τ )]z

]
, (11)

with �F = μ + iσ (τ ) and μ = −1, 0 for the original and the
Weyl ordering, respectively. As we stressed in Sec. II, our
approach not only has fixed the function HF

0,W , but also has
enforced the underlying lattice prescription to be symmetric.
Thus the integration in Eq. (11) yields the result

Z�F = exp
(− ∫ β

0 dτ �F /2
)

1 − exp
(− ∫ β

0 dτ �F
)

=
∞∑

n=0

exp

[
−

(
n + 1

2

)∫ β

0
dτ �F

]

=
∞∑

n=0

exp

[
−β

(
n + 1

2

)
μ − i

(
n + 1

2

) ∫ β

0
dτ σ

]
. (12)

Integrating out the auxiliary field, we get the correct result for
both orderings, namely,

Z0;F = e−β/4
∞∑

n=0

exp

[
−β

(
n+ 1

2

)2

+β

(
n+ 1

2

)]
=

∞∑
n=0

e−βn2

(13)

and

ZW ;F = e− β

4

∞∑
n=0

e−β(n+1/2)2 =
∞∑

n=0

e−β(n2+n+1/2). (14)

Thus, we proved that taking into consideration the underlying
time-lattice structure, at least in the way advocated in [20],
is not enough to handle inconsistencies in coherent-state
path integrals. Instead, for the simple but nontrivial case we
presented here as well as for the more interesting cases we
have examined [18,19] our approach unambiguously produces
the correct results.

IV. CONCLUSION

Our approach bypasses the problems appearing in the
standard construction of coherent-state path integrals and
produces, in a complexified phase space, path integrals that,
at least for the examined cases, are free of inconsistencies and
lead to the correct quantum results.
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