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Subvacuum effects on light propagation
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Subvacuum effects arise in quantum field theory when a classically positive quantity, such as the local
energy density, acquires a negative renormalized expectation value. Here we investigate the case of states of the
quantized electromagnetic field with negative mean-squared electric field and their effects on the propagation of
light pulses in a nonlinear dielectric material with a nonzero third-order susceptibility. We identify two distinct
signatures of the subvacuum effect in this situation. The first is an increase in the speed of the pulse, which is
analogous to the superluminal light propagation in gravity which can arise from negative energy density. This
increase in speed leads to a phase shift which might be large enough to observe. The second effect is a change
in the frequency and power spectra of the pulse. We identify a specific measure of the modified spectra which
can signal the presence of a negative mean-squared electric field. These ideas are implemented in the particular
example of a wave guide filled with a nonlinear dielectric material.
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I. INTRODUCTION

A subvacuum effect in quantum field theory may be de-
fined as a situation where a classically positive quantity, such
as the energy density or the squared electric field, acquires a
negative expectation value when the formally divergent part is
subtracted. This can arise either in the presence of boundaries,
such as the Casimir effect [1–3], or in a nonclassical quantum
state, such as a squeezed vacuum state [4]. In flat spacetime,
the relevant operator is taken to be normal ordered, so its
vacuum expectation value vanishes, and a locally negative
expectation value represents a suppression of quantum fluc-
tuations below the vacuum level, or a subvacuum effect.
Negative energy density and its possible effects in gravity
have been extensively studied in recent years. This includes
proving various quantum inequality relations, which limit the
magnitude and duration of subvacuum effects [5–12]. One
particularly striking effect of negative energy density is its
ability to increase the speed of light compared to its speed
in the vacuum [13–15]. This can be viewed as a “Shapiro time
advance” and is the converse of the effect of positive energy,
which produces the Shapiro time delay [16]. Of course, the
gravitational effects of negative energy density are normally
very small, so there is interest in finding analog effects in
nongravitational systems which might be easier to observe
in the laboratory. Some proposals which have been made in
the past include effects of vacuum fluctuation suppression on
spin systems [17] or on the decay rate of atoms in excited
states [18]. Another possibility involves the propagation of
light in nonlinear materials, where electric-field fluctuations
could lead to fluctuations in the speed of light [19–21] and
a negative mean-squared electric field could increase the
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average speed of light in a material [22]. Here we focus
attention upon the latter effect in a material with a nonzero
third-order susceptibility and discuss two phenomenological
signatures of the subvacuum effect. We consider a probe
wave packet propagating through a region with a negative
mean-squared background electric field and show that the
subvacuum effect produces both a phase advance of the packet
and particular features in its frequency and power spectra.

The wave equation of a probe field prepared in a single-
mode coherent state propagating in a nonlinear optical mate-
rial is obtained in the next section, under certain conditions. It
is shown that an applied background electric field prepared in
a squeezed vacuum state couples to the nonlinearities of the
medium and affects the motion of the probe field. Particularly,
a phase shift occurs whose magnitude may be large enough
to be observable. Section III deals with the influence of the
quantum fluctuations of the background field on the spectrum
of a propagating probe wave packet. Possible observable
signatures related to subvacuum effects are presented in this
section. In Sec. IV we explore these ideas in a model with a
rectangular wave guide filled with a nonlinear dielectric. The
results of the paper are summarized and discussed in Sec. V.
Unless otherwise noted, we work in Lorentz-Heaviside units
with h̄ = c = 1, so ε0 = 1.

II. PHASE SHIFT

We start with the wave equation for an electric field in a
nonlinear dielectric material [19],(

∇2 − ∂2

∂t2

)
Ei = ∂2

∂t2
Pi, (1)

where we assume that ∇ · E = 0, and Pi represents the ith
component of the polarization vector, whose power-series
expansion in the electric field is given by (see, for example,
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Ref. [23])

Pi = χ
(1)
i j E j + χ

(2)
i jk E jEk + χ

(3)
i jkl E jEkEl + · · · . (2)

Here summation on repeated indices is understood. The co-
efficients χ

(1)
i j are the components of the linear susceptibility

tensor, while χ
(2)
i jk and χ

(3)
i jkl are the components of the second-

and third-order nonlinear susceptibility tensors, respectively.
We are interested in centrosymmetric materials, for which
the χ

(2)
i jk coefficients are identically zero. Additionally, if we

specialize to the case where the electric field propagates in
the x direction and is linearly polarized in the y direction, we
obtain [

∂2

∂x2
− ε

∂2

∂t2

]
E = χ (3)

yyyy

∂2

∂t2
E3, (3)

where we define ε = 1 + χ (1)
yy . In order to keep the notation

simpler, in what follows we suppress the indices of the sus-
ceptibility coefficients.

Suppose the electromagnetic field is prepared in a quantum
state such that only two modes are excited, which are called
the probe (mode 1) and background (mode 2) fields. Let
the probe field be a coherent state of amplitude z described
by the state vector |z〉, and let the background field be a
single-mode squeezed vacuum state defined by |ζ 〉. In general,
z and ζ are complex parameters, but we take them to be
positive real numbers for simplicity and set ζ = r. Let us
denote the state of the electromagnetic field as |ψ〉 = |z〉|ζ 〉.
Ignoring all other modes, the electric-field operator can be
expanded as Ê = E1â1 + E∗

1 â†
1 + E2â2 + E∗

2 â†
2, where Ei is

the mode function for mode i, and âi and â†
i are the cor-

responding annihilation and creation operators, respectively.
As 〈ψ |â2|ψ〉 = 〈ζ |â2|ζ 〉 = 0, the expectation value of the
electric-field operator when the system is prepared in the state
|ψ〉 is

Ec = 〈ψ |Ê |ψ〉 = z (E1 + E∗
1 ), (4)

where Ec can be viewed as the classical probe field. Similarly,
the expectation value of normal-ordered Ê3 is given by

〈ψ | : Ê3 : |ψ〉 = Ec
3 + 3Ec

〈
Eq

2
〉
, (5)

where 〈
Eq

2
〉 = 〈ζ | : (E2â2 + E∗

2 â†
2)2 : |ζ 〉

= 2 sinh r
[|E2|2 sinh r − Re

(
E2

2
)

cosh r
]

(6)

is the mean value of the normal-ordered, squared background
electric-field operator. The subvacuum effect arises when
〈Eq

2〉 < 0. Let the mode function for the background field
be a plane wave of the form E2(x, t ) = E0 ei(kbx−�t ), so it is
propagating in the +x direction with angular frequency �.
Then we have〈

Eq
2〉 = 2E2

0 sinh2 r{1 − coth r cos[2(kbx − �t )]} . (7)

Because coth r > 1, we have regions where 〈Eq
2〉 < 0 which

travel at speed �/kb in the +x direction. The magnitude and
duration of the 〈Eq

2〉 < 0 regions are constrained by quantum
inequalities [8,10] of the form 〈Eq

2〉 > −C/τ 4, where τ is
the temporal duration of the negative expectation value at one
spatial point, and C is a positive constant smaller than 1. The

essential physical content of these inequalities is that there is
an inverse relation between how negative 〈Eq

2〉 is and how
long the negative region can persist. In the case of Eq. (7), τ �
1/� and states with r ≈ O(1) come closest to saturating the
quantum inequality bounds [24]. A generalization of Eq. (7)
to a multimode example is given in Sec. IV. In the Appendix,
it is shown that this example satisfies a quantum inequality.

The wave equation for the classical field Ec is obtained after
using the above results in the quantum expectation value of
Eq. (3), and it becomes[

∂2

∂x2
− (

ε + 3χ (3)
〈
Eq

2
〉) ∂2

∂t2

]
Ec = χ (3) ∂2

∂t2
Ec

3, (8)

where we have assumed that the classical probe field varies
rapidly compared to the background field. Let us consider
the case where the cubic term on the right-hand side of this
equation may be neglected, so Ec approximately satisfies the
linear equation[

∂2

∂x2
− (

ε + 3χ (3)
〈
Eq

2
〉) ∂2

∂t2

]
Ec ≈ 0. (9)

Then over a region small compared to the wavelength of the
background field, so 〈Eq

2〉 is approximately constant, this
equation describes waves with a phase velocity of veff , where

veff = 1√
ε + 3χ (3)

〈
Eq

2
〉 ≈ v0

(
1 − 3χ (3)

2ε

〈
Eq

2
〉)

. (10)

Here v0 = 1/
√

ε is the phase velocity in the absence of
the background field, and we have assumed χ (3)|〈Eq

2〉| � 1.
In regions where 〈Eq

2〉 < 0, we have that the speed of the
probe field is increased, veff > v0, although veff is still less
than the speed of light in vacuum. This is the analog of the
superluminal propagation of light in the presence of negative
energy density in general relativity.

Consider a wave-packet solution of the linearized equation
for Ec of the form

Ec(x, t ) = F (kx − ω0t ) ei(kx−ω0t ) , (11)

where F is an envelope function which varies more slowly
than the exponential factor. In writing this form, we have
assumed that dispersion can be ignored over the bandwidth of
the wave packet, so that both the phase and group velocities
are approximately veff = ω0/k. If ω0 	 �, we can select the
envelope function so that the entire packet lies in a region
where 〈Eq

2〉 is both negative and approximately constant, as
illustrated in Fig. 1. Further, let �/kb ≈ v0 so that this region
moves at the same speed as does the wave packet. This is
possible if ε(�) ≈ ε(ω0). Note that this does not require that
ε(ω) be constant over the entire interval from � to ω0. If
these conditions are satisfied, then the probe packet moves
together with the region where 〈Eq

2〉 < 0. This allows the
phase shift effect of the background field on the wave packet
to accumulate.

The effect with which we are dealing is quite different from
the apparent superluminal propagation which can arise in a
region of anomalous dispersion, as can occur in atomic vapors
[25]. The latter effect occurs when the index of refraction is
changing rapidly as a function of frequency and where the
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FIG. 1. Illustration of the probe wave packet in a region where
〈Eq

2〉 is negative.

group and phase velocities can be very different from one
another and from the signal velocity. This is also a frequency
region where absorption is large and pulse shapes can change
rapidly. None of these features apply in the effect we are
describing.

Note that as the wave packet enters a region where 〈Eq
2〉 
=

0, the peak frequency ω0 is unchanged, but the wave number
changes from k = k0 = ω0/v0 to

k = ω0

veff
≈ k0

(
1 + 3χ (3)

2ε

〈
Eq

2
〉)

. (12)

After a travel distance of 
x = d , this leads to a phase shift
of the packet of


ϕ = (k − k0) d ≈ 3
χ (3)

2ε

〈
Eq

2
〉
k0 d

= 3π
χ (3)

√
ε

〈
Eq

2
〉(d

λ

)
, (13)

where λ = 2π
√

ε/k0 is the wavelength of the probe field in
the absence of the background field. To estimate the possible
magnitude of this phase shift, we may use


ϕ ≈ 1√
ε

(
χ (3)

3 × 10−19 m2 V−2

)( 〈
Eq

2
〉

1 (μm)−4

)

×
(

d

10 m

)(
0.1 μm

λ

)
. (14)

The conversion to SI units is aided by noting that in our units
ε0 = 1, which implies that 1V ≈ 1.67 × 107 m−1.

We can see from Eq. (14) that, if a sufficiently large travel
distance d can be arranged, then a potentially observable
phase shift could result. Recall that this result was derived
assuming that the nonlinear term in Eq. (8) can be neglected.
This seems to require that Ec

2 � |〈Eq
2〉|, and hence that z �

1. This in turn requires that the mean number of photons in
the probe wave packet be small compared to 1. Nonetheless,
it may be possible to build up an interference pattern with an
extremely low count rate but a long integration time. Another
possibility is that one might be able to take advantage of the
dependence of the phase shift upon the background field even
if the effect of the nonlinear term is not negligible.

III. EFFECTS ON THE SPECTRUM
OF THE PROBE WAVE PACKET

A. Frequency spectrum of the probe field

Let

f (x, t ) = 3χ (3)

2ε

〈
Eq

2〉(x, t ), (15)

so that Eq. (10) becomes veff ≈ v0 [1 − f (x, t )]. We can write
an approximate WKB solution of Eq. (9) as

Ec(x, t ) = E0eik0[x−v0(1− f )t] ≈ E0ei(k0x−ω0t )(1 + iω0 f t ),
(16)

where in the last step we assume | f (x, t )|ω0t � 1. When the
background field is described by a single plane-wave mode
state, as in Eq. (7), f (x, t ) has the form

f (x, t ) = α + β cos [2(kbx − �t )], (17)

where α and β are constants and α > 0. In the case of a
squeezed vacuum state, as in Eq. (7), we have |β| > α and
regions where 〈Eq

2〉 < 0. However, the form of Eq. (17) could
hold for a broader range of states, including more classical
states where α > |β| and 〈Eq

2〉 > 0 everywhere. Here we
show that there are features in the frequency spectrum of the
probe wave packet which can distinguish these two cases.

The frequency spectrum can be defined by a Fourier trans-
form of the probe electric field at a fixed spatial location of the
form

Êc(ω) =
∫ +∞

−∞
eiωtEc(0, t )dt . (18)

Use Eqs. (16) and (17) to find

Êc(ω) = 2πE0
{
δ(ω − ω0) + ω0αδ′(ω − ω0)

+ 1
2ω0β[δ′(ω − ω0 + 2�) + δ′(ω − ω0 − 2�)]

}
,

(19)

where δ′(ω) = dδ(ω)/dω is the derivative of a δ function
and ω0 = k0v0. Equation (19) is the rather singular spectrum
associated with the monochromatic solution, Eq. (16). A
more realistic solution would be a wave packet with a finite
bandwidth. The spectrum of such a solution can be obtained
from Eq. (19) by replacing δ(ω − ω0) by g(ω − ω0), a sharply
peaked function with finite width and unit area, such as a
Lorentzian function. The expected functional form of g and its
first derivative are plotted in Fig. 2. In terms of the function g,

ω
ω0

g (ω − ω0)

g(ω − ω0)

FIG. 2. The shapes of the function g(ω − ω0), described by a
symmetric function centered at ω0, and its derivative, g′(ω − ω0), are
illustrated.
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FIG. 3. The frequency spectrum of a probe wave packet is illus-
trated. The effect of the background field is to produce a shift of
the central peak, and two side bands at ω = ω0 ± 2�. The area of
the central peak where ω < ω0 is AL and that where ω > ω0 is AR.
The area of one positive peak of a side band is AS .

the frequency spectrum for a wave packet becomes

Êc(ω) = 2πE0
{
g(ω − ω0) + ω0αg′(ω − ω0)

+ 1
2ω0β[g′(ω − ω0 + 2�) + g′(ω − ω0 − 2�)]

}
.

(20)

Let us note some of the qualitative features of the spectrum
in Eq. (20). When α = 0, there is a central peak at ω =
ω0. The term proportional to g(ω − ω0) gives a symmetric
contribution to this peak, but the term proportional to α

produces a distortion which enhances the left (ω < ω0) side
and suppresses the right (ω > ω0) side, if α > 0. To leading
order, this is a shift of the peak to the left. Let AL and AR be the
areas of the left and right sides, respectively, of ω = ω0. The
two terms in Eq. (20) proportional to β produce side bands at
ω = ω0 ± 2�. Each side band consists of a positive peak and
a negative peak. Let AS be the area of one positive side-band
peak. All of these features are illustrated in Fig. 3. Note that
AS may be written as

AS =
∣∣∣∣
∫ ω0−2�

−∞
Êc(ω) dω

∣∣∣∣ = π E0 ω0 |β| g(0) (21)

if E0 > 0. Similarly, the areas of the left and right sides of the
central peak may be written as

AL ≈
∫ ω0

ω0−n
ωp

Êc(ω) dω (22)

and

AR ≈
∫ ω0+n
ωp

ω0

Êc(ω) dω, (23)

respectively. In the above integrals, n is a number larger than
1 but n
ωp � 2�, where 
ωp denotes the characteristic
width of the function g(ω), i.e., the bandwidth of the probe
field. Both AL and AR contain contributions from the sym-
metric g(ω − ω0) term in Eq. (20). However, if we take the
difference, AL − AR, these contributions cancel and only the
contribution from the term proportional to α remains, leading

to

AL − AR = 4πE0ω0αg(0). (24)

We may now use Eqs. (21) and (24) to write

|β|
α

= 4AS

AL − AR
. (25)

Recall that, when |β| > α, a subvacuum effect is present in
that 〈Eq

2〉 < 0 somewhere, but when |β| � α, the subvacuum
effect is absent. Equation (25) shows how detailed features
in the frequency spectrum of the probe wave packet can dis-
tinguish between these two situations. Specifically, if 4AS >

AL − AR, then 〈Eq
2〉 < 0 somewhere.

If g(ω) has the form of a Lorentzian function,

g(ω) = 
ωp

π
(

ωp

2 + ω2
) , (26)

it follows that AL − AR = 4E0ω0α/
ωp. As the central peak
is described by 2πE0g(ω − ω0), its area AC = AL + AR can be
approximated by AC ≈ 2πE0. Hence,

AS

AC
= 1

2π

(
ω0


ωp

)
|β|, (27)

and the asymmetry of the modified central peak can be de-
scribed by means of

AL − AR

AC
= 2

π

(
ω0


ωp

)
α. (28)

Here 
ωp/ω0 is the fractional linewidth of the probe field
spectrum.

In the previous section, we described the probe pulse as a
localized wave packet which tracks the region of 〈Eq

2〉 < 0 in
the background field, as illustrated in Fig. 1. Let τb = 2π/�

denote the period of the background field and τ be the ap-
proximate temporal duration of the probe wave packet, where
τ < τb. This implies that the probe-packet bandwidth, 
ωp,
must be larger than the background-field angular frequency �.
Hence (
ωp/ω0) > (�/ω0). However, the present discussion
of the effects of the background field on the probe-field
spectrum does not require such an assumption. Here we may
assume that the probe field is approximately monochromatic
and nonzero in both 〈Eq

2〉 < 0 and 〈Eq
2〉 > 0 regions, which

allows (
ωp/ω0) � 1.

B. Power spectrum of the probe field

In this subsection, we turn our attention to features of the
probe-pulse power spectrum, which is likely to be easier to
measure than is Êc(ω), the Fourier transform of the probe-
pulse electric field.

The energy per unit area per unit time carried by the probe
pulse in vacuum is given by the Poynting vector �S = �Ec × �Bc.
It follows that |�S| = |�Ec(x, t )|2 = |Ec(x, t )|2. Setting x = 0,
the total energy per unit area in the probe pulse can be
written as

u =
∫ ∞

−∞
|Ec(0, t )|2dt = 1

2π

∫ ∞

−∞
|Êc(ω)|2dω =

∫ ∞

−∞
P(ω)dω,

(29)
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FIG. 4. The power spectrum of the probe wave packet is here
illustrated. The effect of the background field is to produce a shift of
the central peak, and two double-peaked side bands at ω = ω0 ± 2�.
The area of the central peak where ω < ω0 is uL and that where ω >

ω0 is uR. The area of one positive peak of a side band is uS .

where Parseval’s theorem is used in the second equality. In the
above result we define the power spectrum of the probe field
as P(ω) = (1/2π )|Êc(ω)|2. Using Eq. (20), we find

P(ω) = 2πE2
0

{
g(ω − ω0)2 + 2ω0αg(ω − ω0)g′(ω − ω0)

+ω2
0α

2g′(ω − ω0)2 + 1
4ω2

0β
2[g′(ω − ω0 + 2�)2

+ g′(ω − ω0 − 2�)2]
}
, (30)

where we assume that 2� 	 
ωp, and thus cross terms
involving g′(ω − ω0 ± 2�) can be neglected. Recall that 
ωp

is the approximate width of the central peak in Fig. 3, while
2� is the separation of the side bands from the central peak.
The energy per unit area contained in the frequency interval
ω1 � ω � ω2 becomes

∫ ω2

ω1
P(ω)dω.

The power spectrum P(ω) has several features which are
similar to those of the frequency spectrum, which is illustrated
in Fig. 3. Both spectra have the central peak displaced to
the left of ω0 and side bands at ω = ω0 ± 2�. The power
spectrum is illustrated in Fig. 4 for the case where g(ω) is
the Lorentzian function given in Eq. (26).

The energy corresponding to the left and right sides of the
central peak are given respectively by

uL =
∫ ω0

ω0−n
ωp

P(ω)dω = E2
0

2
ωp

[
1 + 4ω0α

π
ωp
+ ω2

0α
2

2
ωp
2

]
,

(31)

uR =
∫ ω0+n
ωp

ω0

P(ω)dω = E2
0

2
ωp

[
1 − 4ω0α

π
ωp
+ ω2

0α
2

2
ωp
2

]
.

(32)

Here we have used Eqs. (26) and (30). The asymmetry in the
power spectrum about the central peak leads to the following
fractional asymmetry in the energy distribution associated
with the probe pulse:

uL − uR

uC
= 4

π

(
ω0


ωp

)
α, (33)

where uC
.= E2

0 /
ωp is the energy in the central peak in the
limit α = 0. This expression is the analog of Eq. (28).

Finally, the area of a side band is depicted in Fig. 4. The
energy carried by this part of the probe pulse is

uS =
∫ ω0−2�

−∞
P(ω)dω, (34)

which leads to the fractional energy in the side band,

uS

uC
= 1

16

(
ω0


ωp

)2

β2. (35)

In contrast to its analog for the frequency spectrum, Eq. (25),
the above expression is quadratic both in ω0/
ωp and in β.
Thus, if (ω0/
ωp)|β| � 1, measurement of uS/u0 could be
difficult. In this case, the frequency spectrum might become a
better probe of the presence of a subvacuum effect.

IV. MODE FUNCTIONS IN A RECTANGULAR
WAVEGUIDE

Let us now consider the specific case where an electromag-
netic wave propagates in a rectangular waveguide whose cross
section has dimensions a and b, respectively. This example
should provide a reasonable estimate of the magnitude of the
effects expected in an optical fiber, but is easier to compute in
detail. Suppose the boundaries are perfectly conducting and
the inner region is filled with a dielectric material whose linear
contribution to the electric permittivity is given by ε. Solutions
for the transverse electric modes propagating along the length
of the wave guide can be expressed as [26]

Bz = B0 cos
(πmx

a

)
cos

(πny

b

)
eiφ,

Bx = ik

γ 2

∂Bz

∂x
, By = − ik

γ 2

∂Bz

∂y
,

Ex = ω

k
By, Ey = −ω

k
Bx, Ez = 0. (36)

In a change from the notation of previous sections, the wave
is now propagating in the +z direction. Here φ = kz − ωt , k
is the wave number, m and n are positive integers,

γ =
√(πm

a

)2
+

(πn

b

)2
, (37)

and

ω = 1√
ε

√
γ 2 + k2 (38)

is the angular frequency of the mode.
These modes are normalized so that

1

2

∫
(ε|E|2 + |B|2)d3x = 1

2
ω (39)

is the zero-point energy of a single mode. This determines the
constant B0 to be

B0 = γ

√
2

abLεω
, (40)

where we impose periodic boundary conditions of length L in
the z direction.

Now we generalize the treatment in Sec. II and assume
that the quantized electric field is prepared in a multimode
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squeezed vacuum state. We assume that the excited modes
are associated with specific values of m and of n, but a finite
bandwidth of the wave number k. The mean-squared electric
field is now given by〈
Eq

2
〉 = 4

abLγ 2

[(πm

a

)2
sin2

(πmx

a

)
cos2

(πny

b

)

+
(πn

b

)2
cos2

(πmx

a

)
sin2

(πny

b

)]

×
∑

k

ω

ε
sinh rk[sinh rk − cosh rk cos(kz − ωt )], (41)

where rk denotes the squeeze parameter corresponding to
mode k. In the Appendix, we show that Eq. (41) satisfies a
quantum inequality bound. Next we average 〈Eq

2〉 over the
cross section of the wave guide, and let

∑
k → (L/2π )

∫
dk,

which leads to〈
Eq

2
〉 = 1

2πab

∫
dk

ω

ε
sinh rk[sinh rk − cosh rk cos(kz − ωt )].

(42)

As before, this quantity will be negative when cos(kz − ωt ) ≈
1. We assume that the squeeze parameter rk is different from
zero only within a finite bandwidth 
k about k = √

ε �. Here
the excited modes of the background field are in a finite
angular frequency band peaked at ω = �. This leads to the
value of 〈Eq

2〉 near its minimum of〈
Eq

2〉
min ≈ − �
k

2πabε
sinh rk (cosh rk − sinh rk ). (43)

Let us now examine the effects of the 〈Eq
2〉 < 0 regime on

the probe-pulse spectrum. The wave equation is the same as
Eq. (9), except for exchanging the variable x by z. The WKB
solution for Ec(z, t ) is now given by Eq. (16) with

f (z, t ) = −G sinh rk (cosh rk − sinh rk ), (44)

where

G = 3χ (3)�
k

4πabε2
. (45)

From Eq. (44), we identify the coefficients appearing in
Eq. (17) to be α = G sinh2 rk and |β| = G sinh rk cosh rk .
Note that both α and |β| grow exponentially as rk increases,
but their difference remains finite:

|β| − α = G sinh rk (cosh rk − sinh rk ) = G(1 − e−2rk )/2

≈ 1
2 G, rk � 1. (46)

It is this difference which determines the magnitude of the
subvacuum effect, which is our principal interest. Thus, we
consider the case where rk is of order 1 in the region where it
is nonzero. Then, in order of magnitude, we have

|β| ≈ α ≈ |β| − α ≈ G. (47)

The quantitiy (ω0/
ωp) α ≈ (ω0/
ωp) |β|, which ap-
pears in Eqs. (27), (28), (33), and (35) may be estimated from
Eqs. (45) and (47) as(

ω0


ωp

)
|β| ≈ 1.0 × 10−8

ε3

(
χ (3)

3 × 10−19 m2 V−2

)(

k

�

)

×
(

ω0


ωp

) (
1 μm

λb

)2 (1 μm)2

ab
, (48)

Recall that fractional asymmetry of both the frequency spectra
and the power spectra and the fractional area of the side bands
of the frequency spectra are all of the order of the quantity
in Eq. (48), while the fractional area of the side bands of
the power spectrum is proportional to its square. Note that
this quantity is proportional to the fractional bandwidth of the
background-field modes, 
k/�, which need not be especially
small, and inversely proportional to the fractional bandwidth
of the probe-field wave packet, 
ωp/ω0, which can be very
small. Hence, if we were to set ω0/
ωp ≈ O(108), which
is far from the narrowest possible line, we could have frac-
tional results described by Eqs. (27) and (28) of order 1.
However, the magnitude of ω0/
ωp is limited by the ap-
proximation used in the WKB solution given by Eq. (16),
which requires ω0 f t < 1, and so t < 1/(ω0 f ) ≈ 1/(ω0α) ≈
1/(ω0|β|). Thus, the Taylor-expanded solution for Ec(x, t ) is
restricted to times obeying this condition, which puts a lower
band on the bandwidth 
ωp of 
ωp � 1/t > ω0α (or 1/t >

ω0|β|). Hence, we need both (ω0/
ωp)α and (ω0/
ωp)|β| to
be smaller than unity. As a consequence, the various features
of the frequency and power spectra, AS/AC , (AL − AR)/AC ,
(uL − uR)/uC , and uS/uC , given in Eqs. (27), (28), (33), and
(35), respectively, all have to be small compared to 1. How-
ever, if the spectra can be measured to sufficient accuracy, it
may be possible to confirm the existence of the subvacuum
effect.

V. SUMMARY AND DISCUSSION

In this paper, we have explored some consequences of
a negative mean-squared electric field as an example of a
subvacuum effect, one where quantum fluctuations are sup-
pressed below the vacuum level. We consider the quantized
electric field in a squeezed vacuum state, where 〈Eq

2〉 <

0 in some regions. This forms a background field which
can increase the speed of propagation of a probe pulse in
a nonlinear material with nonzero third-order susceptibility.
This is an analog of the effect of negative energy density
in general relativity, which can increase the effective speed
of light.

Our primary concern is a search for systems where the
increased light speed, or related effects, in a nonlinear di-
electric might be observable. The fractional increase in light
speed is typically both very small, perhaps of the order of
10−9, and transient. However, in Sec. II, we discussed the
possibility that the probe-pulse wave packet can travel with
the region of negative mean-squared electric field, and hence
the phase shift from the speed increase might accumulate
to a measurable magnitude. In Sec. III, we discussed the
effects of a region where 〈Eq

2〉 < 0 on both the frequency
spectrum and the power spectrum of the probe pulse. We
showed that the details of these spectra can carry information
about whether the pulse has traveled through a region where
〈Eq

2〉 < 0. These ideas were developed further in Sec. IV
in the context of pulses in a rectangular waveguide. This
example allowed us to give some estimates of the magni-
tudes of the spectra features produced by a negative mean-
squared electric field, which indicate that they might be
observable.
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APPENDIX

In this appendix, we show that 〈Eq
2〉 in a rectangular

waveguide satisfies the quantum inequality constraint derived
in Refs. [8,10]. This constraint is a lower bound of the form〈

Eq
2
〉
� − C

τ 4
, (A1)

where 0 < C � 1 and τ is the temporal duration of the nega-
tive mean-squared electric field at a given point in space. The
inequalities derived in Refs. [8,10] generally require 〈Eq

2〉 to
be averaged in time with a sampling function of characteristic
width τ . However, here we have a finite bandwidth of excited
modes and can show that the results found in Sec. IV satisfy
Eq. (A1) without the need for time averaging.

We begin with Eq. (41), and note that 〈Eq
2〉 has its mini-

mum value as a function of time when cos(kz − ωt ) = 1 and

that the magnitudes of sine and cosine functions are bounded
above by unity, so

〈
Eq

2
〉
� − 1

πab

∫
dk

ω

ε
. (A2)

Here we have used Eq. (37) and the fact [see Eq. (46)]
that sinh rk (sinh rk − cosh rk ) � − 1

2 . This bound is similar
to the estimates given in Sec. IV, although here we do not
assume a spatial average over the waveguide cross section. As
before, we assume a bandwidth of excited modes in a wave-
number range 
k peaked near k = k̄, and hence in angular
frequency near ω = � =

√
(γ 2 + k̄2)/ε̄), where ε̄ = ε(�).

Because 
k < k̄ < �
√

ε̄, we may write

〈
Eq

2
〉
� − �2

π a b
√

ε̄
. (A3)

We have γ � πm/a and γ � πn/b. Because both m and n
are positive integers, we have

�2

πab
√

ε̄
� γ 2�2

π3mn
√

ε̄
� γ 2�2

π3
√

ε̄
<

√
ε̄ �4

π3
. (A4)

Finally, because ε̄ is of order 1, and τ is of order 1/�, we
obtain the quantum inequality bound, Eq. (A1).
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