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Radially self-accelerating optical pulses
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We generalize the concept of radially self-accelerating beams to the domain of optical pulses. In particular, we
show how radially self-accelerating optical pulses (RSAPs) can be constructed by suitable superpositions of X-
waves, which are a natural extension of Bessel beams in the pulsed domain. Moreover, we show that while field-
rotating RSAPs preserve their self-acceleration character, intensity-rotating RSAPs only possess pseudo-self-
acceleration, as their transverse intensity distribution is deformed during propagation due to their propagation-
dependent angular velocity.
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I. INTRODUCTION

In recent years, accelerating electromagnetic fields, i.e., so-
lutions of Maxwell’s equation, which propagate along curved
trajectories in free space without being subject to an external
force, have been the subject of rather intensive research. The
archetype of an accelerating beam is surely the Airy beam,
first introduced in quantum mechanics by Berry and Balasz
in 1974 [1], and then brought to optics by Siviloglou and
co-workers in 2007 [2,3]. Due to their exotic nature and
novel features, Airy beams were studied within the context
of nonlinear optics [4], particle manipulation [5], and they
gave rise to very interesting and innovative applications,
such as the generation of curved plasma channels [6]. Since
2007, accelerating beams were studied in different coordinate
systems [7,8], and their trajectory was suitably engineered
to match different forms of curved [9–11] and arbitrary [12]
paths, and to find new schemes of acceleration, such as radial
[13,14] and angular [15,16] accelerating beams. The former,
in particular, are often referred to as radially self-accelerating
beams (RSABs), and they propagate along spiraling trajecto-
ries around their optical axis due to radial acceleration.

RSABs are typically described, in the monochromatic
regime, in terms of superpositions of Bessel beams, with an
angular velocity proportional to the amount of orbital angular
momentum they carry [13]. The distinguishing characteristic
of RSABs, however, is a transverse intensity distribution that
rotates around the propagation axis without exhibiting diffrac-
tion, a consequence of RSABs being represented as a sum
of nondiffracting beams. RSABs, moreover, have potential
applications in different areas of physics, such as sensing
[6], material processing [17,18], and particle manipulation
[19,20]. Despite this broad interest, however, RSABs have
so far only been studied within the monochromatic regime,
and the possibility of extending their properties to the domain
of optical pulses has not been investigated yet. Having at
hand radially self-accelerating pulses, in fact, could drastically
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benefit their applications in material processing or particle
manipulation, to name a few.

In this work, we focus on a generalization of the concept
of self-acceleration to the pulsed domain. In doing that, we
will show how it is possible to create radially self-accelerating
pulses (RSAPs) using superpositions of X-waves rather than
Bessel beams. This simple extension of the definition of
RSAB given in Ref. [13], however, has some important con-
sequences on the nature of the self-accelerating character of
such pulses.

This work is organized as follows: In Sec. II, we briefly re-
call the properties and definition of RSABs. Then, in Sec. III,
we show that RSAPs can be constructed by suitably general-
izing their definition in the monochromatic domain as a super-
position of X-waves rather than Bessel beams for both field-
rotating and intensity-rotating RSAPs. For the latter case,
we show that the only possible analytical form of intensity-
rotating RSAPs can be obtained by assigning a different prop-
agation constant to each monochromatic beam composing the
pulse. Finally, conclusions are drawn in Sec. IV.

II. RADIALLY SELF-ACCELERATING BEAMS

As a starting point of our analysis, let us consider a scalar
monochromatic beam solution of the free-space Helmholtz
equation,

(∇2 + k2)ψ (r; k) = 0, (1)

where k = 2π/λ is the vacuum wave vector of the beam,
and λ is its wavelength. In cylindrical coordinates, the most
general solution to the above equation can be written in terms
of Bessel beams as follows:

ψ (r; k) =
∑

m

∫
dκ Am(κ ) Jm(R

√
k2 − κ2)eimθ+κz, (2)

where Jm(x) is the Bessel function of the first kind [21], and
the integration variable κ ∝ cos ϑ0 represents the character-
istic Bessel cone angle [22]. Following the prescriptions of
Ref. [13], is it possible to extract RSABs from the above
equation by choosing Am(κ ) = Cmδ(κ − (m	 + β )), where
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FIG. 1. Intensity and phase distribution for field rotating RSABs.
Panels (a) and (c) correspond to the intensity distributions at z = 0
and z = π/2	, respectively, while panels (b) and (d) depict the
correspondent phase profiles. The intensity and phase distributions
have been plotted in the region 0 < R < 12 μm. For these figures,
	 = 75 rad/s, λ = 800 nm, β = 0, and Cm = 1 for 0 < m � 4, and
Cm = 0 otherwise, have been used. The white arrow in the intensity
distribution shows the direction of rotation of the RSAB.

	 is the actual angular velocity of the RSAB, and β is a
free parameter, with the dimension of a propagation constant.
This choice ensures the possibility of defining a corotating
reference frame � = θ + 	z, in which the RSAB appears
propagation-invariant, namely ∂ψRSAB(r; k)/∂z = 0. The ex-
plicit form of a RSAB thus reads

ψRSAB(R,�; k) = eiβz
∑

m∈M
Cm Jm(αmR)eim�, (3)

where αm =
√

k2 − (m	 + β )2 represents the transverse
wave vector of the single Bessel component of the RSAB,
and M = {m ∈ N : αm > 0}. For β = 0, the above equation
represents the so-called field-rotating RSABs, for which both
amplitude and phase spiral around the propagation direction
synchronously. For β �= 0, instead, Eq. (3) describes the
intensity-rotating RSABs, where the amplitude and phase
distributions are not synchronized anymore during their ro-
tation along the propagation direction, although the intensity
distribution remains propagation-invariant. Examples of field-
rotating and intensity-rotating RSABs are given in Figs. 1 and
2, respectively.

III. EXTENSION TO PULSE DOMAIN

To extend the concept of RSABs to the polychromatic
domain, we first notice that given a solution ψ (r; k) of the
Helmholtz equation (1), it is possible to construct an exact
solution of the wave equation,(

∇2 − 1

c2

∂2

∂t2

)
F (r, t ) = 0, (4)

as follows:

F (r, t ) =
∫

dk g(k) e−ickt ψ (r; k), (5)

FIG. 2. Intensity and phase distribution for intensity rotating
RSABs. Panels (a) and (c) correspond to the intensity distributions at
z = 0 and z = π/2	, respectively, while panels (b) and (d) depict the
corresponding phase profiles. The intensity and phase distributions
have been plotted in the region 0 < R < 1.5 mm. The difference in
plotting range with respect to Fig. 1 reflects the paraxial character
of intensity rotating RSABs in contrast to the nonparaxial character
of their field rotating counterparts. For these figures, 	 = 75 rad/s,
λ = 800 nm, β = 7.8 μm−1, and Cm = 1 for 0 < m � 4, and Cm = 0
otherwise, have been used. The white arrow in the intensity distribu-
tion shows the direction of rotation of the RSAB.

where g(k) is an arbitrary spectral function. If we then sub-
stitute into ψ (r; k) the expression of a RSAB, as given by
Eq. (3), we obtain the general expression for a radially self-
accelerating pulse (RSAP), namely

FRSAP(r, t ) =
∑

m∈M
Cm eim�

∫
dk g(k) ei(βz−ckt )

× Jm[R
√

k2 − (m	 + β )2]. (6)

Before proceeding any further, it is worth saying a few things
about the general structure of the above integral. First of all,
we can distinguish two different cases: β = 0, correspond-
ing to field-rotating RSAPs, and β �= 0, corresponding to
intensity-rotating RSAPs. The latter case, however, can be
further divided into two subclasses, namely the case β =
β(k) [meaning that each monochromatic component of the
RSAP defined in Eq. (6) will have its own global propagation
constant], and the case β = const �= 0. In the latter case,
discussed below in Sec. II B, the spectrum of the RSAP is
m-dependent, meaning that each component in the sum in
Eq. (6) has to first be transformed into a polychromatic signal
with its own spectrum, and then summed to form the RSAP.
We will show that the case β = β(k) results in a pseudo-self-
accelerating pulse, where self-acceleration is restored only
asymptotically, while the case β = const will instead give rise
to a rigorous, self-accelerating pulse.

A. Intensity-rotating RSAPs with β = β(k)

Let us first consider the case β = β(k) �= 0. First we
observe that, typically, 	 � k, meaning that the rotation rate
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of the RSAB is much smaller than its actual wave vector. If we
substitute this ansatz into the argument of the Bessel function
appearing in Eq. (6), we can Taylor-expand the square root
appearing as an argument of the Bessel function in Eq. (6)
with respect to the small parameter 	/k, thus obtaining

√
k2 − (m	 + β )2 � k

[√
1 − β2

k2
− β√

k2 − β2

(
m	

k

)

− km2	2

2(k2 − β2)3/2
+ O

(
	3

k3

)]
. (7)

Since β = β(k) can be chosen arbitrarily, we can assume,
without loss of generality, that it can be written as β(k) =
k cos ξ , where 0 < ξ < π/2. If we do so, we can simplify the
expansion above as follows:

√
k2 − (m	 + β )2 � k sin ξ − m	 cot ξ + O

(
	2

k2

)
, (8)

or, by defining � = 	(cos ξ/ sin2 ξ ) as the new angular ve-
locity of the RSAP, we obtain√

k2 − (m	 + β )2 � sin ξ (k − m�). (9)

This approximation is valid provided that (m	)/k � 1. Since
the number of components of RSABs can be decided almost
arbitrarily, however, it is possible to define a new set M′ =
{m ∈ N0 : m � (k/	)}, and therefore restrict the summation
in Eq. (6) to the subset M′ ⊂ M. If we do so, and introduce
the change of variables k′ = k − m�, we obtain a rather
simple form for RSAPs, namely

F (1)
RSAP(r, t ) =

∑
m∈M′

Cmeim�0 Xm(R, ζ ), (10)

where �0 = θ + �ζ is the corotating coordinate, and

X (1)
m (R, ζ ) =

∫
dk g(k) eikζ Jm(kR sin ξ ) (11)

represents the general expression of an X-wave [23,24], with
ζ = z cos ξ − ct being its correspondent comoving coordi-
nate. This is the first result of our work. In the polychromatic
domain, radially self-accelerating fields can be constructed
by taking superpositions of X-waves rather than Bessel
beams.

However, as can be seen from Eq. (10), intensity-rotating
RSAPs intrinsically contain a ζ -dependence on both their
corotating coordinate �0 and the transverse distribution
Xm(R, ζ ). This fact, which will be discussed in detail in the
next section, is ultimately the reason why RSAPs only possess
a pseudo-self-accelerating character.

At first glance, Eq. (11) has the same form of its monochro-
matic counterpart, namely Eq. (3), and could be interpreted as
its straightforward generalization. One could in fact naively
substitute Bessel beams, which are used in the monochromatic
case to generate RSABs, with X-waves (i.e., polychromatic
Bessel beams), thus realizing RSAPs.

A closer analysis of Eq. (10), however, reveals an important
difference between the two cases, namely that while RSABs
describe spiraling trajectories of constant transverse dimen-
sion [13], RSAPs describe spiraling trajectories of growing

transverse dimension. Moreover, while the transverse struc-
ture of RSABs rigidly rotates around the propagation axis, this
is not the case for RSAPs, which instead show a progressive
self-adaption of the transverse intensity distribution to a ring,
centered on the propagation axis.

To better understand this, let us consider explicitly the case
of fundamental X-waves. These are characterized by an ex-
ponentially decaying spectrum, i.e., g(k) = H (k) exp [−αk],
where α accounts for the width of the spectrum, it has
the dimensions of a length, and H (x) is the Heaviside step
function. If we substitute this exponentially decaying spec-
trum into Eq. (10) and use Eq. 6.621.1 in Ref. [25], we
get, after some simple algebraic manipulation, the following
result:

F (1)
RSAP(r, t )

= ei arctan( ζ

α
)

∑
m∈M′

Ameim� ρm√
α2 + ζ 2

2F1

×
(

m + 1

2
,

m + 2

2
; m + 1; −ρ2e2i arctan( ζ

α
)

)
, (12)

where

ρ ≡ ρ(ζ ) = R sin ξ√
α2 + ζ 2

(13)

is an expanding normalized radial coordinate,

� = θ + �ζ + arctan

(
ζ

α

)
(14)

is the corotating, accelerating reference frame, Am = Cm/2m,
and 2F1(a, b; c; x) is the Gauss hypergeometric function [21].
Notice that although in general the hypergeometric function
gives an extra m- and ζ -dependent phase contribution, which
modifies the definition of �, if we limit ourselves to the case
ξ � 1, the phase contribution of the hypergeometric function
can, at leading order in ξ , be neglected.

We can now compare the two corotating coordinates in
the monochromatic (�) and polychromatic (�) case: while
� essentially describes a helix centered around the z-axis,
whose transverse width remains constant, since the angular
velocity of the RSAB is � = const, this is not the case for
the polychromatic corotating coordinate �, as it represents an
accelerating coordinate with velocity

∂�

∂ζ
= � + α

α2 + ζ 2
(15)

and acceleration

∂2�

∂ζ 2
= − 2αζ

(α2 + ζ 2)2
. (16)

The above expressions for the angular velocity and acceler-
ation of the RSAP reveals that for large enough propagation
distances, ∂�/∂ζ → � and ∂2�/∂ζ 2 → 0, and the standard
values of velocity and acceleration for RSABs are restored.
This means that the self-accelerating state represents an
asymptotic equilibrium for the RSAP. For small propagation
distances, on the other hand, the behavior of RSAPs changes
significantly from traditionally self-accelerating beams, as
can be seen from Eqs. (15) and (16). Since the corotating
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coordinate is now accelerating, and the acceleration is toward
the center of the pulse, the transverse field distribution needs
to adapt to this attractive force, which tends (asymptotically)
to transform the intensity distribution into a ring-shaped pulse
around the comoving propagation direction ζ . For these rea-
sons, one cannot formally speak anymore of self-accelerating
pulses, as there exists no reference frame in which Eq. (12)
appears propagation-invariant, or, as said in other terms, there
exists no reference frame in which the motion of the pulse
around the ζ -axis can be described by a helix. However, since
the self-accelerating behavior is an asymptotical equilibrium
of the system, one could refer to such pulses as pseudo-self-
accelerating.

The intensity and phase distributions of intensity-rotating
RSAPs are shown in Fig. 3. For small propagation distances
[Figs. 3(a)–3(d)], the intensity distribution gets progressively
distorted while propagating along ζ up to the point at which
the RSAP reaches its equilibrium form of a ring [Figs. 3(e)
and 3(f)]. From this point on, the transverse intensity distri-
bution does not change anymore in shape, but only becomes
bigger due to the expanding nature of the radial comoving
coordinate ρ, as can be seen by comparing panels (e) and
(g) of Fig. 3. If we compare the behavior of RSAP at large
ζ with that of RSABs, we can notice that while the transverse
dimension of the spiral described by RSABs remains constant
(essentially because � describes a helix rather than a spiral),
this is not the case for RSAPs, since � describes a spiral,
whose transverse dimension is growing with ζ .

To estimate this, let us calculate the average transverse size
of the spiral, by considering the position of the center of mass
of the RSAP intensity distribution, as follows:

〈R(ζ )〉 =
∫

d2R R |FRSAP(r, t )|2 ≡ R0

√
α2 + ζ 2, (17)

where, at the leading order in ξ [26],

R0 = 2π

sin3 ξ

∑
m∈M′

|Am|2
∫ ∞

0
dρ ρ2(m+1), (18)

Thus, in the comoving, expanding, reference frame, the trans-
verse dimension of the spiral grows as

√
α2 + ζ 2.

B. Intensity-rotating RSAPs with β = const

Another possibility for intensity-rotating RSAPs is to
choose β = const �= 0. If we use this assumption, introducing
the change of variables k′ =

√
k2 − (m	 + β )2 in Eq. (6), and

if we allow the spectral function g(k) to be m-dependent and
redefine it as gm(k) = (2kGm(k)/

√
k2 − (m	 + β )2)H (k),

where H (k) is the Heaviside step function [21], we get the
following result:

F (2)
RSAP(r, t ) = eiβz

∑
m∈M′

Cmeim� X (2)
m (R, t ; β ), (19)

where

X (2)
m (r; β ) =

∫ ∞

0
dk Gm(k)e−ictA(k)Jm(kR), (20)

FIG. 3. Intensity (left) and phase (right) distribution for
intensity-rotating RSAPs, as defined by Eq. (12). The plots are made
at different values of the normalized propagation length ζ ≡ ζ/α,
namely ζ = 0 [panels (a) and (b)], ζ = 2π/� [panels (c) and (d)],
ζ = 10 (2π/�) [panels (e) and (f)], and ζ = 50 (2π/�) [panels
(g) and (h)]. As can be seen, the transverse profile of intensity-
rotating RSAPs gets progressively distorted, up to the point at which
it stabilizes in a ring-shaped form [panel (e)]. The intensity and
phase distributions have been plotted in the region 0 < ρ < 1250
for panels (a)–(f), and 0 < ρ < 7500 for panels (g) and (h). For
these figures, 	 = 75 rad/s, λ = 800 nm, ξ = 0.01 (corresponding
to β = 7.853 × 106 m−1), and Cm = 1 for 1 < m � 4, and Cm = 0
otherwise, have been used. The white arrow in the intensity distribu-
tion shows the direction of rotation of the RSAP.

where A(k) =
√

k2 + (m	 + β )2. If we choose the spectral
function G(k) as

G(k) = 1√
k2 + (m	 + β )2

, (21)

Eq. (20) admits the following closed-form analytical solu-
tion [25]:

X (2)
m (R, t ; β ) = Im/2

[
α

2
(
√

R2 − c2t2 − ict )

]

× Km/2

[
α

2
(
√

R2 − c2t2 + ict )

]
, (22)
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where Im(x) and Km(x) are the modified Bessel function of the
first and second kind, respectively [21], and α = m	 + β.

As can be seen, no z-dependence is contained in the ex-
pression of the transverse field distribution X (2)

m (R, t ; β ), and
Eq. (19) has the same form of Eq. (3). In this case, therefore,
we can define the corotating reference frame {R,�, t}, where
F (2)

RSAP(r, t ) is manifestly propagation-invariant. However, due
to the presence of the modified Bessel function of the second
kind, Km/2(x), this field distribution is divergent in the origin,
and therefore it cannot represent a physically meaningful
solution. Analytical forms of intensity-rotating RSAPs, there-
fore, only exist for β = β(k). This is the second result of
our work: intensity-rotating RSAPs can only be constructed
by assigning a proper β(k) to each of the monochromatic
components that contribute to the pulse. If β is constant, no
physically meaningful analytical solution can be found.

Notice, however, that a trivial possibility for describing
intensity-rotating RSAPs with constant β would be to con-
sider the case β = const � 1. This, however, can be treated
(at least at leading order in β) as a first-order correction to the
case β = 0, which will be discussed in the next section. Since
β = 0 will correspond to field-rotating RSAPs, one could then
conclude that intensity-rotating RSAPs with constant small β

can be well described by field-rotating RSAPs.

C. Field-rotating RSAPs

For the case β = 0, the argument for the Bessel function in
Eq. (6) becomes

√
k2 + m2	2. If we then assume that 	 � k,

and use the expansion in Eq. (7) with β = 0 up to O(	2/k2),
we can write

√
k2 − m2	2 � k. This approximation, however,

holds as long as m is chosen in such a way that m	/k � 1. As
stated before, since we are free to choose the set in which m is
defined, we can restrict the original set M to the new subset
M′′ ≡ {m ∈ N0 : m � (

√
2k/	)}. In this case, the explicit

expression of field-rotating RSAPs is given as follows:

F (3)
RSAP(r, t ) =

∑
m∈M′′

Cmeim�X (3)
m (R, ζ0), (23)

where ζ0 = −ct , and

X (3)
m (R, ζ0) =

∫
dk g(k) eikζ0 Jm(kR). (24)

Notice that unlike the case β �= 0, no z-dependence is present
in the transverse form of the pulse X (3)

m (R, ζ0). This means
that field-rotating RSAPs are truly self-accelerating fields,
as one can define a reference frame, namely {R,�, ζ0} ≡
{R,�, t}, in which the RSAP appears propagation-invariant,
and fulfills all the required conditions for self-acceleration
[13]. The intensity and phase distributions for field-rotating
RSAPs at different propagation lengths are shown in Fig. 4.
As it can be seen, the transverse intensity profile remains
unchanged as the pulse propagates along z. Notice, moreover,
that field-rotating RSAPs rotate in the opposite direction with
respect to intensity-rotating RSAPs.

IV. CONCLUSIONS

In this work, we have generalized the concept of radially
self-accelerating field to the domain of optical pulses. We have

FIG. 4. Intensity (left) and phase (right) distribution for field-
rotating RSAPs at different values of the propagation length, namely
ζ = 0 [panels (a) and (b)], ζ = 0.25(2π/�) [panels (c) and (d)],
ζ = 0.5 (2π/�) [panels (e) and (f)], and ζ = 0.75 (2π/�) [panels
(g) and (h)]. As can be seen, the transverse profile of field-rotating
RSAPs remains propagation-invariant, and rotates synchronously
with its phase profile. The intensity and phase distributions have
been plotted in the region 0 < R < 10 μm. For these figures, 	 = 75
rad/s, λ = 800 nm, and Cm = 1 for 1 < m � 4, and Cm = 0 other-
wise, have been used. The white arrow in the intensity distribution
shows the direction of rotation of the RSAP.

shown how it is possible to define RSAPs as a superposition
of OAM-carrying X-waves, rather than Bessel beams. For the
case of fundamental X-waves, we have calculated the explicit
expression for field-rotating, as well as intensity-rotating,
RSAPs, and we have shown that while the former retain
their self-acceleration character, the latter possess pseudo-
self-acceleration and admit pure self-acceleration only asymp-
totically. We have also investigated intensity-rotating RSAPs
with constant β, and we showed that although in this case
it is possible to recover pure self-acceleration, such fields
have no physical meaning, as they are divergent in the origin.
Our work represents an attempt to generalize the concept of
self-acceleration to the domain of optical pulses, and it dis-
cusses advantages and limitations of this process. Moreover,
our work represents a guideline that will be useful for the
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experimental realization of radially self-accelerating optical
pulses.

In future works, we intend to investigate the properties
of RSAPs under focusing, and compare them with their
monochromatic counterparts [27], to see if the introduction
of polarization as an extra degree of freedom can balance
the occurrence of pseudo-self-acceleration. In addition, we
will also investigate the quantum properties of both RSABs

and RSABs in terms of their linear and angular momentum
content, as well as their nonlinear interaction with matter
[28].
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