
PHYSICAL REVIEW A 99, 023853 (2019)

Coherent reconstruction of pump beams through recombination of entangled photon pairs
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In theoretical and experimental work, we consider the process in which an entangled photon pair recombines
into a single photon in a nonlinear crystal, with particular interest in the amplitude distribution and coherence
properties of the up-converted light. It is found that the up-converted state has perfect mutual coherence with
the pump that originally produced the photon pair in another nonlinear crystal and that the amplitude has the
spatiotemporal structure of the original pump mode, filtered by a linear transfer function. These conclusions
are drawn from leading-order calculations performed in the interaction picture, with the multimodal nature of
all fields being fully accounted for. In our experimental results, we observe the spatial similarity between the
up-converted light and the original pump mode; their mutual coherence is demonstrated through observation
of fringes with near-unit visibility. The effects studied here have potential applications in quantum information
processing and also confirm that the principle of path indistinguishability holds even under unusually extreme
conditions.
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I. INTRODUCTION

While the entangled photon pairs produced by spontaneous
parametric down-conversion (SPDC) have been widely stud-
ied, the novel effects that arise using two nonlinear crys-
tals have attracted particular interest. If the two crystals are
coherently pumped, it has been shown that introducing the
idler photons of the SPDC from one crystal into another
induces coherence between the signal photons of the two
crystals [1,2]. Further, overlapping the SPDC cones produced
by two crystals has been found to produce interference fringes
in the detected photon pair rates, whose phase depends on
the pump phase difference between the two crystals [3–5].
More recently, extensions of such experiments have been
of interest [6–9], while other works have been developing
applications for these effects [10–14]. From a physical point
of view, despite the lack of second-order amplitude coherence
between the signal and idler modes [15], it is well known that
the SPDC quantum state still carries information about the
pump phase [3–5].

Here, in both theoretical and experimental work, we con-
sider a different situation in which similar effects appear.
We also employ two nonlinear crystals, although only the
first crystal is pumped to produce photon pairs. The pump
beam is then removed and, after dispersion compensation, the
SPDC emission cone is focused in the second crystal. There,
an entangled photon pair can recombine into a single pho-
ton that, from energy conservation, has the same frequency
as the pump photon that produced the pair. These effects
have been observed using periodically poled crystals [16–20],
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which is our interest here, as well as using nonlinear waveg-
uides [21–23]; however, such prior work has not considered
the effects to be described here. Fully accounting for the
multimodal quantum nature of all interacting states, we cal-
culate the up-converted quantum state to first order in the
interaction picture and consider its mutual coherence with the
original pump light. In our experiments, we observe the spatial
structure of the up-converted light and also its interference
with the pump. The detected photon rates are low (∼103 s−1)
but are adequate for such work.

As is consistent with our theoretical predictions, we ob-
serve interference fringes that demonstrate essentially per-
fect mutual coherence between the up-converted light and
attenuated pump light. Limited by mechanical and thermal
experimental stability, the observed fringes are stable for
tens of seconds, which is ∼8 and ∼15 orders of magnitude
longer than the reciprocal of the pump and SPDC band-
widths, respectively. Moreover, the observed spatial struc-
ture of the up-converted light is found to strongly resemble
the original pump mode. This observation agrees with our
theoretical development, where it is demonstrated that the
up-converted amplitude distribution is related to the pump
modal amplitude by a linear, coherent transfer function. Thus
our approach may be considered to be a coherent form of
quantum imaging [24] even though, of course, the only link
between the input and output of our optical system is provided
by the photon pair and vacuum terms of SPDC. Our results
thus imply far more than simply a dependence on pump
phase; in particular, even though it has long been established
that SPDC contains information about the pump [15,25,26],
we show that the pump amplitude distribution may, with a
known fidelity, be extracted from the SPDC through pair
recombination.
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II. THEORY

A. State derivation

Here we develop an expression for the quantum state of
the up-converted light produced at the output of a nonlin-
ear crystal illuminated by SPDC. Related theoretical studies
have appeared previously [27,28], although these works have
employed single-spatial-mode analyses with all interacting
waves assumed to be collinear. Another work [18] has made
single-mode assumptions about the pump and up-converted
states, while considering only the SPDC to be multimodal.
Here we take a more physically realistic approach, using
fully multimodal spatiotemporal representations throughout
the analysis; such an approach is necessary to accurately
represent the up-converted state, the wide range of wave
vectors present in SPDC, and the pump beam shape in the
crystal producing the SPDC. A second aspect of our approach
is that we represent all of these interacting fields as fully
quantum fields, which later allows us to rigorously determine
the degree of mutual coherence between the pump and up-
converted light. The development requires few simplifying
assumptions, and we will also discuss application of the
approach to experimental situations.

We start with the representation of the down-converted
state that follows from first-order perturbation theory, which
is derived in the Appendix. The pump beam is assumed
to be directed along the z axis. We let kε and ωε denote,
respectively, the wave vectors and frequencies of the pump
(ε = p), signal (ε = s), and idler waves (ε = i) in the crystal.
Further, nε ≡ n(ωε ) and ηε ≡ η(ωε ) denote, respectively, the
refractive index and the reciprocal of the group velocity of
mode ε. The down-converted state in the SPDC crystal may
be written in the form

|ψSPDC〉=
[̂
I −

∫
Ds

dks

∫
Di

dkiψ (ks, ki )â
†(ks)â†(ki )

]
|vac〉,

(1)

where Î is the identity operator and â†(kε ) is the creation
operator of mode ε, which operates on the vacuum. The
integration domains Ds and Di are, respectively, the ranges
of signal and idler wave vectors that are relevant, as de-
scribed later. The two-photon amplitude ψ (ks, ki ) is given by
[see Eq. (A11)]

ψ (ks, ki )

=
√

Npd 2
effL

2h̄(ωs + ωi )ωsωiη+
p

16π3ε0c3n+
p nsniηsηi

ψp(k+
p )

cos θo
p

s
(
�kd

z

)
ei	p,

(2)

where Np is the mean number of pump photons in a time
�t long compared to the optical period, deff is the effective
nonlinearity, L is the crystal length, n+

p = n(ωs + ωi ), η+
p =

η(ωs + ωi ), ψp(k+
p ) is the pump amplitude, 	p is the pump

phase, and k+
p = kp(ωs + ωi, θ

o
p, φ

o
p) is directed at angles

(θo
p, φ

o
p) in the crystal. Also, we assume that the crystal is

periodically poled so that �kd = k+
p − ks − ki − kg is the

wave-vector mismatch, where kg is the crystal poling wave
vector, taken here as directed along the z axis. With �kd

z

denoting the z component of �kd , s(�kd
z ) is given by

s
(
�kd

z

) = 1

L

∫ L/2

−L/2
ei�kd

z zdz = sinc

(
�kd

z L

2

)
. (3)

The angles (θo
p, φ

o
p) may be found from a constraint that trans-

verse components of �kd must be zero. This leads directly to
the results

tan φo
p = ks sin θs sin φs + ki sin θi sin φi

ks sin θs cos φs + ki sin θi cos φi
, (4)

sin θo
p = ks sin θs cos φs + ki sin θi cos φi

k+
p cos φo

p

, (5)

where kε = |kε | = nεωε/c and (θε, φε ) denote the angles of
mode ε in the crystal.

We now consider the up-conversion of the SPDC in the
second crystal. Here we make two assumptions: first, that
the up-conversion crystal is optically identical to the SPDC
crystal, and second, that its SPDC quantum state is identical
to that produced within the SPDC crystal. The latter assump-
tion requires an appropriate optical system to image the first
crystal volume into the second crystal, as will be discussed
in Sec. III A. The quantum state of the light produced by
the up-conversion crystal is then calculated using first-order
perturbation theory as [3,29,30]

|ψu〉 =
[

Î − i

h̄

∫ ∞

−∞
dt Ĥint(t )

]
|ψSPDC〉. (6)

The interaction Hamiltonian for photon pair recombination is
given by [25,31,32]

Ĥint(t ) = 2ε0

∫
dr d (z)Ê (−)

p (r, t )Ê (+)
s (r, t )Ê (+)

i (r, t ) + H.c.,

(7)

where the relevant term is written explicitly, H.c. denotes
the Hermitian conjugate, and d (z) = deffeikg·r for first-order
periodic poling [33]. The electric-field operators in Eq. (7) are
written using a representation that describes fields with a con-
tinuous wave-vector spectrum within the dielectric as [34–36]

Ê (+)
ε (r, t ) = i

∫
dkε

√
h̄ωε

16π3ε0cnεηε

â(kε )e−i(ωε t−kε ·r), (8)

where Ê (−)
ε (r, t ) = [Ê (+)

ε (r, t )]† and â(kε ) is the annihilation
operator of a mode with wave vector kε , which obeys the
commutation relation [â(kε ), â†(k′

ε )] = δ(kε − k′
ε ).

We now substitute Eqs. (1), (2), (7), and (8) into Eq. (6).
The temporal integration from Eq. (6) is performed and yields
2πδ(ωp − ωs − ωi ). The spatial integrations originating from
Eq. (7) are done assuming that the transverse width of the
crystal is large compared to the interaction region of the
fields so that transverse integration limits are effectively infi-
nite. This yields (2π )2Lδ(�ku

x )δ(�ku
y )s∗(�ku

z ), where �ku =
kp − ks − ki − kg is the wave-vector mismatch in the up-
conversion crystal. After removing the photon pair state, we
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have

|ψu〉 =
{

Î −
√

Npd2
effL

2h̄

16π3ε0c3

∫
dkp

∫
Ds

dks

∫
Di

dki

×
[

ωp(ωs + ωi )η+
p

n+
p npηp

]1/2[
ωsωi

nsniηsηi

]

× ψp(k+
p )

cos θo
p

s
(
�kd

z

)
s∗(�ku

z

)
ei	pδ(ωp − ωs − ωi )

×δ
(
�ku

x

)
δ
(
�ku

y

)
â†(kp)

}
|vac〉. (9)

We now transform the idler differential of Eq. (9) as dki =
dωidθidφik2

i ηi sin θi, which allows us to perform the ωi inte-
gration trivially with the frequency δ function, setting ωi =
ωp − ωs. The (θi, φi ) integrations may then be performed
using the identity that, for an arbitrary function f (θi, φi ),∫∫

�i

dθidφi sin θi f (θi, φi )δ
(
�ku

x

)
δ
(
�ku

y

)

= f
(
θo

i , φo
i

)
k2

i cos θo
i

Di
(
θo

i , φo
i

)
, (10)

where �i is the solid angle implicit in Di. Here Di(θo
i , φo

i )
is a discrimination function that is unity if (θo

i , φo
i ) ∈ �i and

zero otherwise. The angles (θo
i , φo

i ) are those that zero the δ-
function arguments in Eq. (10); it is thus readily shown that
they follow from

tan φo
i = kp sin θp sin φp − ks sin θs sin φs

kp sin θp cos φp − ks sin θs cos φs
, (11)

sin θo
i = kp sin θp cos φp − ks sin θs cos φs

ki cos φo
i

. (12)

After integrating Eq. (9) over θi and φi in this way, the
recombined pair state takes the form

|ψu〉 =
[

Î − √
Np

∫
dkpE (kp)ψp(kp)ei	p â†(kp)

]
|vac〉,

(13)
with E (kp) given by

E (kp) = βc2 h̄ωp

np cos θp

×
∫
Ds

dks

[
ωsωi

nsniηs

]
Di

(
θo

i , φo
i

)
cos θo

i

|s(�kz )|2, (14)

with β = d2
effL

2

16π3ε0c5 and where Eqs. (4), (5), (11), and (12) have

been used to establish that k+
p = kp and thus �ku = �kd ≡

�k. We also determine the up-converted photon rate, which
follows directly from

Rup = 1

�t

∫
dkp〈ψu|â†(kp)â(kp)|ψu〉

= Fp

∫
dkp|E (kp)ψp(kp)ei	p |2, (15)

where Fp = Np/�t is the pump photon rate.

There is clear similarity between the up-converted state of
Eq. (13) and the attenuated pump of Eq. (A6). Comparison
with the attenuated pump state is appropriate since, in the
interference experiments of Sec. III C, the pump is attenuated
until it has amplitude similar to the up-converted light. Both
states represent the vacuum superposed with a weak single-
photon state, with the latter term containing ψp(kp)ei	p . In
Eq. (A6) the single-photon term has been attenuated by a
factor γ , while in Eq. (13) it contains E (kp) and carries a
relative phase of π . To determine the degree of amplitude-
amplitude coherence between these two states, we define the
operator û† as the second term in square brackets in Eq. (13)
and define p̂† in the same way for Eq. (A6). We consider
the product state |ψp⊗u〉 ≡ |{ψp}〉p|ψu〉u, where ket subscripts
denote the relevant Hilbert subspaces. It then follows that

|ψp⊗u〉 = (Î + p̂† + û†)|vac〉p|vac〉u, (16)

where a small term corresponding to one photon in each mode
has been dropped. The equal-time mutual coherence function
of the attenuated pump and up-converted states may then be
found from the usual methods [26] as

G(1)
pu (kp, ku) = 〈ψp⊗u|â†(kp)â(ku)|ψp⊗u〉

= Npeiπγ ∗E (ku)ψ∗
p (kp)ψp(ku). (17)

The normalized degree of mutual coherence follows as

g(1)
pu (kp, ku) = G(1)

pu (kp, ku){
G(1)

pp (kp, kp)G(1)
uu (ku, ku)

}1/2 , (18)

where G(1)
εε (kε, kε ) is the self-coherence function of mode

ε. Since the weighting functions of the two single-photon
states are the only factors appearing in Eq. (17), g(1)

pu (kp, ku) is
directly shown to have unit modulus, implying perfect mutual
amplitude coherence.

Our analysis here neglects the effects of losses on the
SPDC, which are experimentally inevitable; however, it has
been established that the two-photon part of the down-
converted state retains a pure state description even when
losses are introduced into the Hamiltonian [37,38]. With
the up-converted state consequently being the pure state of
Eq. (13), and with Eq. (A6) similarly representing the at-
tenuated pump, it is thus expected that interfering the pump
and up-converted light will produce temporally stable fringes.
This will be experimentally demonstrated in Sec. III C and lies
in clear contrast to experiments performed with independent
sources, which interfere for observation times less than the
reciprocal of the bandwidth and require a density-matrix
formulation for their description [39].

There are further implications of our results. For example,
it may similarly be shown that g(1)

uu (ku, k′
u) has unit modulus,

so |ψu〉 has perfect spatial coherence. In addition, consider
the dimensionless quantity E (kp) of Eq. (14); it has no
dependence on the pump amplitude and instead expresses
only the effects of the photon pair generation and recombi-
nation process. In Eq. (13) it multiplies the input amplitude
ψp(kp)ei	p to produce the up-converted amplitude; it is then
simply a linear coherent transfer function that describes all
effects of the down-conversion–up-conversion process. It is
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perhaps surprising that the basic result of Eqs. (13) and (14)
could take on such a simple form.

While the preceding results are general, we now make
some simplifying assumptions. As in the experiment here,
consider the case of a narrow-band pump, with the spatial
dependence of the up-converted amplitude being of interest.
We transform the second integral of Eq. (15) from kp to the
variables (ωp, θp, φp) and let (see the Appendix) ψp(kp) =
A(ωp)√

ηpkp
F (θp, φp|ωp), with A(ωp) being the pump spectrum

and F (θp, φp|ωp) the angular spectrum at a given ωp. Then,
we take the narrow-band limit |A(ωp)|2 → δ(ωp − ωo

p) and
perform the ωp integration, with the result that

Rup = Fp

∫∫
dθpdφp sin θp

∣∣Eωo
p
(θp, φp)F

(
θp, φp|ωo

p

)
ei	p

∣∣2
,

(19)

where, now with ωi = ωo
p − ωs,

Eωo
p
(θp, φp) = β

h̄ωo
p

np cos θp

∫
dωs

nsω
3
s ωi

ni

×
∫∫

�s

dθsdφs
sin θs

cos θo
i

Di
(
θo

i , φo
i )

∣∣s(�kz )|2.

(20)

From the form of Eq. (19) and through its comparison with
Eq. (A5), we identify Eωo

p
(θp, φp) as the amplitude transfer

function for a single-frequency pump. It is thus relevant to
the experiments performed here and may be regarded as a
simplification of E (kp) of Eq. (14).

Finally, we consider the further limit of a pump
beam waist that is quite wide in the crystal. This
limit is properly taken in Eq. (19) as |F (θp, φp|ωo

p)|2 →
k2

pδ(kp sin θp cos φp)δ(kp sin θp sin φp), with the result that
Rup = Fp|EWP

ωo
p

ei	p |2, where

EWP
ωo

p
= β

h̄ωo
p

np

∫
dωs

nsω
3
s ωi

ni

×
∫∫

�s

dθsdφs
sin θs

cos θo
i

Di
(
θo

i , φo
i

)|s(�kz )|2. (21)

We term EWP
ωo

p
the amplitude transfer efficiency. In Eq. (21),

(θo
i , φo

i ) are now to be evaluated at θp = 0, which follow from
Eqs. (11) and (12) as (θo

i , φo
i ) = (arcsin[ nsωs

niωi
sin θs], φs − π ).

Also, it is clear that EWP
ωo

p
= Eωo

p
(θp, φp)|θp=0.

B. Evaluations

We now evaluate the theoretical results for an idealized
experimental up-conversion system. For clarity, we denote
angles in free space with tildes; e.g., θ̃p is related to θp by
Snell’s law. After exiting the first crystal, we assume that the
SPDC is limited by a circular aperture to a cone of angular
radius θ̃c, which specifies the integration domains of ks and ki

in Eq. (1). Thus Eq. (20) becomes

Eωo
p
(θp, φp) = β

h̄ωo
p

np cos θp

∫
dωsS(ωs), (22)
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/h
(0

)
θ p

FIG. 1. (a) Scaled to unit height, transfer functions Eωo
p
(θp) for

aperture radius θ̃c = 1.5◦ (�T = 1 ◦C), 2.3◦ (�T = 1.5 ◦C), and
4.0◦ (�T = 2 ◦C), with θ̃p = arcsin (np sin θp). (b) Amplitude point
spread functions h(r) for the cases from (a), also scaled to unit
height; the actual heights h(0) are 1.8 × 10−11 μm−1 (θ̃c = 1.5◦),
8.8 × 10−11 μm−1 (θ̃c = 2.3◦), and 5.7 × 10−10 μm−1 (θ̃c = 4.0◦).

where

S(ωs) = nsω
3
s ωi

ni

∫ �s

0
dθs

∫ 2π

0
dφs

sin θs

cos θo
i

× Di
(
θo

i , φo
i

)|s(�kz )|2, (23)

with �s = arcsin[sin θ̃c/ns] the angular limit within the crys-
tal. Here Di(θo

i , φo
i ) represents the circular limiting aperture in

idler variables. In particular, Di(θo
i , φo

i ) is zero if θo
i > �i ≡

arcsin[sin θ̃c/ni], while it has rotational invariance in φo
i . It

is also notable that the pump angles (θp, φp) are not seen
in S(ωs) in Eq. (23); instead, they enter implicitly through
(θo

i , φo
i ) from Eqs. (11) and (12).

We have integrated Eqs. (22) and (23) numerically for
parameters as in the experiments to be presented here. For
a circular aperture the results are independent of φp, so we
take the transfer function as simply Eωo

p
(θp). The pump wave-

length is considered to be 532 nm. The nonlinear crystals are
assumed to be MgO-doped, periodically poled lithium niobate
of length L = 5 mm with deff = 2d33/π [33], and we take
deff as 1.5 × 10−11 m/V. The extraordinary refractive index
used here follows from a Sellmeier equation [40], while its
temperature dependence is a quadratic fit to data that have
been reported elsewhere [41]. To be close to the experimental
situation, we assume that �k = 0 for axial degenerate SPDC
at crystal temperature T◦ = 50 ◦C and calculate the poling
wave vector kg that satisfies this condition.
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Figure 1(a) shows Eωo
p
(θp) for several aperture radii θ̃c. The

curves there are scaled to unit height; actual heights are 3.5 ×
10−8 for θ̃c = 1.5◦ to 5.9 × 10−8 for θ̃c = 2.3◦ and 1.1 × 10−7

for θ̃c = 4.0◦. It can be seen that all curves monotonically de-
crease in θp and reach zero when the external pump angle θ̃p is
essentially θ̃c. This cutoff angle may be understood as follows.
As the angle of a plane-wave pump in the crystal is increased,
the SPDC cone increases similarly in angle. Up-conversion
requires intact photon pairs, which fall on opposing points
with respect to the SPDC cone center; thus intact pairs no
longer pass through the aperture when the center of the SPDC
cone reaches the edge of the limiting aperture. This condition
occurs for θ̃p = θ̃c and up-conversion ceases. Additionally,
it should be noted that crystal temperatures in Fig. 1(a) are
slightly dropped to T◦ − �T (see caption), as is done in our
experiments, since it increases the detected signal by slightly
opening the SPDC cone.

The transfer function Eωo
p
(θp) may be considered an angular

amplitude spectrum; it follows that its corresponding trans-
verse spatial distribution in the up-conversion crystal may
be found from its two-dimensional inverse Fourier transform
(see Ref. [42], Sec. 3.10.1). With Eωo

p
(θp) being φp invariant,

the inverse transform simplifies to the Fourier-Bessel integral
(see Ref. [42], Sec. 2.1.5) which, in unitary form, may be
written here as

h(r) = 1

kp

∫ ∞

0
dk⊥k⊥Eωo

p
(k⊥/kp)J0(k⊥r), (24)

where k⊥ = kpθp in a paraxial approximation and r is the
radial coordinate in the waist plane. It is notable that h(r) rep-
resents the point spread function of the up-conversion system;
i.e., multiplying the pump angular spectrum F (θp, φp|ωo

p) by
the transfer function Eωo

p
(θp) is equivalent to convolving the

original transverse pump amplitude with h(r) in the waist
plane in the up-conversion crystal (see Ref. [42], Sec. 2.3.2).
Figure 1(b) shows h(r) for the same three cases of Fig. 1(a),
with Eq. (24) being integrated numerically. The case for θ̃c =
1.5◦ exhibits a Gaussian-like distribution of width (e−1 radius)
12.5 μm, with faint secondary rings. The case for θ̃c = 4.0◦
presents a distribution of width only 4.2 μm, with secondary
rings having higher contrast, while the case for θ̃c = 2.3◦
(width 7.7 μm) shows intermediate behavior.

We now consider a more realistic optical system. Our
assumption that the SPDC state of the first crystal is simply
copied in the second is often inadequate, and we consider the
effect of imperfect temporal dispersion compensation. In par-
ticular, we assume that the amplitude ψ (ks, ki ) from the first
crystal is now cast into the second as ψ (ks, ki )ei[ϕs (ωs )+ϕi (ωi )],
where ϕε (ωε ) represents the phase accumulated along the
signal (ε = s) or idler (ε = i) optical path. This phase factor
then appears throughout the analysis that follows in Sec. II A
and ultimately falls within the integral of Eq. (22) as a factor
multiplying S(ωs). Then, transforming the integration variable
from ωs to �ω = ωs − ωd , with ωd = ωo

p/2, Eq. (22) may be
written as

Eωo
p
(θp) = β ′

∫
d�ω S(ωd + �ω)ei[ϕs (ωd +�ω)+ϕi (ωd −�ω)],

(25)

where β ′ is the coefficient of the integral of Eq. (22).
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1.0 2.0θp (deg)

1.0
θp (deg)

0.0

FIG. 2. Transfer function Eωo
p
(θp) for aperture radius θ̃c = 2.3◦

and temporal dispersion parameters as in the experiments performed
here, normalized to unit height for the analogous dispersion-free case
[see Fig. 1(a)]. Shown for comparison is the Gaussian pump angular
spectrum F (θp, 0|ωo

p) used in our experiments, normalized to unit
height.

In our experiments here, the signal and idler photons travel
along a single path, so ϕs(ω) and ϕi(ω) are the same function
ϕ(ω). We take ϕ(ω) as the phase of an axial path from the
center of the down-conversion crystal, through the optical
system, to the center of the second crystal. Expanding the
argument of the exponential in Eq. (25) in powers of �ω, only
even-order terms survive, with the result

ϕ(ωd + �ω) + ϕ(ωd − �ω) =
∑

n=2,4,6,...

2ϕ(n)�ωn

n!
, (26)

where ϕ(n) denotes ∂nϕ(ω)
∂ωn |ωd and the zeroth-order term has

been dropped to neglect the absolute phase. The term ϕ(2)

is the modal group delay dispersion, with others denoting
dispersion of higher order. For the experimental system de-
scribed in Sec. III A, we determine ϕ(ω) from the system
geometry and then calculate that ϕ(2) = 33.0 fs2 and ϕ(4) =
−2.54 × 104 fs4; higher-order terms are not significant over
the integration bandwidth.

Inserting Eq. (26) into Eq. (25), we perform the integration
numerically and obtain the result shown in Fig. 2. It can be
seen that Eωo

p
(θp) is now complex, with a small imaginary

part. It is notable that temporal dispersion thus manifests
itself here as a spatial phase in the up-converted state. Taking
the Fourier-Bessel transform of Eωo

p
(θp), we similarly find

that h(r) has a small imaginary part, although the width and
modulus of h(r) are within 1% of the analogous dispersion-
free case from Fig. 1(b); thus we do not show this result
here. Also shown in Fig. 2 is the amplitude angular spectrum
F (θp, 0|ωo

p) of the circular Gaussian pump beam used in our
experiments; it is so narrow that Eωo

p
(θp) will have little effect

on its shape. The value of ϕ(2) can be readily adjusted in
the experiments and it here provides a good balancing of the
quartic dispersion due to ϕ(4); indeed, |Eωo

p
(0)| is 0.995 of the

unchirped case shown in Fig. 1(a). However, we emphasize
that stronger dispersive effects rapidly lead to significantly
more attenuation and changes in the shape of Eωo

p
(θp), al-

though we do not present such results here.
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Finally, we point out that our approach may be applied
to a different class of up-conversion experiments and we
provide a direct comparison with previous experimental data.
In particular, it is possible to introduce a relative time delay
between the signal and idler photons and to then observe
the up-conversion rate as a function of the delay [18]. This
provides a measure of the synchronization of the pairs at a
femtosecond level, allowing ultrahigh-resolution observations
of effects such as Franson dispersion cancellation [19]. To
introduce such a time delay in our results, we now consider
the quantum state in the first crystal to be transformed to that
in the second crystal as

ψ (ks, ki ) → ψ (ks, ki )e
iωsτ ei[ϕs (ωs )+ϕi (ωi )], (27)

where τ is the relative delay of the signal mode and we have
also included the residual chirp phase terms discussed pre-
viously. The exponentials in the expression (27) again carry
through the analysis, to finally appear as factors multiplying
S(ωs) in the integrand of Eq. (22), as in the previous case.

We again assume a circular limiting aperture but now, for
simplicity, take the wide-pump limit discussed earlier. The
amplitude transfer efficiency EWP

ωo
p

= Eωo
p
(θp, φp)|θp=0 follows

from Eq. (22) with the phase terms introduced as

Eo(τ ) = β ′
∫ ∞

0
dωsS(ωs)eiωsτ ei[ϕs (ωs )+ϕi (ωi )], (28)

where we have renamed this quantity as Eo(τ ) and it is under-
stood that S(ωs) is to be evaluated with θp = 0 in Eq. (23).
Thus Eo(τ ) can be nearly the Fourier transform of S(ωs),
depending on the significance of the chirp phase terms.

To evaluate Eo(τ ), we use the experimental parameters
of Ref. [19], some of which (the type of nonlinear crystals,
their temperature, pump wavelength, θ̃c = 2.3◦) are identical
to parameters assumed earlier here. In Ref. [19], however, the
signal and idler photons propagate along separate paths before
their recombination. Thus the analog of Eq. (26) now takes the
form

ϕs(ωd + �ω) + ϕi(ωd − �ω) =
∞∑

n=2

γn�ωn

n!
, (29)

where γn = [ϕ(n)
s + (−1)nϕ

(n)
i ]. These two distinct paths were

obtained by sending the two halves of the SPDC emission
cone into different directions, which differs from the assump-
tions of our theoretical development. However, in the wide-
pump limit, it may be shown that our theory produces fully
correct results for this experimental situation, although we do
not prove this point here.

We have ray traced the optical system of Ref. [19] to
calculate the path phases and, for the configuration used to
obtain the data of their Fig. 3(d), we find γ2 = 46.0 fs2, γ3 =
−3.52 × 103 fs3, and γ4 = −4.07 × 104 fs4. We compare our
calculation of the normalized rate R(τ ) ≡ |Eo(τ )|2 with the
original experimental data in our Fig. 3. In both plots, the main
peak has been centered at τ = 0 for comparison. In the theory,
this shift (5.6 fs) is necessary because of cubic dispersion; in
particular, γ3 is responsible for moving the peak of |Eo(τ )|
of Eq. (28) to τ = 5.6 fs. It can be seen that the general
agreement is quite good in Fig. 3, with both results showing a
narrow central peak, accompanied by right-skewed secondary
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FIG. 3. (a) Up-conversion rate efficiency R(τ ) evaluated for
dispersion parameters consistent with the up-conversion rate data of
Fig. 3(d) of Ref. [19], compared to the original data reproduced in
(b).

maxima which, in the calculation, is also a consequence of
γ3. The temporal widths of features are close, although the
experimental result is slightly wider. For example, the theo-
retical full width at half maximum is 22.1 fs, as compared to
the experimental width of 24.7 fs. Such differences could arise
if the experimental spectrum S(ωs) were slightly narrower in
the near-Fourier relation of Eq. (28); this could occur from
crystal or optical component bandwidth limitations.

We add that our results are normalized in the sense that
FpR(τ ) is the predicted recombination rate. For the pump
power in Ref. [19] (1 W incident on the SPDC crystal),
this predicts a rate of 9.0 × 103 s−1 at the peak of R(τ )
in Fig. 3(a). The experimental result reaches 14% of this
rate; however, this experiment has losses from crystal Fresnel
reflections, poling imperfections, filter transmissions, fiber
coupling, and detector quantum efficiency. Such losses were
not specified in Ref. [19], but could quite possibly account for
this difference in scale. In any case, the general agreement of
the two results of Fig. 3 indicates that our theoretical approach
may be readily extended to include effects of temporal delays,
producing information on the ultrafast properties of photon
pairs.

To summarize, the theoretical approach developed here
is quite general. In addition to the effects of our particular
interest, it could be applied to study the dependence of the
recombination rate on parameters such as pump wavelength
and bandwidth, crystal temperature, and phase aberrations of
the optical relay system. More fundamentally, it may be used
to draw conclusions about the phase and temporal properties
of the two-photon amplitude itself, providing information well
beyond the capabilities of common techniques such as direct
pair detection.

III. EXPERIMENTS

A. Methods

Our experimental goals were to observe the up-converted
modal structure and to investigate its mutual coherence with
the pump. We employed a pump beam that, in the far field,
was much narrower than Eωo

p
(θp) (see Fig. 2 for the Gaussian

pump mode employed); thus the pump beam should be well
reconstructed. Far more significant effects arise from the
coupling of the up-converted amplitude to the single-mode
optical fiber used for detection. Thus our analysis here will
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L2AP F

x

y

SPCM

FIG. 4. Experimental diagram (not to scale). A pump beam of
wavelength 532 nm produces SPDC in lithium niobate crystal LN1.
The SPDC passes through a limiting aperture AP, is collimated by
lens L1, travels through a four-prism compressor, and is focused by
lens L2 into a second crystal LN2. The SPDC exiting LN2 is removed
with a filter F and the up-converted light is coupled into a detector
(SPCM) via a single-mode fiber, whose tip may be scanned in the xy
plane.

account for fiber effects and only later will we consider the
small effects of Eωo

p
(θp).

Another comment to be made is that, under our experimen-
tal conditions, entangled photon pair recombination appears to
be the only significant contribution to the detected signal and
the up-conversion rate between members of different pairs is
negligible. This may be noted from experiments conducted
under quite similar conditions [19], in which large tempo-
ral desynchronization of pair members reduced the detected
signal to negligible levels above the dark count; otherwise
it would fall to a level determined by the rate of random
up-conversion events. Thus such events do not contribute sig-
nificantly to the detected signal in the experiments performed
here.

The pump laser was continuous wave with wavelength
532 nm and single-mode linewidth 5 MHz and had a circular
Gaussian spatial mode. The nonlinear crystals employed were
periodically poled, MgO-doped lithium niobate of length
5 mm. Both had a poling period that produced �k = 0 for
axial, degenerate-frequency photon pairs at approximately
50 ◦C. They were kept in ovens at 1.5 ◦C below this tempera-
ture which slightly opens the SPDC cone, as has been noted
with other poled crystals [43]; this optimizes the signal levels
in our experiment.

Figure 4 shows our experimental geometry that was, in
many respects, similar to that used in studies of other aspects
of photon pair recombination [16–20]. The pump beam was
focused to a waist with w◦ = 45 μm at the center of the first
crystal. The light emerging from the crystal passed through a
circular aperture of radius θ̃c = 2.3◦ and was collimated by
a lens of 75 mm focal length. This light then encountered
a temporal compression system having four identical prisms
of SF10 glass with 60◦ apex angles. The tip-to-tip distance
between either the first or the second pair of prisms was
538 mm. The prism rotational angles were set for minimum
deviation at degenerate wavelength 1064 nm and the SPDC
followed the prism path, while the pump light was deflected
out of the system by the first prism. The polarization directions
of the pump beam and the down-conversion were all in the
plane of Fig. 4.

After the prisms, the SPDC encountered another lens,
again of focal length 75 mm, and was focused at the center

of the second crystal. The light then passed through a green
filter that removed the remaining SPDC but transmitted the
up-converted light. The crystal center was imaged by an
aspherical lens with a demagnification of 1/25; thus the
imaged mode was expected to have a waist with w′

◦ = 1
25w◦ =

1.80 μm. In this plane was placed the tip of a single-mode
optical fiber (Nufern 460HP), whose other end was connected
to a SPCM-AQR-13-FC photon counting module. Initially,
the prism insertions were set so as to null the group delay
dispersion calculated for the path connecting the centers of the
two crystals. Then the detected up-converted photon rate was
maximized by optimizing the dispersion using the third prism
of Fig. 4, which required further insertion adjustment of less
than 1 mm. This compression setting was used throughout all
work here.

The fiber tip was mounted on a piezoelectric stage that
allowed it to be scanned in the plane transverse to the prop-
agation direction, taken here as the xy plane. Monitoring the
detection rate as a function of fiber position thus allowed
investigation of the up-converted spatial mode shape. If the
up-converted amplitude is Au(x, y) and the fiber mode is
represented by A f (x, y) with the fiber centered in the xy plane,
the detected signal depends on the modal overlap [44]

H(x, y) =
∫∫ ∞

−∞
Au(x′, y′)A∗

f (x′ − x, y′ − y)dx′dy′, (30)

where (x, y) represent the off-axis displacement of the fiber
and Au and A f are each normalized to unit power. In par-
ticular, the photon detection rate is proportional to η(x, y) ≡
|H(x, y)|2. The modal amplitude A f will be taken as a Gaus-
sian function of e−1 radius w f = 1.75 μm, based on the fiber
specifications.

Finally, to obtain pump modes in addition to the laser’s
Gaussian mode, mode converters could be introduced between
the laser output and the first lens of Fig. 4. Such mode con-
verters transform the spatial mode but leave w◦ unchanged.
To produce a Hermite-Gaussian HG10 mode, the Gaussian
laser beam entered a phase-locked Mach-Zehnder interfer-
ometer mode converter [45]. Here the interferometer port
that was utilized contained two oppositely phased Gaussian
laser modes, whose centers were separated by approximately
1.1w◦; such a beam may be calculated as having an inner
product greater than 0.99 with an ideal HG10 mode. To
produce a Laguerre-Gaussian LG01 mode, the Mach-Zehnder
output was in turn transformed with a cylindrical lens mode
converter [46]. These are standard techniques that will not be
discussed further here. The power incident on the crystal was
maintained at 1 W in all cases, with the laser power setting
being used to compensate losses in the mode converters.

B. Modal results

During a scan, the fiber tip was placed at each sample
point in the xy plane for 1 s while the detector signal was
measured. The background level was determined by averaging
the data from the scan perimeter, since the desired signal
there appeared negligible; this background (approximately
225 s−1, a few counts above intrinsic detector dark count)
was subtracted from modal data shown here. Then the data
were least-squares curve fit to η(x, y), with Au(x, y) assumed
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FIG. 5. (a) Two-dimensional scans of the detected up-conversion
rate R as a function of transverse fiber position are shown for the case
of a circular Gaussian pump beam. (b) and (c) Data for scan lines
passing closest to the origin are shown as points, accompanied by
the theoretical fit (solid lines). Arrows in (a) indicate the lines along
which (b) and (c) are taken (at y = −0.12 μm and x = 0.02 μm,
respectively).

to have, for now, the functional form of the original pump
mode function. The fitting parameters used were the height
and width of η(x, y) and the position of the center of the data.
This position is then taken as the plot origin throughout the
results shown here.

Figure 5 shows experimental results for the case of a
Gaussian pump mode. The distribution presents a generally
Gaussian shape with maximum height approximately 2 ×
103 s−1. It is notable that Eq. (30) is here the convolution
of two Gaussians, so the predicted form of H(x, y) is then
itself a Gaussian of e−1 radius wH = (w′2

◦ + w2
f )1/2. In turn,

it follows that η(x, y) is Gaussian with width parameter wη =
wH/

√
2, which is found directly from our fitting procedure

as wη = 1.78 μm . Figures 5(b) and 5(c) show the x and y
scan lines of the data passing nearest the origin, which are
there compared with the fit to η(x, y). It can be seen that the
agreement is excellent. Finally, the known value of w f and
the fitted value of wη allow the implied beam width to be
estimated as w′

◦ = (2w2
η − w2

f )1/2 = 1.81 μm, which is quite
close to that expected.

Analogous data for the case of an HG10 pump mode
are shown in Fig. 6, where maximum signal levels are just
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FIG. 6. (a) Experimental results for the detected up-conversion
rate R as in Fig. 5, but for an HG10 pump beam. (b) and (c) Results
for the scan lines passing closest to the origin (at y = 0.08 μm and
x = 0.06 μm, respectively).

above 1.1 × 103 s−1. It can be seen that the result bears
a strong resemblance to the pump intensity, exhibiting two
similar lobes separated by a trough where the signal falls to
negligible levels. The convolution of Eq. (30) can here again
be performed in closed form, and one finds that H(x, y) has
the same functional form as an HG10 pump mode amplitude
but with width wH = (w′2

◦ + w2
f )1/2. From the curve fit of

η(x, y) to the data, we find that wη = 1.77 μm, from which
we can calculate an estimate of w′

◦ as w′
◦ = (2w2

η − w2
f )1/2 =

1.79 μm, which is once again similar to that expected. The
plots of Figs. 6(b) and 6(c) show good agreement between the
data and the theoretical fit to η(x, y) for the scan lines passing
nearest the origin. It is quite notable that the data of Fig. 6(c)
show negligible levels in the trough between the lobes; this
result is consistent with the form of Eq. (30) when the fiber is
centered at a zero crossing of the up-converted mode.

Figure 7 shows data for the case of an LG01 pump mode,
where the highest signal levels are approximately equal to
600 s−1. The data here have some irregularity, in part due to
the increased relative noise at the lower detection rates. How-
ever, it is still possible to see structure that bears significant
resemblance to an LG01 intensity and, while the ring of max-
imum brightness is somewhat uneven, the central minimum
is quite deep. This depth is more easily seen in Figs. 7(b)
and 7(c), where the central data points are scarcely above
zero. To provide theoretical comparisons with η(x, y) here,
the convolution of Eq. (30) must be performed numerically.
From these results, we find that the resulting parameter w′

◦ =
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FIG. 7. (a) Experimental results for the detected up-conversion
rate R as in Fig. 5, but for an LG01 pump beam. (b) and (c) Results
for the scan lines passing closest to the origin (at y = 0.24 μm and
x = 0.11 μm, respectively).

2.28 μm, which is slightly larger than expected. Still, the
comparison of the theoretical curve with the data in Figs. 7(b)
and 7(c) is generally good, so the modal shape is reasonably
reproduced.

In summary, the agreement between the experimental re-
sults and calculations is good and we have demonstrated that
the up-converted spatial intensity resembles that of the pump.
It is also clear that the signal levels fall in the series of data
from Figs. 5–7; such behavior is consistent with Eq. (30),
which predicts that the coupled power decreases as the up-
converted mode increasingly differs from the fiber mode. As
for the effect of the point spread function of Sec. II B, we have
computed its convolutional effects in some cases, but it is so
narrow (7.7 μm e−1 width in the up-conversion plane) that it
would increase measured widths by only approximately 1%.
Thus it has little effect on our results even though, of course,
it could produce significant effects under other experimental
conditions.

C. Interference with pump

A second type of measurement was performed to investi-
gate the coherence of the up-converted light and, to a limited
extent, to observe the phase structure of the up-converted am-
plitude. The approach was straightforward, using a beam split-
ter of 0.95 reflectivity to mix the up-converted light and the
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FIG. 8. Typical fringe data. Points denote counting data for
1024 counting intervals equally spaced over the fringe period T =
1.3216 s, with a total of 4206 counts. The solid curve shows the
maximum-likelihood fit to an interference fringe having visibility
V = 0.907.

pump light. The single-mode fiber of Fig. 4 was disconnected
from the detector and its output was collimated and reflected
from the beam splitter. The pump light was taken from that
deflected by the first prism of Fig. 4, which was attenuated,
beam expanded with two positive lenses, and then transmitted
by the same beam splitter. Further, the beam expander had a
small pinhole at its focus that, depending on the pump mode
employed, passed either the center of Gaussian mode or the
center of one of the two lobes of the HG10 mode. Considerable
care was obviously necessary in the spatial mode matching of
the two interfering beams and in balancing their amplitudes.
Further, we stress that the interference occurs between single
spatial modes, due to the single-mode fiber and the pinhole
in the two interfering sources. Finally, the mixed beams were
focused to couple into a multimode fiber, whose other end was
now connected to the detector.

Interference was immediately apparent in the detected sig-
nal, yet the relative phase of the two beams appeared to drift,
presumably due to slow length variations of the experimental
paths. A typical phase drift was roughly π over 30 s. Thus
a phase modulator was introduced into the attenuated pump
light, which ramped its relative phase over the interval [0, 2π ]
while the detector signal was recorded with a Stanford SR430
counter over 1024 temporal subintervals. The phase ramp was
relatively rapid over a time T = 1.3216 s, the data were saved
and analyzed in approximately 0.5 s, and the process was then
repeated. One such data set is shown in Fig. 8, where a rise
and fall of the local count rate is readily apparent, as could be
expected for an interference fringe.

Auxiliary results had found that the recorded count ap-
peared Poissonian, which motivates the following data treat-
ment utilizing maximum likelihood principles [47]. Consider
the count n j of the jth time interval of Fig. 8. For optical
intensity I (t ), n j follows the Poisson distribution [48]

p(n j ) = e−μ j μ
n j

j /n j!, (31)

with the mean of n j given by

μ j = η

∫ t j+�t/2

t j−�t/2
I (t )dt, (32)
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where η is a constant characterizing the detector efficiency,
t j is the central time of the jth interval, and �t is the interval
width. Assuming statistical independence, the likelihood of all
counts {n} of a particular data set is given by the product of
probabilities of the form of Eq. (31) as

p({n}) =
1024∏
j=1

e−μ j μ
n j

j /n j!. (33)

We now consider the intensity to be of the form I (t ) =
I◦[1 + V cos( 2πt

T + φ)], where V and φ are, respectively, the
fringe visibility and phase. To determine the best-fit fringe
parameters, we find the maximum value of p({n}) of Eq. (33)
numerically, through variation of V , φ, and I◦, with V and φ

obviously being of principal interest. For the data of Fig. 8,
we obtain V = 0.907 and φ = −135◦; correcting the visibility
for the measured constant background count of 217 s−1, we
obtain the corrected visibility as 0.976.

We produced a total of N = 90 such scans over approxi-
mately 3 min. The phase drifted as described earlier, but was
otherwise of little interest. From the ensemble of scans, we
compute the average background-corrected visibility as 0.961,
with a standard deviation of σ = 0.023. We thus quote our
corrected result as V = 0.961 ± 0.002, where the uncertainty
is taken as σ/

√
N . In view of the noise apparent in Fig. 8,

it may seem surprising that the experimental error quoted is
small, but it should be kept in mind that the quoted visibility
is based on the approximately 3.8 × 105 detected photons of
the 90 scans. We thus conclude that these data exhibit an
interference fringe of near-perfect visibility.

We have also studied the phase structure of the HG10 case
of Fig. 6, whose two lobes are expected to be oppositely
phased. Extending the previous method, we center the fiber
in one lobe and record the detector signal as the attenuated
pump phase was ramped. Then we center the fiber in the other
lobe and repeat the phase ramp. The two data sets are taken
approximately 2 s apart, so the phase drift between them is
minimal. Such a data pair is shown in Figs. 9(a) and 9(b).
The two data sets are again processed with the maximum-
likelihood method to estimate the phase and visibility of each.
In the example shown, the phase difference is thus estimated
as �φ = 191◦. In all, 45 pairs of such data were taken and
the histogram of phase differences shown in Fig. 9(c) is seen
to be centered near �φ = 180◦. Averaging over the paired
data, we report the phase difference as 177◦ ± 2◦, where
the uncertainty is obtained, as before, from the ensemble of
results. Thus it is concluded that the two lobes are essentially
antiphased.

The corrected visibilities were V = 0.880 ± 0.005 and
V = 0.875 ± 0.006 in the two lobes; the reduction compared
to the previous result was probably because of the additional
alignment challenges that the HG10 mode presented. We also
hasten to add that these measurements were preceded by a
phase calibration procedure so as to compensate for contribu-
tions of wave-front tilt or any lack of orthogonality of the fiber
scan. As described earlier, the HG10 pump beam was obtained
from the phase-locked output of a Mach-Zehnder interfer-
ometer producing two oppositely phased circular Gaussian
beams. To calibrate the phase, the interferometer was instead
set to co-phase the two beams, which should produce a flat
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FIG. 9. (a) and (b) Points show experimental fringe data as in

Fig. 8, but with the detector fiber centered in the left lobe of the HG10

intensity of Fig. 6 in (a) and then shifted to the right lobe in (b). Solid
lines are maximum-likelihood fits to interference fringes, which here
differ in phase by �φ = 191◦. (c) Histogram of �φ for 45 pairs of
data, with an average �φ of 177◦.

phase across the pump beam waist. The up-converted beam
was scanned with the fiber; the surface of constant phase
was found to have a small tilt, which was removed here by
scanning the fiber tip in the slightly tilted plane. At this point,
the Mach-Zehnder was again set to antiphase the beams, and
the procedure described earlier was begun, with the fiber
scanned in the tilted plane.

In summary, it has been demonstrated that the up-converted
light has essentially perfect mutual coherence with the pump.
Fringes have been observed that are stable for times that are
more than eight orders of magnitude greater than the recipro-
cal of the pump bandwidth. Further, significant evidence has
been presented that the phase structure of beams is preserved,
based on results with the HG10 pump beam.

IV. CONCLUSION

Here we have demonstrated effects of coherence being
carried by SPDC. In particular, we have found that the original
pump mode can be coherently reconstructed in the light
up-converted by a second crystal. In theoretical work, this
was proven directly from the mutual coherence function of
the attenuated quantum pump and the up-converted ampli-
tudes. In experiments, we have found that not only does the
up-converted light resemble the pump mode, but we have
observed that its interference with the attenuated pump can
produce near-perfect fringe visibility. The theory predicts that
the up-converted amplitude is linearly filtered by a far-field
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transfer function that depends solely on the details of the
nonlinear interactions; at a beam waist the effect amounts to
a convolution with an amplitude point spread function. Such
conceptually simple and intrinsically coherent results could
not have been easily anticipated, particularly since the sole
links between the input and output of our system are the
pair states and vacuum fields of SPDC. Further, and from a
broader perspective, the theoretical approach developed here
may be used to provide exact solutions in other situations of
interest where the multimodal character of fields is important
and could be adapted to consider other quantum states of the
original pump.

Our results may have implications for quantum informa-
tion, since Eqs. (1) and (2) show that the pump mode may
be viewed as encoded in the SPDC state. Our approach allows
pump reconstruction only if the signal and idler channels have
not been significantly tampered with; yet subtle modification
of one channel could conceivably allow a desired effect to be
produced in the up-converted amplitude. At the same time,
our work has some unusual fundamental ramifications; for ex-
ample, from basic principles, interference between the pump
and up-converted light can occur with unit visibility only if
the two contributing paths are indistinguishable [49,50]. Our
work demonstrates the remarkable extremes under which this
indistinguishability principle is valid; in one path, a pump
photon is torn in two by vacuum fluctuations, leading to
a continuum of photon pair and vacuum modes that travel
through our optical system, with the process ultimately being
reversed in another crystal. Yet, comparing this tortuous path
to a second carrying nothing more than an attenuated pump
beam, there is apparently no possible way to tell, even in
principle, which path a photon has followed, and interference
with perfect visibility is consequently obtained.
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APPENDIX: QUANTUM STATE OF SPDC

Here we present a derivation of the SPDC state of Eqs. (1)
and (2), with some associated results of general interest.
The notation follows that introduced in Sec. II A. Similar
studies have appeared previously [15,25,31]; however, our
approach differs because we employ a quantized pump having
a continuum of spatiotemporal modes. This is an accurate
representation of our experimental situation and is also impor-
tant to our proof of mutual coherence in Sec. II A. A second
difference is that our approach will lead to expressions for
commonly measured quantities on absolute scales, which is
of considerable general utility.

We start with the pump, which we take to be in a coherent
state. The representation employed is related to the continuum
coherent states in frequency that have been discussed else-
where [34]; here they are extended to consider a continuum
of pump wave vectors as follows. The pump state |{ψp}〉 is
defined by the eigenvalue equation

â(kp)|{ψp}〉 = √
Npψp(kp)ei	p |{ψp}〉, (A1)

where ψp(kp) is a weighting function, 	p is the pump phase,
and

Np =
∫

dkp〈{ψp}|â†(kp)â(kp)|{ψp}〉 (A2)

is the mean number of pump photons in a time �t , which is
much longer than an optical period. The usual normalization
condition 〈{ψp}|{ψp}〉 = 1, when combined with Eqs. (A1)
and (A2), implies that ψp(kp) is normalized as∫

dkp|ψp(kp)|2 = 1. (A3)

In the following analysis, when transforming integration vari-
ables from kp to (ωp, θp, φp), we consider ψ (kp) to be the
product of a spectral function and an angular amplitude
spectrum as ψp(kp) = A(ωp)√

ηpkp
F (θp, φp|ωp), where Eq. (A3) is

satisfied by requiring that∫
dωp|A(ωp)|2 = 1 (A4)

and that, for all ωp,∫∫
dθpdφp sin θp|F (θp, φp|ωp)|2 = 1. (A5)

Should the pump state |{ψp}〉 be attenuated to the point that
the probability of it containing more than one photon can be
neglected, it may be written as [51]

|{ψp}〉 =
[

Î + γ
√

Np

∫
dkpψp(kp)ei	p â†(kp)

]
|vac〉, (A6)

where γ is the attenuation factor, with |γ | � 1. Equation (A6)
is employed solely in calculating the mutual coherence in
Eq. (17), while the unattenuated pump state defined by
Eq. (A1) is employed in the development that follows below.

The down-converted state may be found from first-order
perturbation theory as in Eq. (6), but with different input and
output states as

|ψSPDC〉 =
[

Î − i

h̄

∫ ∞

−∞
dt Ĥint(t )

]
|{ψp}〉. (A7)

The interaction Hamiltonian is given by Eq. (7), whose
Hermitian conjugate term is here the relevant term. The spatial
and temporal integrations arising from Eqs. (7) and (A7) are
performed with the same assumptions used to derive Eq. (9).
After removing the pump state, the down-converted state
follows as

|ψSPDC〉 =
⎡
⎣Î −

√
Npd2

effL
2h̄

16π3ε0c3

∫
dkp

∫
Ds

dks

∫
Di

dki

×
√

ωpωsωi

npnsniηpηsηi
δ(ωp − ωs − ωi )δ

(
�kd

x

)
δ
(
�kd

y

)

×ψ (kp)ei	ps(�kz )â†(ks)â†(ki )

⎤
⎦|vac〉. (A8)

The differential dkp is then expanded as
dωpdθpdφpk2

pηp sin θp and the ωp integration is done using
the frequency δ function, which sets ωp = ωs + ωi. The
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angular integrations are performed using the identity that, for
an arbitrary function f (θp, φp),

∫∫
dθpdφp sin θp f (θp, φp)δ

(
�kd

x

)
δ
(
�kd

y

) = f
(
θo

p, φ
o
p

)
k2

p cos θo
p

,

(A9)

where φo
p and θo

p are found from, respectively, Eqs. (4) and (5).
The down-converted state is then

|ψSPDC〉 =
[

Î −
∫

dks

∫
dkiψ (ks, ki )â

†(ks)â†(ki )

]
|vac〉,

(A10)

where the two-photon amplitude ψ (ks, ki ) is given by

ψ (ks, ki ) =
√

Npd 2
effL

2h̄ωpωsωiη+
p

16π3ε0c3n+
p nsniηsηi

ψp(k+
p )ei	p

cos θo
p

s
(
�kd

z

)
,

(A11)

which is Eq. (2) of Sec. II A and where n+
p , η+

p , and k+
p are

defined as they were following Eq. (2). The state representa-
tion of Eqs. (A10) and (A11) has a form that is typical of other
works; however, it will be seen that our expressions here lead
to results on absolute scales.

While the equations presented above are those necessary
in Sec. II A, we now present a few general results that follow
from ψ (ks, ki ). The rate Rπ of coincident detected photon
pairs may be calculated with an approach described else-
where [15], in which the usual detection conditions are as-
sumed (the integration time is much longer than the reciprocal
of the detected bandwidth). For ψ (ks, ki ) from Eq. (A11), this
leads directly to

Rπ = 2βc2Fp

∫
Ds

dks

∫
Di

dki
h̄ωpωsωi

npnsniηsηi

× |A(ωp)|2
k+

p
2 cos2 θo

p

∣∣F(
θo

p, φ
o
p|ωp

)∣∣2|s(�kz )|2, (A12)

where β = d2
effL

2

16π3ε0c5 , Fp = Np/�t , and Ds and Di represent
the integration parameters of, respectively, the signal and
idler detectors; further, as is the usual experimental case
with two distinct detectors, it has now been assumed that
there is no overlap between Ds and Di in k space. We have
previously presented numerical evaluations of a similar (al-
beit unnormalized) expression, compared with experimental
observations [52].

In the narrow-band pump limit we have that |A(ωp)|2 →
δ(ωp − ωo

p). The idler frequency integration in Eq. (A12) may
then be performed and Rπ becomes

Rπ = 2βc2Fph̄ωo
p

∫
Ds

dks

∫∫
��i

dθidφi
ωsωi

npnsniηs

× k2
i sin θi

k+
p

2 cos2 θo
p

∣∣F(
θo

p, φ
o
p

∣∣ωo
p

)∣∣2|s(�kz )|2Ti(ωi ), (A13)

with ωi = ωo
p − ωs and where, for the idler detector, ��i

is its collection angle and Ti(ωi ) is its filter transmission
function. Since experiments are often performed with
narrow-band pump conditions, Eq. (A13) is commonly
useful. Further, in the wide-pump limit we have that
|F (θo

p, φ
o
p|ωo

p)|2 → δ(k+
p sin θo

p cos φo
p)δ(k+

p sin θo
p sin φo

p) =
δ(ks,x + ki,x )δ(ks,y + ki,y), where we have used the condition
�kd = 0 that established Eqs. (4) and (5) to write the
arguments of the δ functions in terms of signal and idler
variables. We then perform the idler angular integrations in a
manner analogous to Eq. (10), with the result

Rπ = 2βFph̄ωo
p

∫
dωs

ω3
s ωins

npni
Ts(ωs)Ti(ωi )

×
∫∫

��s

dθsdφs
sin θs

cos θi
|s(�kz )|2Di(θi, φi ),

(A14)

where θi follows from niωi sin θi = nsωs sin θs. We emphasize
that Eqs. (A12)–(A14) predict absolute pair rates for given
experimental conditions.

We now consider the signal photon rate Rs passing through
a circular aperture of angular radius θ̃c, without bandwidth
filtering and without restrictions on the idler mode. This
follows from Eq. (A14) with Di(θi, φi ) = 1 and Tε (ωε ) = 1
for ε ∈ {s, i}. Integrating φs trivially over [0, π ], we obtain

Rs = 2πβFph̄ωo
p

∫
dωs

ω3
s ωins

npni

∫ �s

0
dθs

sin θs

cos θi
|s(�kz )|2,

(A15)

where �s = arcsin[sin θ̃c/ns]. By changing the integration
variables of Eq. (A15) from ωs to ωi = ωo

p − ωs and from θs to
its phase-matched idler angle θi, an expression is obtained that
is identical to Eq. (A15), but with signal and idler variables
interchanged. This implies that Ri = Rs, which must be the
case from physical symmetry, and the total photon rate follows
as R = Rs + Ri = 2Rs.

The power of the signal light Ps follows from an expression
analogous to Eq. (A15) as

Ps = 2πβPp

∫
dωs

h̄ω4
s ωins

npni

∫ �s

0
dθs

sin θs

cos θi
|s(�kz )|2,

(A16)

where Pp = Fph̄ωo
p. The integrand of Eq. (A16) differs by

a factor of (4 cos θi )−1 upon comparison with a previous
result [53]; however, we note that our (cos θi )−1 factor is es-
sential in obtaining the correct functional symmetry discussed
in relation to Eq. (A15). Finally, the total SPDC power in the
aperture is given by P = Ps + Pi = 2Ps.
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