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It is shown that tailored breaking of the translational symmetry through weak scattering in waveguides and
optical fibers can control chromatic dispersions of the individual modes at any order; thereby, it overcomes the
problem of coherent classical and quantum signal transmission at long distances. The methodology is based on
previously developed quantum control techniques and gives an analytic solution in ideal scattering conditions;
it has been also extended to incorporate and correct nonunitary effects in the presence of weak backscattering.
In practice, it requires scatterers able to couple different modes and carefully designed dispersion laws giving a
null average quadratic distortion in the spectral vicinity of the operational frequency.
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I. INTRODUCTORY COMMENTS

One of the major hindrances in information transmission
at long distances via multimode optical fibers is the spread in
arrival times of packages due to the discrepancy in the group
velocities for various modes [1,2]. At the same time, the dis-
persion effects need to be compensated for each of the modes
separately [3]. In classical single-mode optical networks the
most common solution is the dispersion compensating fibers.
In the multimodal scenario, the techniques are based on the
interconversion of the signal between different modes [4] or
alternative elegant suggestions involving principal orthogo-
nal modes [5] and adaptive optical modulators [6]. As far
as dispersion compensation in single-mode quantum signals
containing a low number of photons is concerned, the direct
extension of classical methods might not be straightforward
[7] since a compensation method may result in additional
photon losses. Quantum solitons [8,9] potentially remedy
such an issue but require sophisticated means of preparation.

This work elaborates the topic of overcoming these snags
by emulating a multimode waveguide with identical group ve-
locities of different modes and no quadratic dispersion. In par-
ticular, we show that breaking the translation invariance both
compensates for quadratic dispersion at any predetermined
order k of Taylor expansion and cancels the discrepancy in
group velocities. To the best of our knowledge, no scheme has
been suggested before solving this intriguing problem. The
proposed technique is based on previously developed ideas for
implementing quantum control [10] over compact semigroups
[11], but it also goes one step further by incorporating and
treating weak nonunitary effects (up to second order) arising
in the nonideal scenario.

The suggested method provides dispersionless propaga-
tion along the fiber or waveguide by perturbing the trans-
lational symmetry, similarly to fiber Bragg gratings [12,13]
and photonic band structures [14,15]. This becomes feasi-
ble via scatterers or mode couplers like those used in the

design of dispersion compensation filters for two [16–18]
and higher number of modes [4]. The followed approach
also bears some resemblance to multimode interferometers
[19], where several propagating modes are constructively or
destructively aggregated to formulate desired wave-front pat-
terns. Importantly, there are also similarities with the Talbot
effect [20], namely, the periodically repeated self-imaging in
a diffraction grating; indeed, the described concept concerns
a link between two distant points (emitter, receiver) and thus
repeats inevitably its unit cell and its dispersion-free response.
The main contribution of our method is that the discrepancy
in the mode dispersion laws can be compensated up to any
order k of the Taylor expansion around a given operational
signal frequency, in complete analogy with the regime of
quantum error protection [10,21] and similarly to the approach
of dynamic decoupling [22]. Moreover, the described scheme
can be extended to compensate for higher than quadratic order
distortion, once more advanced tailoring of the dispersion
laws is possible.

The structure of this paper is the following. In Sec. II,
we develop the method for two modes and illustrate it with
a simple rectangular waveguide. The exact expressions for
the mode dispersions permit us to suggest an explicit spatial
distribution of ideal generic scatterers coupling the modes and
thus backing the translational invariance. Note that the term
“ideal” abbreviates reflectionless scatterers, while the term
“generic” has an exact meaning: its own scattering action ma-
trix has to satisfy the so-called bracket generation condition
[10] (implying that the canonical set of commutators holds
as a complete basis for the given Hilbert-Schmidt space).
To this end, we derive k nonlinear algebraic equations in
analytic form, determining the positions {L1, . . . , LM} of M =
2k scatterers (making a single unit cell) such that signals
on the two modes propagate in phase, synchronously and
without dispersion, up to the Taylor expansion remainder of
kth order. In Sec. III, we extend the approach to the N-
modes dispersion problem and show that, in this case, the
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proper distribution of M = Nk generic ideal scatterers per
perturbation period can be found numerically. In Sec. IV, we
describe how the condition of ideal scatterers can be relaxed
and thus reflections (backscattering) are taken into account
by extending the theoretical techniques developed in [11]. In
Sec. V, we implement our method in the more involved case
of a four-mode waveguide employing nonideal scatterers.

II. METHODOLOGY FOR TWO MODES

A. Formulation

Let us consider two modes of a waveguide propagating
along z direction possessing the following tailored dispersion
laws around an operating frequency ω0:

β1(ω) ∼= β1(ω0) + β ′
1(ω0)(ω − ω0) + β ′′

1 (ω0)

2
(ω − ω0)2,

(1)

β2(ω) ∼= β2(ω0) + β ′
2(ω0)(ω − ω0) + β ′′

2 (ω0)

2
(ω − ω0)2,

(2)

such that our main requirement,

β ′′
1 (ω0) = −β ′′

2 (ω0), (3)

is fulfilled.
The propagation of such a two-mode signal at ω ∼= ω0

along a length L of the waveguide results in the accumulation
of mode phase factors, which can be written in matrix form as
a multiplication of the two-component mode amplitude vector
by a unitary matrix

P̂L = exp[−iL(σ̂zFz(ω) + FI (ω )̂I )], (4)

where {σ̂x, σ̂y, σ̂z} denote the Pauli matrices [21], Î is the
identity matrix, Fz(ω) = β1(ω)−β2(ω)

2 , and FI (ω) = β1(ω)+β2(ω)
2 .

Notably, as a result of the condition (3) for ω ∼= ω0, the
coefficient FI (ω) does not contain the quadratic dispersion
term (ω − ω0)2 in its Taylor expansion.

Our aim is to provide a control scheme which eliminates
the effect of Fz(ω) in the vicinity of ω0; therefore the signals
encoded in two modes will be received at the same time and
without dispersion. Accordingly, we introduce scatterers able
to couple the modes along the line of propagation and we treat
their positions as the control parameters of the problem.

Let us consider scatterers possessing the following scatter-
ing matrix:

Ŝ = exp [iFS (ω )̂s], (5)

where ŝ is a generic traceless 2 × 2 Hermitian matrix. This
unitary model describes only forward scattering, and in
Sec. IV we show how the general case can be treated.

In this context, our intention is to eliminate dispersion up
to 3rd order of the Taylor expansion and thus we are using
three scatterers at positions {L1, L2, L3} along the propagation
axis. Apparently, the total transfer matrix of this system reads

T̂ =
1∏

m=3

(e−iLm σ̂zFz (ω)eiFS (ω )̂s), (6)

with a common phase factor e−i(L1+L2+L3 )FI (ω )̂I . If T̂ equals
a nondegenerate square root of the identity matrix [11] with
accuracy of the order of (ω − ω0)3, then by spatially repeating
twice the aforementioned triad of scatterers, the overall dis-
persion is canceled into the formed unit cell. Formally, this re-
quirement implies that the linear coefficient c1(L1, L2, L3, ω)
in the characteristic polynomial

Det(T̂ − λ̂I ) = λ2 + c1(L1, L2, L3, ω)λ + 1 (7)

vanishes together with its two first frequency derivatives,

c1(L1, L2, L3, ω)|ω=ω0
= 0,

∂c1(L1, L2, L3, ω)/∂ω|ω=ω0
= 0,

∂2c1(L1, L2, L3, ω)/∂ω2|ω=ω0 = 0. (8)

In such a case, T̂ 2 becomes the identity matrix up to a cubic
correction, namely, T̂ 2 = eσ̂O((ω−ω0 )3 ), where σ̂ is a 2 × 2
matrix of norm 1. Therefore, both waveguide modes have
identical phase shifts 2(L1 + L2 + L3)FI (ω), lacking quadratic
terms in their Taylor expansion over frequency; such a feature
makes the signal propagate with identical group velocity in
both modes and with no quadratic dispersion. Obviously,
unit cells repeat themselves between transmitter and receiver,
however distantly they are placed. It should be also stressed
that the identification of square root of unity [11] via the
characteristic polynomial, instead of the unity itself, permits
analytic expressions.

B. Example

As an example, we consider a rectangular a × b waveguide
with conducting walls, shown in Fig. 1(a). If we regard a
frequency-dependent refraction index n(ω) for the material
that fills it, then the scalar magnetic potential of the represen-
tative ( j, l ) mode, given by Aj,l = sin (π j x

a ) sin (π l y
b )e−iβ j,l z,

follows the dispersion law:

β j,l (ω) =
√

n2(ω)
(ω

c

)2
−

(
jπ

a

)2

−
(

lπ

b

)2

. (9)

We assume a locally inverse quadrature profile for n(ω) ∼= 1 +
15

16−(aω/c)2 and select an operation point (a = 2b, ω0
∼= 3.1c/a)

where only two modes are guided: ( j = 1, l = 1) and ( j =
2, l = 1), whose spatial profiles are shown in Fig. 1(a). In this
context, one can find a regime where the dispersion ∂2β/∂ω2

at ω0 for the first mode is opposite to that of the second one.
At a specific point z = Lz along the propagation axis, one

locates a scatterer flipping the amplitudes of the modes. This
can be achieved, for instance, via antisymmetric Gaussian
perturbation of the refraction index. By choosing the size δn
of the refraction index perturbation,

	n = δn e− (z−Lz )2

h2 e− y2

α2 [e−x2/α2 − e−(x−a)2/α2
], (10)

the internal products of two modes, i.e., V1,2 =∫∫∫
	n(x, y, z)A1,1(x, y, z)A1,2(x, y, z)dxdydz, can be set

in such a way that the operator Ŝ is generated by an operator
ŝ proportional to the Pauli matrix σ̂y. More specifically,
ŝ = Fy(ω)σ̂y with Fy(ω0) = π/2, under the assumption of
smooth perturbation guaranteeing negligible backreflection.
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FIG. 1. (a) Sketch of a rectangular a × b waveguide with con-
ducting walls and suitable perturbation 	n of the refractive index.
The spatial profiles of the modes with wave numbers β1,1, β2,1 are
also depicted. (b) Dispersion law for the two first modes of rectan-
gular waveguide (a = 2b) for suitable inverse quadrature dispersion
n(ω). The slopes of derivatives dβ/dω are opposite at ω ∼= 3.1c/a
as shown in the inset. (c) Variation of a quantity becoming equal to
one if our conditions (8) are fulfilled as a function of the distances
(L1, L2) normalized by waveguide width a.

The refractive index change is schematically depicted in
Fig. 1(a) as ellipses corresponding to a scatterer being
responsible for mild positive (+) and negative (−) variations
δn. Such a scatterer has a length h longer that the maximum
mode wavelength but much shorter than the inverse of the
mode wave-vector difference 	β = β1,1 − β2,1.

In order to find the placements of the scatterers which
will eliminate dispersion, we derive the analytic expression
for the linear coefficient c1(L1, L2, L3, ω) of the characteristic
polynomial (7):

c1(L1, L2, L3, ω)

= 2[cos Fy(ω) − cos3 Fy(ω)]

×

⎧⎪⎨⎪⎩
cos[Fz(ω)(L1 − L2 − L3)]

+ cos[Fz(ω)(L1 + L2 − L3)]

+ cos[Fz(ω)(L1 − L2 + L3)]

⎫⎪⎬⎪⎭
− 2 cos3 Fy(ω) cos[Fz(ω)(L1+L2+L3)]. (11)

In the vicinity of ω ∼= ω0, cos Fy(ω) ∝ (ω − ω0), and there-
fore, to be consistent within the third-order remainder ap-
proximation, the term proportional to cos3 Fy(ω) has to be
ignored. In this way, c1 vanishes automatically at ω = ω0

and the demand for zero derivatives (8) gives two equations
with three unknowns {L1, L2, L3}. Accordingly, a continuous
family of solutions can be determined numerically, which
is trivially discretized after imposing the additional physi-
cal requirement (L1 + L2 + L3)FI (ω0) = 2vπ for integer v.

Apparently, the obtained lengths should be positive quan-
tities; otherwise one more free parameter (additional scat-
terer) may be added. For a specific setup, namely, v = 10,
ω0

∼= 3.1c/a, we obtain Fz(ω0) ∼= 1.14/a, FI (ω0) ∼= 6.50/a
and we numerically find one of many possible solutions for
the locations of the three scatterers (L1 + L2 + L3

∼= 9.67a ⇒
L3

∼= 9.67a − L1 − L2). For this example, one can define the
quantity ε

|c′
1(ω0 )|2+|c′′

1 (ω0 )|2+ε
for small ε > 0, which reaches a

unitary value only if all the conditions (8) are fulfilled. Note
that we obtain c1(ω0) = 0 automatically since Fy(ω0) = π/2.
In Fig. 1(c), we represent the aforementioned quantity on the
map (L1/a, L2/a), while the combinations giving L3 < 0 are
labeled as “forbidden region.” It is easily observed that there
are multiple (eight of them are depicted in the considered
parametric box) pairs of distances (L1, L2) giving designs that
satisfy the constraints (8). If one chooses L1

∼= 3.38a and
L2

∼= 4.15a, one obtains the following transfer matrix for a
single unit cell:

T̂ 2 ∼= ei10−5(3.4σ̂x+4.7σ̂y+0.17σ̂z )(ω−ω0 )3(a/c)3
, (12)

with a common phase factor proportional to
ei[166(ω−ω0 )a/c+420(ω−ω0 )3(a/c)3]̂I . Indeed, almost dispersion-free
propagation (up to second Taylor order) is achieved.

III. GENERALIZING TO k TAYLOR ORDER
AND TO N MODES

To better ensure the identity of propagating signals in
different modes, the order k of the Taylor remainder can be
increased at will. In particular, the system (8) for such a case
has to be extended to incorporate more scatterers and requires
zero higher-order derivatives up to ∂k−1c1/∂ωk−1 at ω = ω0.
Eliminating the higher-order terms also in the common phase
of the modes requires additional tailoring of the frequency-
dependent n(ω), potentially with help from the paradigm of
metamaterials [23].

We now consider the general formulation of the problem in
the case of N modes with different dispersion laws βl (ω). The
initial aim is to achieve a breaking of translational symmetry
so that all modes have identical dispersions up to the kth order
correction of their Taylor expansion. As earlier, we consider a
sequence of scattering transformations

T̂ ({Lm}, ω) =
1∏

m=M

(e−iLmφ̂(ω)eiχ̂ (ω) ), (13)

where χ̂ (ω) is a generic frequency-dependent N × N Her-
mitian scattering action matrix and φ̂(ω) is a real traceless
diagonal N × N matrix. The elements of φ̂(ω) are given by
φll (ω) = βl (ω) − 1

N

∑N
j=1 β j (ω) describing the mode phase

difference accumulation per unit waveguide distance. Note
that the essential number of scatterers M is suitably dependent
both on the number of modes N and the accuracy order
k. The average mode wave vector β0(ω) = 1

N

∑N
j=1 β j (ω)

contributes with a global phase β0(ω)
∑M

m=1 Lm, which is
factored out from the product (13). By analogy to (3), we
can assume no second-order dispersion, namely, β ′′

0 (ω0) =
1
N

∑N
j=1 β ′′

j (ω0) = 0, and try to identify the length intervals
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M>4kN scatterers
... ...

Ι 1/2N

FIG. 2. Depictions of the proposed dispersionless propagation
link comprised by multiple unit cells, each of which contains several
scatterers. (a) In the absence of reflections N unit cells are required
and M = kN scatterers per unit cell. Each unit cell has a scattering
matrix equal to Î1/N , making an overall unitary response Î . (b) In
the presence of reflections (backscattering) requiring 2N unit cells
(double number of modes due to the oppositely propagated waves)
and at least M � 4kN scatterers per unit cell.

{Lm} such that T̂ is a nondegenerate N th root of the identity
operator Î up to the O[(ω − ω0)k] term.

To this end, we consider the characteristic polynomial

Det(T̂ − λ̂I ) = λN +
N−1∑
j=1

c j ({Lm}, ω)λ j + eiϕ({Lm},ω) (14)

and require that at ω = ω0 all coefficients {c j} vanish to-
gether with all their (numerically determined) derivatives up
to (k − 1)th order. In addition, we demand that ϕ({Lm}, ω0) =
2vπ , where v is an integer number (with v < N to avoid
degenerate roots of unity [11]), and again zero derivatives
for its first (k − 1) Taylor orders. All together we impose
M = kN conditions on kN variables {Lm} and obtain an
M × M system of nonlinear algebraic equations to be solved
numerically for given φ̂(ω) and χ̂ (ω). Once a solution is
found, the repetition of the scattering sequence N times, cor-
responding to the matrix T̂ N ({Lm}, ω) = eO[(ω−ω0 )k ], results in
the required propagation with the aforementioned common
phase Nβ0(ω)

∑M
m=1 Lm. In Fig. 2(a) we provide an abstract

depiction of the proposed dispersionless concept.

IV. INCORPORATING BACKSCATTERING

Up to now, the method assumes ideal scatterers for mode
coupling and control. However, it requires a substantial
amount of scatterers along the transmission line; thus, even
if the reflections are negligible for a single scatterer, the
cumulative effect cannot be ignored. For this reason, we
consider here the general case where the scattering matrix
Ŝ connecting the two incoming N-mode signals with the
corresponding outgoing ones obeys only to the requirement
|Det̂S| = 1. Accordingly, the transfer matrix T̂S , correspond-
ing to Ŝ, only satisfies |DetT̂S| = 1 without necessarily being a
unitary matrix. In this scenario, we need at least 4 times (4kN)
more scatterers compared to the reflectionless case (kN) in
order to achieve a similar-quality outcome. That is because

we have not only forward but also backward modes developed
and additionally, not only the phase but also the magnitude of
the transmission coefficients should also be engineered.

If M � 4kN scatterers are placed at different positions,
separated by distances or lengths Lm, the total (nonunitary)
transfer matrix T̂ of the 1

2N part of the unit cell is given by

T̂ =
1∏

m=M

(T̂mT̂S ). (15)

Our aim is to identify such lengths {Lm} so that the total
transmission matrix T̂ is equal, up to some approximation,
to T̂ ∼= Î

1
2N . Therefore the overall transfer matrix T̂ 2N of the

unit cell will be proportional to identity with a common phase
factor.

The positions {Lm} of the scatterers are determined in a
similar way as in the reflection-less system (introduced in
Sec. III). However, when backscattering is not negligible, we
have to simulate an overall unitary transfer matrix [identity
matrix with approximation (ω − ω0)k] by using nonunitary
blocks. It should be also stressed that the quantum control
analysis [11], invoked in this current work, does not hold for
nonunitary operations and there is no guarantee on a “perfect”
outcome of the method. For this reason, we introduce a
performance indicator of the derived solution showing how
close to unitary is the obtained transfer matrix. In particular,
we define a quantity indicating the nonunitary character of a
matrix X̂ : g(X̂ ) = ∑

l |λl (̂I − X̂ X̂ †)|, where λl (D̂) is the lth
eigenvalue of the matrix D̂; when D̂ is unitary, g(D̂) = 0. In
this way, one can evaluate it for the total matrix g(T̂ 2N ) and
compare it with g(T̂S ), referring to the transfer matrix of the
single scatterer, which is the cause of reflections. If the former
quantity is much smaller (say, 1 order of magnitude) than the
latter one, we may claim that the method yields an acceptable
result, since the whole system (comprising multiple elements)
is much less nonunitary than a single element. Similarly to
Fig. 2(a), in Fig. 2(b) we depict the presented propagation link
in the presence of reflections and thus two times more modes
appear, requiring 2N unit cells for an overall dispersion-free
transmission Î; as explained above, each unit cell should
incorporate M � 4kN imperfect scatterers for a good approx-
imation of the necessary scattering matrix Î1/2N .

V. NONIDEAL SCATTERING BASED ON TUBE
WAVEGUIDE PERTURBED BY TWISTS

A. Model analysis

Let us consider a realization of the idea in a waveguide
that is more involved compared to the rectangular two-mode
metallic pipe but still mostly analytically tractable. We assume
a hollow circular dielectric cylinder (of refractive index n)
with inner radius a and outer radius b whose supported modes
(e+iωt−iβz) can be easily determined. In Fig. 3(a), we consider
n ∼= 2.26 (polyethylene at ω ∼= (2π )3 GHz), b = 5a/3, and
show the dependence of βa as function of ωa/c for the first
four modes of the device; all the curves lie within the two
dashed lines β = ω/c and β = nω/c. In particular, we con-
sider a first-order (l = ±1) azimuthal e±ilθ profile, while the
first subscript ( j) in the wave number β j,l denotes the serial
number of the mode. In Fig. 3(b), we represent the normalized
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FIG. 3. (a) The dimensionless wave number βa as function of
ωa/c corresponding to the first four supported modes by an unper-
turbed hollow tube waveguide with internal radius a, external radius
b, and refractive index n. (b) The dispersion d2β/dω2

a/c2 of two modes
giving opposite values at the frequency ω0 indicated by vertical
dashed line. (c), (d) Spatial profiles of the z electric components
of the employed modes at constant-z plane: β2,1 [Fig. 3(c)] and β3,1

[Fig. 3(d)].

dispersion c2

a
d2β

dω2 with respect to ωa/c for two modes (β2,1,
β3,1) and we clearly see that for specific frequencies ω, one
can achieve opposite second derivatives for propagation wave
numbers β. For example, at ω0

∼= 3.6c/a [indicated by the
black vertical dashed line in both Fig. 3(a) and Fig. 3(b)], we
find for the second (β2,1

∼= 6.83/a) and the third mode (β3,1
∼=

5.02/a) that the required condition is fulfilled: d2β3,1/dω2 ∼=
−d2β2,1/dω2 ∼= 0.28a/c2. In Figs. 3(c) and 3(d), we show the
normalized transversal profiles of the (axial) electric field of
the used modes at a constant-z plane. Since at the considered
frequency the dispersions are opposite, alternating power
along the z axis between these two modes will suppress the
overall signal distortion.

In order to implement the proposed dispersion control
technique in a real-world analog of the aforementioned con-
figuration, we choose the role of the scatterers to be played by
mild deformations in the shape of the waveguide’s cylindrical
boundaries. Such a structural imperfection mixes the guided
modes towards both directions (forward and backward) and
provides low level of reflections. In the following, we are
not rigorously solving the formulated boundary value problem
but only heuristically obtain the effective scattering matrices
incorporated in the proposed method. In particular, we show
the key algebraic steps for deriving an approximate solution,
providing us with the scattering characteristics of these mild
ridges while capturing the basic physics of the problem. For
this reason, we avoid including all the cumbersome expres-
sions and referring to all the relevant details or assumptions
leading to the approximate solution, since it goes beyond the
scope of this study. Therefore one can employ a perturbed
cylindrical coordinate system (with small parameter γ ) at

(a) (b)

single
scatterer

Z(z)

zR(r)

TS

ra

b

n
air

air

FIG. 4. Sketches of (a) a small segment of the perturbed waveg-
uide with average internal radius a and external b, which is hollow
and filled with material of refractive index n. (b) The coordinate sys-
tem, for a fixed radius r, describing a single scatterer (with transfer
matrix T̂S) whose net perturbation at both its surfaces (internal or
external) disappears far from it.

which the Laplace operator is no longer just a sum of second
derivatives but includes more terms proportional to strength γ .
Into such a system, the Cartesian (x, y) coordinates are written
in the form

x = {r + γ p(r, z) cos[2θ + ψ (z)z]}
× cos {θ − γ q(r, z) sin[2θ + ψ (z)z]},

y = {r + γ p(r, z) cos[2θ + ψ (z)z]}
× sin {θ − γ q(r, z) sin[2θ + ψ (z)z]}, (16)

where (r, θ, z) are the cylindrical coordinates and ψ (z) is a
pseudo-wave-vector function stating how the initial phase is
changed along the z axis. The functions p, q are then chosen
in such a way that the Jacobian remains equal to r (as in the
simple cylindrical case) up to the second-order terms in γ .
Such a condition is equivalent to

∂ p(r, z)

∂r
+ p(r, z)

r
− 2q(r, z) = 0. (17)

One can assume separable forms for functions p, q,
namely, p(r, z) = Z (z)R(r) and accordingly, q(r, z) =
Z (z)

2 (R′(r) + R(r)
r ). We can choose as R(r) a function

creating a symmetric perturbation of the radial boundaries
proportional to γ around their average values r = a, b,
namely, R(r) = (r − a2+b2

a+b )r. Furthermore, we take a
linear phase change along the z axis with a constant
pseudo wave vector ψ (z) = ψ , but most importantly,
we adopt an oscillating profile for Z (z), possessing an
envelope vanishing far from z = 0, which is the scatterer’s
position. More specifically, we pick Z (z) = Q sin(uz)

sinh( πz
2w

) ,
whose Fourier transform (z � kz) has the simple form
F{Z (z)} ∼ Qw{tanh[(kz + u)w] − tanh[(kz − u)w]}.

In Fig. 4(a), we show a segment of the perturbed waveguide
with average boundaries r = a, b filled with dielectric mate-
rial of nondispersive refractive index n for the aforementioned
selection of functions {R(r), Z (z), ψ (z)}. The perturbed coor-
dinate lines across a longer part of the waveguide correspond-
ing to a single scatterer (with matrix T̂S) that provides mode
coupling with negligible reflections, are depicted in Fig. 4(b).

In order to approximately evaluate the transfer matrix of
the scatterer, we use the modes of the well-established unper-
turbed cylindrical waveguide [of Fig. 3(a)] with z-dependent,
slowly varying amplitudes and plug them into the Helmholtz
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equation. To this end, we project the obtained expressions to
the same set of modal profiles and integrate over the cross
section of our tube [24,25]. In this way, the modes of opposite
angular momentum order ±l are getting coupled, unlike what
is happening in the unperturbed analog, that is, because the
geometry of the waveguide [as shown in Fig. 4(b)] discerns
the right-handed e−ilθ propagation from the left-handed e+ilθ

propagation.

B. Transfer matrix evaluation

Let us work with the two modes β2,1 and β3,1 of Fig. 3(a)
and their opposite angular momentum counterparts(β2,−1 and
β3,−1), exhibiting opposite dispersion at ω ∼= ω0 as demon-
strated at Fig. 3(b); note that the total number of modes is
eight because both directions of propagation are taken into
account. The 8 × 8 transfer matrix of the scatterer of Fig. 4(b)
has the form

T̂S = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩i

⎡⎢⎢⎢⎢⎣
Ô X̂ FF

1,−1 Ô X̂ FB
1,−1

X̂ FF
−1,1 Ô X̂ FB

−1,1 Ô

Ô X̂ BF
1,−1 Ô X̂ BB

1,−1

X̂ BF
−1,1 Ô X̂ BB

−1,1 Ô

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (18)

where Ô is the 2 × 2 zero matrix and the rest of the 2 × 2 blocks X̂ have superscripts indicating forward (F ) or backward (B)
waves and subscripts referring to right-handedness (l = −1) or left-handedness (l = +1) of the corresponding modes.

We consider the same parameter set defining the unperturbed configuration used in Figs. 4(a) and 4(b), namely, n ∼= 2.26,
b = 5a/3, ω0

∼= 3.6c/a ∼= (2π )3 GHz and suitable values for the perturbed waveguide boundaries, namely, u = 2, w = 4,
ψ = 1.78, Q = 0.2. In such a scenario, the 2 × 2 blocks X̂ of (18) have explicit forms given by (19) and (20), with the
numerical values directly stemming from the coupling analysis discussed above. Note that the transfer matrix T̂S = T̂S (ω) is
frequency dependent since � = ω−ω0

ω0
is the relative frequency shift, while the auxiliary functions of � used in (19) and (20) are

defined as follows [�� = �(� − 61.65) − 55.95, �� = �(� + 68.53) + 45.46, F�(x, y) = cosh[�(0.22� + x) + y] + 3.76,
and G�(x) = cosh(14.70� + x) + 3.76]:

[
X̂ FF

1,−1 X̂ FB
1,−1

X̂ FF
−1,1 X̂ FB

−1,1

]
∼=

⎡⎢⎢⎢⎢⎢⎣
−0.73i

��

−1.94−20.95i
F�(0.77,2.33)��

−15.15i
F�(−13.92,−9.11)��

−1.94−20.95i
G�(7.93)��

−1.94+20.95i
F�(0.77,−4.70)��

1.22i
��

−1.94+20.95i
G�(7.93)��

25.34i
F�(15.47,6.74)��

−2.75i
��

−1.94−20.95i
F�(0.77,−0.03)��

−15.15i
F�(−13.92,−11.48)��

−1.94−20.95i
G�(10.30)��

−1.94+20.95i
F�(0.77,−2.33)��

4.60i
��

−1.94+20.95i
G�(10.30)��

25.34i
F�(15.47,9.11)��

⎤⎥⎥⎥⎥⎥⎦, (19)

[
X̂ BF

1,−1 X̂ BB
1,−1

X̂ BF
−1,1 X̂ BB

−1,1

]
∼=

⎡⎢⎢⎢⎢⎢⎣
15.15i

F�(−13.92,−16.15)��

1.94+20.95i
G�(14.96)��

0.73i
��

1.94+20.95i
F�(0.77,−4.70)��

1.94−20.95i
G�(14.96)��

−25.34i
F�(15.47,13.78)��

1.94−20.95i
F�(0.77,2.33)��

−1.22i
��

15.15i
F�(−13.92,−13.78)��

1.94+20.95i
G�(12.60)��

2.75i
��

1.94+20.95i
F�(0.77,−2.33)��

1.94−20.95i
G�(12.60)��

−25.34i
F�(15.47,11.41)��

1.94−20.95i
F�(0.77,−0.03)��

−4.60i
��

⎤⎥⎥⎥⎥⎥⎦. (20)

Note that the model of Figs. 4(a) and 4(b), represented
by the perturbed matrix of the single cell (18) comprising
(19) and (20), does not couple modes of same angular mo-
mentum order l . Such a property constitutes a major snag in
implementing the proposed method since it is based on the
concept of blending the supported modes in all nondegenerate
ways. Ideally, such a weak point may be remedied by placing
before the scatterer an additional object, like a segment with
longitudinally changing cross section or a gyrotropic slab,
that realizes the missing coupling. However, since we are
not analyzing the corresponding setup of Fig. 4 rigorously
anyway, we emulate the effect of the aforementioned ob-
jects by inserting small nonzero elements at the positions
we need them in the matrix. An additional deficiency of the
obtained transfer matrix is its tiny mixing angles (between
different modes), which require an extremely large number
of scatterers for a successful implementation of the proposed
method. Therefore, in order to present a numerical example
with a tractable number of scatterers per unit cell, we ar-
tificially boost the unitary character of the derived transfer
matrix.

C. Method implementation

After evaluating the matrix of the single scatterer T̂S (�)
according to (18) and performing the aforementioned modi-
fications, we can find the total transfer matrix T̂ = T̂ (�) ac-
cording to (15), which is additionally dependent on the lengths
{Lm} for m = 1, . . . , M. Since we consider a dispersion-
free approximation up to k = 3 Taylor order correction and
employing N = 4 modes (for each direction), we need at
least 4kN = 48 scatterers per unit cell. For reasons related to
satisfyingly imposing the constraints at around ω = ω0, our
choice is M = 54. To this end, we regard the characteristic
polynomial Det(T̂ − λ̂I ) = λ8 + ∑7

j=0 c jλ
j , where |c0| = 1;

note that the coefficients c j = c j ({Lm},�) for j = 1, . . . , 7
are also functions of the lengths between the scatterers {Lm}
for m = 1, . . . , M and the relative frequency shift �. In this
way, we obtain the objective functional Obj on {Lm} parame-
ters

Obj =
3∑

j=1

{
W |c j ({Lm}, 0)| + ∂|c j ({Lm},0)|

∂�

+ ∂2|c j ({Lm},0)|
∂�2

}
, (21)
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|T 8|

dB diagonal non-

(a) (b)

diagonal

FIG. 5. The optimal solution of scatterer positions minimizing
(21) for the numerical setup of Secs. V B and V C applied to the
model of Fig. 4 at ω = ω0 ⇒ � = 0. (a) The magnitudes (in dB
on column and row map) of the elements of the (eighth power of)
unit-cell total transfer matrix T̂ 8 at the central operating frequency
ω = ω0. (b) Representation of the elements of the same matrix on
the complex plane, where two clusters are formulated: one corre-
sponding to the diagonal and another to the nondiagonal elements.
Therefore, the unit cell very mildly distorts the signal while the
reflections are almost negligible. The variation of the phase of the
diagonal elements is shown in the inset where the π value is marked
by a dashed line.

where W is a weight factor of two decimal orders.
We perform a random search (∼105 trials) on different sets

of lengths {Lm} and we select the ones for which the metric
Obj of (21) falls below a specific threshold. By using these
sets as initial points, we continue with a gradient method
on the objective functional in the space of length parameters
where the derivatives are numerically calculated at each step.
Eventually, among all final points of all trajectories in the
{Lm} space, we select the point reaching the lowest final
value for Obj({Lm}). Therefore the optimal solution for the
lengths is obtained and the transfer matrix T̂ of the unit cell
is close to identity Î (with a common phase π ). Such an
outcome is demonstrated in Fig. 5(a), where the magnitude
of the elements of the matrix T̂ N = T̂ 8 is shown in dB
(logarithmic scale, 10 log10 |T̂ 8|) as a function of the respected
row and column. Indeed, the elements across the diagonal are
of unitary magnitude whereas the values fall rapidly away
from it. In Fig. 5(b), we represent the elements of T̂ 8 on the
complex plane where two clusters of dots are formulated. The
first set of points is concentrated around the value (−1) = eiπ

and correspond to the diagonal elements of the matrix; on the
contrary, all the other elements are crammed around the origin
possessing small values. In the inset of Fig. 5(b), we show the
phases (complex arguments) of the diagonal elements [T̂ 8] j j

as a function of their own index j and it is clear that all of
them are very close to the common phase π , indicated by a
dashed line.

Given the fact that the information signal is not a single
tone but distributes its power in other frequencies around
ω = ω0, it is meaningful to test the performance of our
method in the vicinity of � = 0. In Fig. 6(a) we represent
the nonunitarity indicator g of the overall matrix T̂ 8 as a
function of � and we assess that it is much smaller than the
corresponding quantity of the single scatterer g(T̂S ) ∼= 0.15
for a moderate range around ω = ω0. Finally, in Fig. 6(b)
we show the standard error (SE) deviation of the diagonal

g(T 8)

g(TS)

-0.01

(a) (b)

-0.005 0 0.005 0.01

10-2

10-1

100

SE

FIG. 6. (a) The nonunitarity indicator g of the (eighth power
of) entire unit-cell transfer matrix T̂ 8 compared to that of a single
scatterer T̂S as a function of the normalized frequency difference � =
ω−ω0

ω0
. (a) The standard error deviation SE of the diagonal elements

of the matrix T̂ 8 as a function of �.

elements of the matrix T̂ 8 from the ideal value (−1) leading to
dispersionless propagation, as a function of � across a more
extensive band (0.01 < �<0.01). We notice its extremely
small value retained throughout the part of the band used
in Fig. 6(a) (0.001 < � < 0.001), which demonstrates the
success of the proposed and followed technique. On the other
hand, we can observe the substantial (by more than 2 orders
of magnitude) increase in SE for |�| > 0.001, which restricts
the operational frequencies that dispersion-free transmission
is achievable.

With this example, we have demonstrated that our method
can correct dispersion together with backscattering effects
up to second order; however, this also indicates some char-
acteristics of the scattering model essential for a realistic
implementation of the proposed method. In particular, one
should choose (or eventually engineer) a scatterer without
degeneracies on the eigenvalues of the involved generators,
providing simultaneously large mixing of angles at a weak
backscattering regime.

VI. CONCLUDING REMARKS

The method that we describe in this work provides a path-
way for coherent and dispersion-free propagation via suitable
placement of weak scatterers that couple the supported modes.
We report elimination of discrepancies in group velocities
of different modes, vanishing quadratic dispersion at any
Taylor order, and dispersion compensation at higher orders.
The resolutions are applicable to both classical and quantum
multimode networks; however, we think that quantum com-
munications, with their various multimode entangled states,
offer more opportunities for applications of the suggested
technique. Our approach can produce phase-matching condi-
tions along extended distances and thereby induce nonlinear
coupling between the quantum fields of different modes, even
for a typically weak nonlinear permeability.

Even though the examples provided in this paper concern
spatial transversal modes, the method is equally applicable
to angular momentum vectors which are currently attracting
increasing interest [26] as well as to polarization states of
quantum light. Finally, if seen from another point of view,
we develop a method for achieving an effective “unity” in
propagation. But starting from “unity” one can use numerical
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methods in order to engineer any desired unitary transform
[11]; thus our results can be simply extended to design
arbitrary signal transformers by using as elements nonideal
scatterers placed at specified positions.
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