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Few-photon Fock-state wave packet interacting with a cavity-atom system in a waveguide: Exact
quantum state dynamics
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In the paper, we employ a wave-function approach to investigate the evolution of a two-photon wave packet
propagating in a one-dimensional waveguide coupled to the Jaynes-Cummings (JC) system. We derive and solve,
both analytically and numerically, a set of equations of motion governing the quantum state of the system.
That allows us to provide real-time analysis of the evolution of the wave packet two-photon joint spectrum
(2PJS) and the excitation dynamics of the JC system in the course of its interaction with the two-photon pulse.
We demonstrate that the 2PJS and the spectrum of the wave packet scattered from the JC system experience
transformation for nonzero atom-cavity couplings. Moreover, using Schmidt decomposition, we show that the
scattered photons feature frequency entanglement contrary to the incident ones which are not entangled.
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I. INTRODUCTION

Propagating photons can act as mobile qubits carrying
quantum information between stationary qubits, where it can
be stored or subjected to quantum logical operations [1].
Remote stationary qubits are interconnected via waveguides
(either microwave or optical ones) ensuring almost lossless
transport of photons within quantum information processing
(QIP) devices. Waveguides confine light in a transverse di-
rection forming an effective one-dimensional (1D) contin-
uum for propagating photons. Due to the Purcell effect, this
modified electromagnetic environment gives rise to enhanced
light-matter interaction. Strong light-matter coupling enables
fast and accurate quantum-state transfer between photons and
stationary qubits, which is essential for the realization of
high-fidelity single- and multi-qubit gates.

Remarkable progress in creation and manipulation of
waveguide quantum electrodynamics (wQED) systems was
achieved in the past couple of decades [2]. In addition, several
designs of single- and few-photon sources operating in the
microwave [3–6] and optical [7–9] domains were demon-
strated experimentally. That makes wQED a highly promising
and versatile hardware platform for implementation of QIP
systems. Ongoing technological advances in this field galva-
nize extensive theoretical studies of wQED systems. Several
wQED-based architectures for quantum computation were
proposed recently [10–12]. Diverse theoretical techniques
were engaged for studying a photon propagation in various
wQED setups. Below we present a brief overview of some of
these approaches.

Interaction of Fock- and coherent-state wave packets with
a two-level atom (2LA) in a 1D waveguide was studied within
the Heisenberg picture in Refs. [13–16].

A theoretical framework based on master equations
was employed in Ref. [17] to describe the evolution of
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arbitrary quantum systems driven by N-photon wave packets.
In Ref. [18] a generalized master equation approach was de-
veloped for studying multiphoton transport in wQED systems
with non-Markovian couplings.

Different quantum-field-theoretic approaches such as real-
space Bethe ansatz [19–21], Lippmann-Schwinger for-
malism [22,23], Lehmann-Symanzik-Zimmermann reduc-
tion [24–26], various diagrammatic techniques [27–30], and
Dyson series summation [31] were adopted for the description
of wQED systems as well.

An input-output formalism [32] was harnessed in Ref. [33]
to establish a relationship between the exact few-photon S
matrix of a 2LA and photonic input-output operators. This
successful approach was employed in further studies [34–38].

It should be noted that the S matrix provides information
only about asymptotic (long-time) behavior of the system,
while no insight into its transient dynamics is given. To
describe the evolution of the system state one should rely
on alternative techniques, e.g., wave-function approach which
was employed for studying the propagation of few-photon
wave packets in wQED systems containing one or few 2LAs
[39–42], a single-photon pulse propagation in a chain of
non-identical 2LAs [43], interaction of one- [44] and two-
photon pulses [45] with a cavity-atom system, and few-photon
scattering in systems with quantum delayed feedback [46,47].
Detailed information about the system can be obtained if
one knows its exact wave function at the arbitrary moment
of time. This can be achieved by solving a set of coupled
equations of motion for probability amplitudes governing
the quantum-state evolution of the system. These first-order
ordinary differential equations (ODEs) can be solved either
numerically using one of the elaborate computational rou-
tines, or analytically, for some cases.

Many of the previous studies model a local emitter by
a 2LA. It is the simplest saturable (i.e., nonlinear) quantum
system since it can contain only one excitation per moment.
This property was employed in Ref. [48] to derive an exact
analytical solution for the problem of N-photon scattering on a
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2LA. Investigation of a multi-photon transport in wQED sys-
tems with more complex emitters constitutes a more intricate
problem for analysis. A system composed of a cavity coupled
to an atom, which is referred to as the Jaynes-Cummings
(JC) system, is one of the most important model systems
in quantum optics. It demonstrates a number of interesting
phenomena such as photon blockade [49–51], photon phase
switching [52], generation of photon bundles [53], etc.

The paper concerns a few-photon transport in the wQED
setup with the emitter represented by the JC system. We
develop a wave-function approach to provide a fully quantum-
mechanical real-time analysis of scattering of two-photon
Fock-state wave packets on the JC system coupled to a 1D
unidirectional (chiral) waveguide. The exact solutions of the
equations of motion for the probability amplitudes determin-
ing a state of the system at the arbitrary moment of time are
obtained both analytically and numerically. In the long-time
limit of the system evolution when all interaction processes
are over, and the scattered photons propagate in the waveg-
uide as free excitations, we ultimately arrive at the results
equivalent to those derived earlier using other approaches.
We use Schmidt decomposition of the two-photon spectral
distribution function (SDF) of the outgoing wave packet to
demonstrate that the scattered photons are entangled.

The outline of the paper is as follows. In Sec. II a model
system is described and its possible experimental incarna-
tions are briefly discussed. In Sec. III we study the case
of a single-photon ingoing pulse. Sections IV–VI contain
the results regarding the case of a two-photon Fock-state
ingoing pulse. In Sec. IV the equations of motion governing
the quantum-state evolution of the system are derived. The
dynamics of the JC system is studied in Sec. V. In Sec. VI
we present the exact expression for the SDF of the wave
packet scattered from the JC system. The properties of the
spectrum of the outgoing photons are analyzed in Sec. VII. In
Sec. VIII Schmidt decomposition is employed to investigate
the frequency entanglement of the scattered photons. We
summarize in Sec. IX. Details of derivation and solution of
evolution equations are presented in Appendices.

II. THE MODEL

We consider a model system consisting of a single-mode
cavity coupled to an individual 2LA. A cavity mode overlaps
with modes of a unidirectional 1D waveguide leading to that
photons are able to leak in and out of the cavity. To populate
the cavity and to excite the atom coupled to it, the former is
driven by a few-photon wave packet propagating in a waveg-
uide. The concept of the considered waveguide-cavity-atom
system is illustrated in Fig. 1.

In practice, the prototypical waveguide-cavity-atom system
considered here can be implemented within a variety of phys-
ical architectures. Those include, but not limited to photonic-
crystal structures forming waveguides and cavities for pho-
tons, which interact with natural atoms [49,52], individual
semiconductor quantum dots (QDs) [54], or embedded color
centers [55,56]; tapered optical fibers coupled to whispering-
gallery-mode resonators interacting with cold atoms trapped
near their surface [57]; superconducting circuit QED (cQED)
setups, where nonlinear properties of the Josephson junctions

FIG. 1. A schematic illustration of the considered wQED setup.
A chiral 1D waveguide is coupled to a JC system constituted by
a cavity interacting with an atom with strength g. Parameter κ

stands for a decay rate of the cavity mode caused by leakage into
the waveguide. Both the cavity and the atom can have intrinsic
dissipation rates γc and γa, correspondingly.

(JJs) are utilized to embody atom-like systems [58–60]. Re-
markably, but general properties of those diverse physical
systems can be described by the same mathematical model
discussed below.

The Hamiltonian

The considered waveguide-cavity-atom system is de-
scribed by the Hamiltonian [35,61–63]:

Ĥ =
ĤJC︷ ︸︸ ︷

ωc a†a + ωa σ+σ− + g(a†σ− + σ+a)

+
∫ ∞

0
dω ω b†

ωbω︸ ︷︷ ︸
Ĥw

+ f
∫ ∞

0
dω(b†

ωa + a†bω )︸ ︷︷ ︸
ĤI

. (1)

Henceforth, we set h̄ ≡ 1. Thus, throughout the paper, all
energies are given in frequency units.

The first three terms on the right-hand side (rhs) of Eq. (1)
describe the interacting cavity-atom system and constitute the
Hamiltonian of the JC model ĤJC. The first term in ĤJC de-
scribes a noninteracting single-mode cavity with a resonance
frequency ωc, where a (a†) is a bosonic annihilation (creation)
operator of a photon in the cavity mode. The second term in
the Hamiltonian describes an individual 2LA with ωa being
an energy gap between its ground |g〉 and excited |e〉 states.
We have introduced the atomic raising σ+ = |e〉〈g| and low-
ering σ− = |g〉〈e| operators connected to the Pauli operators
as σx = σ+ + σ−, iσy = σ+ − σ−, and σz = 2σ+σ− − 1. The
Hamiltonian of the atom-cavity interaction, represented by the
third term on the rhs of Eq. (1), is given in the rotating-wave
approximation (RWA), which assumes the conditions

|�a| � ωa + ωc, g � {ωc, ωa} (2)

are satisfied, where �a = ωa − ωc denotes a detuning be-
tween frequencies of an atomic transition and a cavity res-
onance. Parameter g stands for an atom-cavity coupling
strength. The criteria Eqs. (2) are satisfied for a broad
spectrum of experimental wQED realizations ranging from
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microwave superconducting circuits to photonic-crystal struc-
tures operating at optical frequencies. Nonetheless, one
should note recent progress in the development of various
system (see, e.g., reviews in Refs. [64,65] and references
therein) exhibiting a light-matter coupling strong enough to
break down the RWA applicability and switch the system into
the ultrastrong coupling regime.

The term Ĥw in Eq. (1) describes a continuum of inde-
pendent bosonic modes which models a waveguide. Opera-
tor bω (b†

ω) annihilates (creates) a photon with energy ω in
the waveguide and obeys the equal-time commutation rela-
tion [bω, b†

ω′ ] = δ(ω′ − ω). The waveguide-cavity interaction
is represented by the term ĤI, where f ≡ √

κ/(2π ) is a
waveguide-cavity coupling strength. Here we have neglected
the actual frequency dependence of the cavity-waveguide cou-
pling assuming that the frequencies of the cavity resonance
and the incident photons are close to each other and much
larger than the spectral bandwidth of the wave packet. This is
expressed by the criteria

|ω0 − ωc| � ω0 + ωc, γ0 � {ω0, ωc}, (3)

where ω0 is a central frequency of the incident pulse with a
spectral bandwidth γ0. Due to the second criterion in Eqs. (3)
we extend boundaries of integration over the photon fre-
quencies to (−∞,+∞). This approximation gives negligible
deviation from the exact result due to the sharp localization
of the wave packet spectrum in the vicinity of ω0, which is
expressed by the second criterion in Eqs. (3).

The model Hamiltonian contains no terms describing the
interaction of the system with external reservoirs leading to
dissipation, which implies that in the paper we are focused
exclusively on a unitary evolution of the system. This ap-
proximation is legitimate when the parameters of the system
meet the constraint max{γc, γa} � min{γ0, κ}, which indi-
cates that dissipation processes should be the slowest ones.
It is also assumed that the temperature Ts at which the sys-
tem operates satisfies the criterion ωc/(kBTs) 	 1, where kB

is the Boltzmann constant. This condition ensures that the
average number of thermal excitations in the system is neg-
ligible nth = [exp(− ωc

kBTs
) − 1]−1 � 1. The above conditions

can be realized in the modern cQED systems (see Ref. [59]
and references therein for the parameters of state-of-the-art
superconducting cQED setups).

One can show that the operator of the total number of
excitation in the system N̂ex = a†a + σ+σ− + ∫

dωb†
ωbω is an

integral of motion since it commutes with the Hamiltonian:
[N̂ex, Ĥ] = 0, which indicates that the number of excitations
in the system is conserved.

III. SINGLE-PHOTON WAVE PACKET

Let us first consider the case of the JC system driven by
a single-photon wave packet. As long as we set that initially
the JC system contains no excitations (the atom resides in its
ground state |g〉, and the cavity field is in the vacuum state),
the evolution of the system occurs entirely within the one-
excitation domain of the Hilbert space of the system states
since the number of excitations in the system is conserved.

The time-dependent wave function of the system has the form

|Ψ1(t )〉 =
[

Ag(t )a† + Ae(t )σ+ +
∫

dωBω(t )b†
ω

]
|∅〉, (4)

where |∅〉 = |∅w〉|∅JC〉 stands for a vacuum state of the entire
system – a state with no excitations in both the waveguide
|∅w〉 and the JC system |∅JC〉 ≡ |∅c〉|g〉. In Eq. (4) Bω(t )
is a single-photon SDF, Ag(t ) stands for an amplitude of a
state with the ground-state atom and the cavity field in the
single-photon state, and Ae(t ) is an amplitude of a state with
the vacuum field in the cavity and the excited-state atom.
Here and through the rest of the main part of the paper, we
work within the Schrödinger picture with time-independent
operators.

The initial (at t = 0) state of the system is given by∣∣
 in
1

〉 = ∣∣ψ in
1

〉|∅JC〉, (5)

where |ψ in
1 〉 is a state of the ingoing photon. It is given by∣∣ψ in

1

〉 =
∫

dω ξω b†
ω|∅w〉, (6)

with ξω being an ingoing wave packet SDF satisfying a
normalization condition

∫
dω |ξω|2 = 1.

Evolution of the single-excitation amplitudes entering
Eq. (4) is governed by a set of coupled equations as follows:

(i∂t − ω̃c)Ag(t ) = f �(t ) + gAe(t ), (7a)

(i∂t − ωa )Ae(t ) = gAg(t ), (7b)

(i∂t − ω)Bω(t ) = f Ag(t ), (7c)

where ω̃c = ωc − iκ/2 and �(t ) = ∫
dω e−iωt ξω. The ini-

tial conditions are the following: Bω(0) = ξω and Ag(0) =
Ae(0) = 0. The method of derivation of the above set of
equations is presented in Appendix A. The exact analytical
solutions of the system Eq. (7) can be obtained using the
Laplace transform method (see the details in Appendix B).

Since the ingoing pulse has a finite duration τp ∼ γ −1
0

and the photons inside the cavity mode have limited lifetime
∼κ−1, in the long-time limit

t 	 {
γ −1

0 , κ−1
}

(8)

the system reaches the steady state: the cavity field is in the
vacuum state, the atom resides in its ground state, while the
scattered photon propagates in the waveguide as a free exci-
tation. Applying the condition Eq. (8) to solutions of Eq. (7)
one obtains the final state of the system |
out

1 〉 = |ψout
1 〉|∅JC〉,

where ∣∣ψout
1

〉 =
∫

dω e−iωt eiΘωξω b†
ω|∅w〉, (9)

is the state of the scattered photon. Here Θω stands for a
single-photon frequency-dependent phase shift induced by the
JC system. It is determined as [35,61,62]

Θω = arg

[
(ω − E+

1 )∗(ω − E−
1 )∗

(ω − E+
1 )(ω − E−

1 )

]
. (10)

The complex single-photon resonances E±
1 = E±

1 − iΓ ±
1 /2

of the open (i.e., coupled to the waveguide) JC system are

023857-3



E. V. STOLYAROV PHYSICAL REVIEW A 99, 023857 (2019)

given by

E±
1 = ω̃c + �̃a

2
± R1

2
, R1 =

√
4g2 + �̃2

a, (11)

where �̃a = ωa − ω̃c. In the resonant case (�a = 0) one has
E±

1 = ωc ± g
√

1 − κ2/(4g)2 and �±
1 = κ/2. For the strong-

coupling regime of the JC system (g 	 κ) one can employ an
approximation E±

1 ≈ ωc ± g.

IV. TWO-PHOTON PROBLEM: QUANTUM-STATE
EVOLUTION

A. The wave function

Here we consider the evolution of the waveguide-JC sys-
tem when the incident wave packet is in the two-photon
Fock state. Due to conservation of the excitation number the
dynamics of the system is restricted exclusively by the two-
excitation domain of the Hilbert space of the system states.
The wave function of the system at arbitrary moment |Ψ2(t )〉
is represented by a superposition of two-excitation states:

|Ψ2(t )〉 = 1√
2

∫∫
dω dω′ Φω,ω′ (t ) b†

ωb†
ω′ |∅〉

+
∫

dω
[
X g

ω(t ) b†
ωa† + X e

ω(t ) b†
ωσ+

]|∅〉

+
[

1√
2

Zg(t ) (a†)2 + Ze(t ) σ+a†

]
|∅〉. (12)

The first term in Eq. (12) describes a state with both pho-
tons in the waveguide. The time-dependent two-photon SDF
Φω,ω′ (t ) exhibits symmetry to permutation of photon frequen-
cies Φω,ω′ (t ) = Φω′,ω(t ) because of the bosonic nature of
photons. A quantity |Φω,ω′ (t )|2 is referred to as a two-photon
joint spectrum (2PJS) and determines a distribution of a joint
probability of finding a pair of photons with frequencies ω

and ω′ in the waveguide. The probability amplitudes X g,e
ω (t )

correspond to the states of the system with the waveguide
and the JC system both containing a single excitation. The
amplitudes Zg,e(t ) correspond to the states with the waveguide
void of photons and the JC system containing two excitations.
Subscripts g and e specify the state of the atom (ground or
excited).

The initial state of the system in the case of the two-photon
drive is |
 in

2 〉 = |ψ in
2 〉|∅JC〉 with the wave function |ψ in

2 〉 of
the ingoing photons given by∣∣ψ in

2

〉 = 1√
2

∫∫
dω dω′�in

ω,ω′ b†
ωb†

ω′ |∅w〉. (13)

In the above expression �in
ω,ω′ stands for a two-photon

SDF of the incident wave packet obeying the condition∫∫
dωdω′|�in

ω,ω′ |2 = 1.
It is assumed that the incident two-photon wave packet is

composed of a pair of indistinguishable photons with SDFs
given by ξω. In this case, �in

ω,ω′ factorizes into the product of
single-photon SDFs as

�in
ω,ω′ = ξω ξω′ . (14)

Therefore, the initial photonic state |ψ in
2 〉 is separable and can

be expressed in the form

∣∣ψ in
2

〉 = 1√
2

∣∣ψ in
1

〉∣∣ψ in
1

〉
. (15)

Thus, following the arguments by Rohde et al. [67], here
we deal with an ingoing wave packet in the two-photon
multimode Fock state. In general, multimode Fock states are
a special case of a broader class of multimode multiphoton
states.

B. Evolution equations

Equation of motion governing the evolution of the two-
photon SDF Φω,ω′ (t ) reads as follows:

[i∂t − (ω + ω′)]Φω,ω′ (t ) = f√
2

[
X g

ω(t ) + X g
ω′ (t )

]
, (16)

with the initial condition Φω,ω′ (0) = �in
ω,ω′ . The rest of the

probability amplitudes in Eq. (12) have zero initial conditions
and obey the evolution equations as follows:

[i∂t − (ω + ω̃c)]X g
ω(t ) = f

√
2�(t )Bω(t )

+ gX e
ω(t ) + f

√
2Zg(t ), (17a)

[i∂t − (ω + ωa )]X e
ω(t ) = gX g

ω(t ) + f Ze(t ), (17b)

[i∂t − 2ω̃c]Zg(t ) = 2 f �(t )Ag(t ) + g
√

2Ze(t ), (17c)

[i∂t − (ω̃c + ωa )]Ze(t ) = f
√

2�(t )Ae(t ) + g
√

2Zg(t ).

(17d)

The details of derivation of Eqs. (16) and (17) are given in
Appendix A. We solve the above system of ODEs governing
evolution of the amplitudes both analytically and numerically.
The analytical solutions are obtained using the Laplace trans-
form method (see derivations in Appendix B). For numerical
solution we use NDSolve function of the Mathematica sys-
tem. One may refer to Supplemental Material (see Ref. [66])
for Mathematica code demonstrating the implementation of
both the numerical solution of the system of ODEs (17) and
exact analytical solutions derived in Appendix B. In addi-
tion, the code contains several sample calculations showing
the comparison of analytical and numerical approaches. The
results of computations obtained using the analytical solutions
are in excellent agreement with those obtained via the numer-
ical solution of Eqs. (17).

We proceed to investigation of evolution of the 2PJS of
the wave packet in the course of its interaction with the JC
system. For calculations we model the single-photon SDF
of the ingoing wave packet ξω by the Lorentzian function
given by

ξω =
√

γ0

2π

[
(ω − ω0) + i

γ0

2

]−1
ei(ω−ω0 )t0 , (18)

where parameter t0 denotes a moment of time when the
incident wave packet arrives at the cavity site. Hereinafter we
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FIG. 2. Snapshots of evolution of the 2PJS in the process of scattering for specific moments of time and different parameters of the ingoing
wave packet and the JC system. The JC system is considered in the resonant regime (�a = 0) and is driven on one of the single-photon
resonances ω0 = E+

1 . The rest of the parameters are as follows: γ0/κ = 0.2, (upper row) g/κ = 0, E+
1 = ωc; (middle row) g/κ = 2; (bottom

row) g/κ = 10. Here, for the sake of brevity, we use notations as follows: � = (ω − ω0)/γ0 and � ′ = (ω′ − ω0)/γ0. All plots are normalized
on the maximum of the ingoing wave packet 2PJS |�in

ω0,ω0
|2 = 4/(πγ0)2. See Ref. [66] for the 2PJS evolution animation.

set t0 = 0. For ξω modeled by a Lorentzian shape determined
by Eq. (18) one obtains

�(t ) = −
√

2π

τp
exp

[
− t

2τp

]
θ (t ), (19)

where θ (t ) is the Heaviside function.
The animation of 2PJS evolution can be found in Sup-

plemental Material [66], while the series of snapshots for
the specific moments of time and different parameters of the
system are demonstrated in Fig. 2. These computations reveal
that the 2PJS of the wave packet experiences a transformation
in the course of its interaction with the JC system. Another
important detail is that for g = 0, which corresponds to the
setup with the cavity either empty or decoupled from the
atom, the 2PJS ultimately regains its initial shape for times
satisfying the condition Eq. (8). This result will be rigorously
explained below in the paper. On the contrary, for the case of
non-zero interaction (g > 0) between the cavity and the atom,
the 2PJS of the scattered wave packets [for times satifying the
criterion Eq. (8)] are transformed compared to the initial 2PJS.
As it will be demonstrated later in the paper (see Sec. VIII),
unlike the ingoing photons, which are not entangled [see
Eq. (13)], for g > 0 the scattered photons are in the frequency-
entangled state.

V. JC SYSTEM DYNAMICS

For the analysis of the excitation dynamics of the JC
system we use Eq. (12). The average photon number in the
cavity is given by

Nc(t ) = 〈Ψ2(t )|a†a|Ψ2(t )〉
=

∫
dω

∣∣X g
ω(t )

∣∣2 + |Ze(t )|2 + 2|Zg(t )|2. (20)

The atomic excited state population is determined as

Pa(t ) = 〈Ψ2(t )|σ+σ−|Ψ2(t )〉
=

∫
dω

∣∣X e
ω(t )

∣∣2 + |Ze(t )|2. (21)

Moreover, using the exact wave-function Eq. (12) one
can calculate the probability to find the JC system in the
state with a given number of excitations p( j)

JC (t ) ( j � 2). The
probabilities of finding one and two excitations in the JC
system at an instant t are determined as

p(1)
JC (t ) =

∫
dω

∣∣X g
ω(t )

∣∣2 +
∫

dω
∣∣X e

ω(t )
∣∣2

(22)

and

p(2)
JC (t ) = |Zg(t )|2 + |Ze(t )|2. (23)
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FIG. 3. Excitation dynamics of (a) the cavity and (b) the 2LA for
different values of γ0/κ , which are encoded by the color gradient.
The parameters of the system are as follows: g/κ = 5, �a = 0, and
ω0 = E+

1 .

Calculations of the cavity and atomic excitation dynamics
presented in Fig. 3 show that shorter ingoing pulses (larger
ratio γ0/κ) results in more efficient excitation of both the
cavity and the 2LA. The cavity and atomic populations exhibit
the oscillations arising due to exchange of excitations between
the 2LA and the cavity. For times exceeding the duration of
the ingoing pulse t > τp the cavity and atomic populations
decay exponentially as ∝e−κt .

Computations of p(1)
JC and p(2)

JC shown in Fig. 4 reveal that
the probability of finding the JC system in the two-excitation
state is considerably reduced compared to the empty cavity
(g = 0) case [see Figs. 4(c) and 4(d)]. This is explained as
follows. Coupling the cavity mode to the 2LA, which is a
saturable (i.e., nonlinear) system due to its ability to emit or
absorb only one photon at a moment, introduces nonlinearity
into the composite JC system. This nonlinearity gives rise to
the photon blockade effect [49,50] when the presence of one
excitation in the system prevents the appearance of the second
one.

Since the probability of the JC system to reside in the two-
excitation state is inhibited due to the atom-induced photon
blockade, the frequency of oscillations of the cavity and 2LA
populations is approximately the vacuum Rabi frequency of
the JC system ΩR ≡ 2πτ−1

R =
√

g2 + (�a/2)2, where τR is
a period of Rabi oscillations. A slight mismatch between
these frequencies is due to the contribution of two-excitation
processes and cavity-waveguide coupling.

One may notice a resemblance of curves (for the same
values of γ0/κ) for Nc(t ) and Pa(t ) presented in Fig. 3. This
feature can be explained as follows. Due to the photon block-
ade effect, the first term on the rhs of Eq. (20), which stands
for a probability of finding a single photon in the waveguide
and the atom in its ground state p(1)

g (t ) = ∫
dω|X g

ω(t )|2, gives
the dominant contribution to the cavity dynamics. Similarly,

FIG. 4. Panels (a) and (b) show the dependencies of the prob-
abilities of finding one and two excitations in the JC system on
γ0/κ for g/κ = 5. The two-excitation probabilities on panel (b) are
plotted after being multiplied by 6. Panels (c) and (d) show the same
dependencies for the case of the empty cavity (g = 0). The other
parameters and notations are as described in the caption of Fig. 3.

the population of the 2LA is mainly determined by the first
term on the rhs of Eq. (21). This term corresponds to the
probability of finding an excited-state atom and a single
photon in the waveguide p(1)

e (t ) = ∫
dω|X e

ω(t )|2. When g > κ

the excitation exchange between the cavity mode and the atom
starts to prevail over the escape of the cavity photon back
into the waveguide. This leads to that with the increase of
atom-cavity coupling strength g the envelopes of functions
p(1)

g (t ) and p(1)
e (t ) become similar, while their oscillating parts

are shifted relative to each other in time on ≈ τR/2. This result
is supported by calculations presented in Fig. 5, where the
effect of the cavity-atom coupling on probabilities p(1)

g,e(t ) is
demonstrated.

VI. SCATTERED TWO-PHOTON STATE

Besides the transient quantum-state dynamics of the sys-
tem, the asymptotic (long-time) solutions are of considerable
interest as well. For times satisfying the condition Eq. (8),
one arrives at the result that only the term which corresponds
to the free evolution of the scattered two-photon field in
the waveguide survives in the wave function of the system
expressed by Eq. (12). The remaining terms vanish indicating
that the JC system is completely depopulated and rests in its
ground state |∅JC〉 ≡ |∅c〉|g〉. The final state of the system is
then given by |
out

2 〉 = |ψout
2 〉|∅JC〉, where |ψout

2 〉 stands for
the scattered photons wave function. It is expressed as

∣∣ψout
2

〉 = 1√
2

∫∫
dω dω′ e−i(ω+ω′ )t�out

ω,ω′ b†
ωb†

ω′ |∅w〉, (24)
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FIG. 5. The dependence of the probabilities p(1)
g (t ) (left column)

and p(1)
e (t ) (right column) on γ0/κ for g/κ = 1 (upper row), g/κ = 2

(middle row), and g/κ = 5 (lower row). The rest of the parameters
are the same as in Figs. 3 and 4.

where �out
ω,ω′ is the two-photon SDF of the scattered wave

packet given by (see derivation in Appendix B):

�out
ω,ω′ =

φel
ω,ω′︷ ︸︸ ︷

ei(Θω+Θω′ )ξωξω′ +

φinel
ω,ω′︷ ︸︸ ︷

Fω,ω′
∏
μ=±

ξω+ω′−Eμ
1
,

(25)

where Fω,ω′ has the form

Fω,ω′ = 16π2 f 4g4

[
1

2
+ ω + ω′ − E+

1 − E−
1

ω + ω′ + iγ

]
×

∏
μ=±

1(
ω − Eμ

1

)(
ω′ − Eμ

1

)(
ω + ω′ − Eμ

2

) . (26)

The result expressed by Eq. (25) can be equivalently derived
using the two-photon S matrix of the JC system obtained, e.g.,
in Refs. [25,35,62].

The term φel
ω,ω′ in Eq. (25) corresponds to the uncorrelated

elastic scattering of two photons when the energy of each
one is conserved. The term φinel

ω,ω′ describes inelastic scattering
when the energies of individual photons are not conserved.
The complex two-photon resonances of the open JC system
E±

2 = E±
2 − i�±

2 /2 are given by

E±
2 = 2ω̃c + �̃a

2
± R2

2
, R2 =

√
8g2 + �̃2

a . (27)

A. Cavity decoupled from atom

Let us consider a limiting case of the JC system when the
cavity is empty or decoupled from the atom (g = 0). In this
case, the inelastic term φinel

ω,ω′ vanishes in Eq. (25), and the two-
photon SDF of the scattered wave packet reduces to

�out
ω,ω′

g=0→ �̊out
ω,ω′ = ξ̊ω ξ̊ω′, (28)

FIG. 6. Dependence of the spectrum of the scattered wave packet
on ω0 for the JC system in the resonant regime (�a = 0, E±

1 =
ωc ± g

√
1 − κ2/(4g)2), γ0/κ = 0.2, and (a) g/κ = 1, (b) g/κ = 2,

(c) g/κ = 10.

where ξ̊ω = exp(iΘ̊ω ) ξω is the SDF of the scattered pho-
ton with the single-photon phase shift given by Θ̊ω =
arg[(ω − ω̃∗

c )/(ω − ω̃c)]. Thereby, the photons acquire only
phase shifts in the course of scattering from the cavity which
does not contain an atom. Using Eq. (24) one has∣∣ψ̊out

2

〉 = ∣∣ψ̊out
1

〉∣∣ψ̊out
1

〉
, (29)

where |ψ̊out
1 〉 = ∫

dω ξ̊ωb†
ω|∅w〉. The above expression indi-

cates that for g = 0 the state of the scattered photons is
separable.

Equation (28) implies that the 2PJS of the outgoing wave
packet is not transformed compared to that of the ingoing one,∣∣�̊out

ω,ω′
∣∣2 = ∣∣�in

ω,ω′
∣∣2

, (30)

which supports the results presented in Fig. 2 regarding the
empty cavity case.

VII. SPECTRUM OF SCATTERED PHOTONS

Spectrum of the scattered photons is determined as Sout
ω =

〈
out
2 |b†

ωbω|
out
2 〉 [14,15], and characterizes the density of

photons with frequency ω in the scattered wave packet. The
average number of photons in the frequency band [�,� + δ]
is given by

∫ �+δ

�
dωSout

ω . Integration of Sout
ω over the en-

tire frequency range gives the average scattered photon
number. Since the number of excitation in the system is
conserved, one has

∫
dω Sout

ω = ∫
dω Sin

ω = 2, where Sin
ω =

〈
 in
2 |b†

ωbω|
 in
2 〉 = 2|ξω|2 is the spectrum of the ingoing wave

packet. Using Eq. (24) one arrives at the expression for Sout
ω as
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FIG. 7. Spectra of the scattered wave packets for (a) ω0 = E+
1

and (b) ω0 = E−
1 , and different atom-cavity coupling strengths: (red

dashed lines) g/κ = 1, (blue dash-dotted lines) g/κ = 2, and (black
dotted lines) g/κ = 10. The rest of the parameters are the following:
γ0/κ = 0.2 and �a = 0. Solid gray lines demonstrate the spectrum
of the ingoing wave packet Sin

ω = 2|ξω|2.

follows:

Sout
ω = 2

∫
dω′∣∣�out

ω,ω′
∣∣2

. (31)

It follows from Eqs. (31) and (30) that for the setup with the
cavity decoupled from the atom one has Sout

ω = Sin
ω implying

that for g = 0 the spectrum of the scattered photons is identi-
cal to that of the ingoing ones.

Figure 6 demonstrates the dependence of the scattered
photons spectrum on the central frequency of the ingoing
wave packet ω0. Calculations reveal that the most pronounced
modification of the scattered wave packet spectrum occurs
when ω0 lies in the vicinity of the JC single-photon resonances
ω0 ≈ E±

1 . The effect of atom-cavity coupling strength g on
the scattered spectrum for ω0 = E±

1 is shown in Fig. 7. One
can see that increased atom-cavity coupling leads to stronger
modification of the scattered photons spectrum.

If one substitutes Eq. (25) into Eq. (31) the scattered
photons spectrum Sout

ω can be represented as

Sout
ω = Sin

ω + Sinel
ω + Sel−in

ω . (32)

In the above expression Sinel
ω stands for the contribution to the

scattered photons spectrum arising purely from the inelastic
scattering determined by

Sinel
ω = 2

∫
dω′∣∣φinel

ω,ω′
∣∣2

. (33)

The term

Sel−in
ω = 4

∫
dω′ Re

{(
φel

ω,ω′
)∗

φinel
ω,ω′

}
(34)

arises due to interference of components of the outgoing wave
packet produced by elastic and inelastic scattering from the
JC system. Contributions of all these terms to the scattered
photons spectrum for the different parameters of the system
are shown in Fig. 8. Calculations reveal that Sel−in

ω takes neg-
ative values producing the “dip” in the shape of the scattered
photons spectrum seen in Fig. 7.

FIG. 8. Different contributions to the outgoing photons spec-
trum. (a, b) The initial spetrum Sin

ω (gray solid lines) and the inelastic
term Sinel

ω ; (c, d) the interference term Sel−inel
ω . (a, c) ω0 = E+

1 ; (b, d)
ω0 = E−

1 . Red dashed lines correspond to g/κ = 1, blue dash-dotted
lines correspond to g/κ = 2, and black dotted lines correspond to
g/κ = 10. The rest of the parameters are as described in the caption
of Fig. 7.

VIII. FREQUENCY ENTANGLEMENT

As it was rigorously shown in the Sec. VI when the
two-photon wave packet interacts with the cavity decoupled
from the atom the scattered photons acquire only phase shifts
while their SDF remains factorable. The state of the scattered
photons is separable as that of the ingoing ones. The situation
changes starkly when one switches on the coupling between
the cavity and the atom. The JC nonlinearity gives rise to the
effective photon-photon interaction which results in strongly
correlated scattering (photon blockade) discussed in Sec. V.
According to Ref. [68], the photon-photon interaction leads to
frequency entanglement. In our setup the latter arises due to
the presence of the “inelastic” term φinel

ω,ω′ in the SDF of the
scattered wave packet.

The frequency entanglement of the scattered photons can
be quantified using the Schmidt decomposition of their SDF
[69]:

�out
ω,ω′ =

∑
j�1

√
λ j ϕ j,ωϕ̃ j,ω′ , (35)

which represents the SDF of the outgoing two-photon wave
packet as a weighted sum of products of single-photon
SDFs. The decomposition coefficients satisfy

∑
j λ j = 1. The

Schmidt-mode single-photon SDFs ϕ j,ω and ϕ̃ j,ω form a com-
plete set of orthonormal functions:

∫
dω ϕ∗

i,ωϕ̃ j,ω = δi, j and∑
i ϕ

∗
i,ω′ ϕ̃i,ω = δ(ω′ − ω). The Schmidt coefficients and SDFs
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are determined via solution of the eigenvalue problem [70,71]:∫
dν Kν,ωϕ j,ν = λ jϕ j,ω,∫
dν K̃ν,ωϕ̃ j,ν = λ j ϕ̃ j,ω, (36)

where the integral kernels Kν,ω and K̃ν,ω are given by

Kν,ω =
∫

dν ′(�out
ν,ν ′

)∗
�out

ω,ν ′ ,

K̃ν,ω =
∫

dν ′(�out
ν ′,ν

)∗
�out

ν ′,ω. (37)

Since the SDF obeys the permutation symmetry �out
ν,ν ′ ≡ �out

ν ′,ν ,
this leads to Kν,ω = K̃ν,ω which, in turn, gives ϕ j,ω = ϕ̃ j,ω. We
tackle the eigenvalue problem Eq. (36) numerically. For this
purpose we discretize Kν,ω into a uniform 100 × 100 grid on
a square domain of frequencies ranging ±25γ0 around ω0.

Using the decomposition Eq. (35) along with Eq. (24) one
represents the outgoing photons state |ψout

2 〉 as a superposition
of two-photon separable states:∣∣ψout

2

〉 = 1√
2

∑
j�1

√
λ j |ϕ j〉|ϕ j〉, (38)

where |ϕ j〉 = ∫
dω ϕ j,ωa†

ω|∅w〉.
If Schmidt coefficients are all zero except for one, this in-

dicates that the two-photon SDF is factorable and the photons
are not entangled. Otherwise, we deal with the frequency-
entangled photon pair. As a measure of entanglement, we
also employ the von Neumann (entanglement) entropy SvN.
For entangled states SvN > 0, while zero entanglement en-
tropy SvN = 0 indicates that the quantum state is separable.
The von Neumann entropy is expressed in terms of Schmidt
coefficients as [72]

SvN = −
∑
j�1

λ j log2 λ j . (39)

It follows from Eq. (28) that for the setup with the empty
cavity (g = 0) the SDF of the outgoing photons is factorable
and there is only one nonzero Schmidt coefficient λ1 = 1
indicating that there is no frequency entanglement. On the
contrary, for the cavity interacting with the atom (g > 0)
the outgoing photons exhibit frequency entanglement since
λ j�2 > 0 and SvN > 0 as presented in Fig. 9.

IX. SUMMARY

In this section, we summarize our results. We studied
the scattering of two-photon Fock-state wave packets on the
JC system employing a wave-function approach. Using the
interrelation between the Heisenberg and Schrödinger repre-
sentations (see Appendix A) we derived sets of coupled equa-
tions of motions governing the evolution of the probability
amplitudes which determine the state of the system at the
arbitrary moment of time. Using the exact solutions of these
equations of motion we tracked the evolution of a 2PJS of
a wave packet in the process of its interaction with the JC
system. The excitation dynamics of the latter was studies as
well. We determined the probabilities to find the JC system

FIG. 9. First five Schmidt coefficients and Schmidt-mode joint
spectra |ϕ j,ω|2 (saturation of lines encodes the value of the corre-
sponding Schmidt coefficient) for the empty cavity g/κ = 0 (upper
row), g/κ = 2 (middle row), and g/κ = 10 (bottom row). The rest of
the parameters are identical to those used in Fig. 2.

containing one and two excitations at the arbitrary instant.
We found that the probability of finding two excitations in
the JC system is inhibited compared to the case of the empty
cavity which indicates the photon blockade induced by the
2LA nonlinearity.

In the long-time limit, when the system reaches its steady
state, we derived the exact expressions for the SDF of the
scattered two-photon wave packet. This result agrees with that
obtained using the exact S matrix of the JC system derived in
the literature. We also analyzed the scattered photons spec-
trum. Our calculations reveal that it differs significantly from
the incident photons spectrum when the central frequency of
the ingoing two-photon wave packet is close to one of the JC
single-photon resonances.

We employed Schmidt decomposition and the von Neu-
mann entropy as a measure of entanglement of the outgoing
photons. We found that the photons scattered from the JC
constitute a frequency-entangled photon pair or a biphoton.
The waveguide-JC system can be exploited as a tunable de-
terministic source of itinerant frequency-entangled biphotons.
This source can be built on the state-of-the-art superconduct-
ing cQED architecture.

In the paper, we focus on the case of the ingoing photons
without spectral entanglement, thereby, investigation of the
local quantum system response to the frequency-entangled
few-photon states is of interest. The approach employed in
the paper can be used for studying more complex quantum
systems, for example, multilevel emitters, coupled-resonator
arrays, optomechanical systems. Moreover, one can go be-
yond the RWA employed in the paper for the description
of atom-cavity coupling and consider multi-photon scattering
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on a quantum system operating in the regime of ultrastrong
light-matter interaction. Consideration of those systems and
regimes constitute possible directions for the follow-up stud-
ies.
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APPENDIX A: DERIVATION OF EVOLUTION EQUATIONS
FOR THE PROBABILITY AMPLITUDES

Here we present derivations of the equations of motion
which govern the evolution of the single- and two-excitation
probability amplitudes. For that purpose, in this Appendix we
work within the Heisenberg picture and start with the deriva-
tion of the evolution equations for the operators introduced
earlier in the paper. The model Hamiltonian given by Eq. (1)
generates the equation of motion for the waveguide variable
bω as follows:

i∂t bω = [bω, Ĥ] = ωbω + f a, (A1)

which can be formally integrated as

bω(t ) = b̃ω(t ) − i f
∫ t

0
dτ e−i ω (t−τ ) a(τ ), (A2)

where b̃ω(t ) = bω(0)e−iωt stands for the annihilation operator
of a photon propagating in the waveguide as a free excitation.

Equation of motion for the cavity photon annihilation
operator reads as

(i∂t − ωc)c = gσ− + f
∫

dω bω. (A3)

Eliminating the reservoir variables by substituting Eq. (A2)
into Eq. (A3) and integrating over ω one arrives at the equation
of the form

(i∂t − ω̃c)a = gσ− + f β. (A4)

where we have introduced an operator β(t ) = ∫
dω b̃ω(t ).

Using Eq. (A2) one can show that the commutation relations
hold:

[β, bω] = [β, a] = [β, σ−] = 0. (A5)

These commutators are routinely utilized below for derivation
of equations of motion for the probability amplitudes.

The Heisenberg equation for the atomic lowering operator
σ− takes the form

(i∂t − ωa )σ− = −gσza. (A6)

Equations of motion for the creation operators are derived by
the Hermitian conjugation of the corresponding equations for
the annihilation operators.

Using Eq. (4) one can formally express the single-
excitation probability amplitudes in the form as follows:

Ag(t ) = 〈∅|a(0)|Ψ1(t )〉,
Ae(t ) = 〈∅|σ−(0)|Ψ1(t )〉,
Bω(t ) = 〈∅|bω(0)|Ψ1(t )〉. (A7)

Employing the property of the vacuum state e−iĤt |∅〉 =
|∅〉 along with the relations |Ψ1(t )〉 = e−iĤt |
 in

1 〉 and
Ô(t ) = eiĤtÔ(0)e−iĤt , where Ô(t ) denotes some quantum-
mechanical operator, one can transfer the time dependence
from the wave function onto the operators which gives
〈∅|Ô(0)|Ψ1(t )〉 = 〈∅|Ô(t )|
 in

1 〉. By doing so, one obtains
the following representation for the probability amplitudes:

Ag(t ) = 〈∅|a(t )
∣∣
 in

1

〉
,

Ae(t ) = 〈∅|σ−(t )
∣∣
 in

1

〉
,

Bω(t ) = 〈∅|bω(t )
∣∣
 in

1

〉
. (A8)

Using this representation along with the Heisenberg equa-
tions for the corresponding operators and taking into account
that 〈∅|σz = −〈∅| and β(t )|
 in

1 〉 = �(t )|∅〉 one immedi-
ately arrives at the set of equations of motion Eqs. (7).

Following the same receipt, we represent the two-
excitation amplitudes entering the wave-function Eq. (12) as

Φω,ω′ (t ) = 1√
2
〈∅|bω(t )bω′ (t )

∣∣
 in
2

〉
,

X g
ω(t ) = 〈∅|bω(t )a(t )

∣∣
 in
2

〉
,

X e
ω(t ) = 〈∅|bω(t )σ−(t )

∣∣
 in
2

〉
,

Zg(t ) = 1√
2
〈∅|a2(t )

∣∣
 in
2

〉
,

Ze(t ) = 〈∅|σ−(t )a(t )
∣∣
 in

2

〉
. (A9)

Employing the Heisenberg Eqs. (A1), (A4), and (A6), the
commutators Eq. (A5) along with the properties 〈∅|σ+ = 0
and β(t )|
 in

2 〉 = √
2�(t )|
 in

1 〉 one obtains equations of mo-
tion for the two-excitation amplitudes Eq. (17).

This scheme can be directly applied to the N-excitation
problem. When the JC system is driven by the N-photon
Fock-state wave packet, one arrives at the set of coupled equa-
tions of motions, where N-excitation amplitudes depend on
(N − 1)-excitation amplitudes and so on down to 1-excitation
amplitudes governed by Eq. (7). This hierarchy of evolution
equations can be then solved numerically with the arbitrary
precision using one of the available ODE solvers.

APPENDIX B: SOLUTION OF EVOLUTION EQUATIONS
USING THE LAPLACE TRANSFORM

1. Single-excitation amplitudes

The Laplace transform x̄(s) = Ls{x(t )} = ∫ ∞
0 dt e−st x(t )

turns the system of ODEs (7) governing the evolution of the
single-excitation amplitudes into a set of algebraic equations
as follows:

(is − ω̃c)Āg(s) = gĀe(s) + f �̄(s), (B1a)

(is − ωa )Āe(s) = gĀg(s), (B1b)

(is − ω) B̄ω(s) = ξω + f Āg(s). (B1c)
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The inverse Laplace transform y(t ) = L−1
t {ȳ(s)} of the solutions of these equations gives

Ag(t ) = −i f
1

R1

∫ t

0
dτ �(τ )

∑
μ=±

μ
(
Eμ

1 − ωa
)
e−iEμ

1 (t−τ ), (B2a)

Ae(t ) = −i f g
1

R1

∫ t

0
dτ �(τ )

∑
μ=±

μe−iEμ
1 (t−τ ), (B2b)

Bω(t ) = ξωe−iωt − i f 2 ω − ωa

(ω − E+
1 )(ω − E−

1 )

∫ t

0
dτ �(τ )e−iω(t−τ ) + i f 2 1

R1

∑
μ=±

μ
Eμ

1 − ωa

(ω − Eμ
1 )

∫ t

0
dτ �(τ )e−iEμ

1 (t−τ ). (B2c)

Taking the long-time limit Eq. (8) in Eqs. (B2) and integrating over τ one obtains

Ag
lt = Ae

lt = 0, Bω,lt = e−iωt

[
1 − iκ

ω − ωa

(ω − E+
1 )(ω − E−

1 )

]
ξ (ω). (B3)

Employing the relation (ω − E+
1 )(ω − E−

1 ) = (ω − ωa )(ω − ω̃c) − g2 in the square brackets on the rhs of the expression for Bω,lt

one obtains

Bω,lt = e−iωt (ω − E+
1 )∗(ω − E−

1 )∗

(ω − E+
1 )(ω − E−

1 )
ξ (ω), (B4)

which immediately leads to Eq. (9). Hereinafter, we use the subscript “lt” to indicate that the amplitude is taken in the long-time
limit (8).

2. Two-excitation amplitudes

The equations of motion Eq. (17) governing the evolution of the two-excitation amplitudes after the Laplace transform acquire
the following form:

[is − (ω + ω′)]Φ̄ω,ω′ (s) = ξωξω′ + f√
2

[
X̄ g

ω(s) + X̄ g
ω′ (s)

]
, (B5a)

[is − (ω̃c + ω)]X̄ g
ω(s) = gX̄ e

ω(s) +
√

2 f Z̄g(s) +
√

2 f Āω(s) ∗ �̄(s), (B5b)

[is − (ω + ωa )]X̄ e
ω(s) = gX̄ g

ω(s) + f Z̄e(s), (B5c)

(is − 2ω̃c)Z̄g(s) = g
√

2Z̄e(s) + 2 f B̄g(s) ∗ �̄(s), (B5d)

[is − (ω̃c + ωa )]Z̄e(s) = g
√

2Z̄g(s) +
√

2 f B̄e(s) ∗ �̄(s). (B5e)

Here we have employed the convolution theorem Ls{y1(t )y2(t )} = ȳ1(s) ∗ ȳ2(s), where ∗ denotes the convolution operator.
Solving the above set of equations and applying the inverse Laplace transform to the obtained solutions gives the sought-for
expressions for the two-excitation amplitudes in the time domain. These tedious mathematical operations were assisted by tools
of Mathematica computer algebra system [73]. The solution for Φ̄ω,ω′ (t ) reads

Φω,ω′ (t ) = ξωξω′e−i(ω+ω′ )t − i f 2[ϒω,ω′ (t ) + ϒω′,ω(t )], (B6)

where ϒω,ω′ (t ) is given by

ϒω,ω′ (t ) =
∑
μ=±

μ
1

R2
(
ω + ω′ − Eμ

2

) ∫
dτ e−iEμ

2 (t−τ )�(τ )

[
f g

2
(
ω + E+

1 + E−
1 − Eμ

2

) − Eμ
2(

ω + E+
1 − Eμ

2

)(
ω + E−

1 − Eμ
2

)Ae(τ )

+ 2 f

(
ω + ωa − Eμ

2

)(
E+

1 + E−
1 − Eμ

2

) + g2(
ω + E+

1 − Eμ
2

)(
ω + E−

1 − Eμ
2

) Ag(τ )

]
−

∑
μ=±

μ
1

R1(ω′ − Eμ
1 )

∫
dτ e−i(ω+Eμ

1 )(t−τ )�(τ )

×
[(

Eμ
1 − ωa

)
Bω(τ ) + f g

(
ω + Eμ

1

) + 2E μ̄
1

(ω + ω′ − E+
2 )(ω + ω′ − E−

2 )
Ae(τ ) + 2 f

(
Eμ

1 − ωa
)(

ω + E μ̄
1

) + g2

(ω + ω′ − E+
2 )(ω + ω′ − E−

2 )
Ag(τ )

]
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+ 1

(ω′ − E+
1 )(ω′ − E−

1 )

∫ t

0
dτ e−i(ω+ω′ )(t−τ )�(τ )

[
(ω′ − ωa )Bω(τ ) + f g

(ω + ω′) + 2(ω′ − E+
1 − E−

1 )

(ω + ω′ − E+
2 )(ω + ω′ − E−

2 )
Ae(τ )

+ 2 f
(ω′ − ωa )(ω′ − E+

1 − E−
1 ) + g2

(ω + ω′ − E+
2 )(ω + ω′ − E−

2 )
Ag(τ )

]
. (B7)

Here and in what follows μ̄ denotes the sign opposite to the sign of μ. The rest of the solutions for the two-excitation amplitudes
read

X g
ω(t ) = i

√
2 f

R2

∑
μ=±

μ

∫
dτ e−iEμ

2 (t−τ )�(τ )

[
f g

2
(
ω + E+

1 + E−
1 − Eμ

2

) − Eμ
2(

ω + E+
1 − Eμ

2

)(
ω + E−

1 − Eμ
2

)Ae(τ )

+ 2 f

(
ω + ωa − Eμ

2

)(
E+

1 + E−
1 − Eμ

2

) + g2(
ω + E+

1 − Eμ
2

)(
ω + E−

1 − Eμ
2

) Ag(τ )

]
− i

√
2 f

R1

∑
μ=±

μ

∫
dτ e−i(ω+Eμ

1 )(t−τ )�(τ )

×
[(

Eμ
1 − ωa

)
Bω(τ ) + f g

(
ω + Eμ

1

) + 2E μ̄
1(

ω + Eμ
1 − E+

2

)(
ω + Eμ

1 − E−
2

)Ae(τ ) + 2 f

(
Eμ

1 − ωa
)(

ω + E μ̄
1

) + g2(
ω + Eμ

1 − E+
2

)(
ω + Eμ

1 − E−
2

)Ag(τ )

]
, (B8a)

X e
ω(t ) = i

√
2 f

R2

∑
μ=±

μ

∫
dτ e−iEμ

2 (t−τ )�(τ )

[
f

(
ω + ωa − Eμ

2

)(
2ω̃c − Eμ

2

) + 2g2(
ω + E+

1 − Eμ
2

)(
ω + E−

1 − Eμ
2

) Ae(τ )

+ 2 f g
ω − ω̃c − μR2(

ω + E+
1 − Eμ

2

)(
ω + E−

1 − Eμ
2

)Ag(τ )

]
− i

√
2 f

R1

∑
μ=±

μ

∫
dτ e−i(ω+Eμ

1 )(t−τ )�(τ )

×
[

gBω(τ ) + f

(
Eμ

1 − ωa
)(

ω + Eμ
1 − 2ω̃c

) + 2g2(
ω + Eμ

1 − E+
2

)(
ω + Eμ

1 − E−
2

) Ae(τ ) + 2 f g
ω − ω̃c + μR1(

ω + Eμ
1 − E+

2

)(
ω + Eμ

1 − E−
2

)Ag(τ )

]
, (B8b)

Zg(t ) = −i
2 f

R2

∑
μ=±

μ

∫ t

0
dτ e−iEμ

2 (t−τ )�(τ )
[
gAe(τ ) + (

Eμ
2 − E+

1 − E−
1

)
Ag(τ )

]
, (B8c)

Ze(t ) = −i

√
2 f

R2

∑
μ=±

μ

∫ t

0
dτ e−iEμ

2 (t−τ )�(τ )
[(
Eμ

2 − 2ω̃c
)
Ae(τ ) + 2gAg(τ )

]
. (B8d)

In the long-time limit Eq. (8) all terms ∝ exp(−iE±
j t ) (where j = 1, 2) approach zero since Im{E±

j } < 0. This implies that all
two-excitation amplitudes except Φω,ω′ (t ) turn zero at times satisfying the criterion (8). In Eq. (B7) only the last term survives in
the long-time limit. Using Eqs. (18) and (19) and integrating over τ in Eq. (B7) after a considerable amount of lengthy algebra
one obtains Φω,ω′,lt = e−i(ω+ω′ )t�out

ω,ω′ , with �out
ω,ω′ given by Eq. (25).
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