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We studied the Hanbury Brown and Twiss (HBT) bunching effect of discrete chaotic light sources. It is
found that, for periodical discrete chaotic light sources, the HBT bunching effect collapses first but then revives
repeatedly at specific transverse distances between two detectors in the far-field detection plane, which is very
different from the HBT bunching effect with a spatially continuous chaotic light source. Such transverse revivals
of the HBT bunching effect are the result of in-phase superposition of all discrete two-photon eigen modes
of the periodical discrete chaotic light sources. In addition to the integer HBT bunching revival, the fractional
HBT bunching revival can also be observed with nonperiodical discrete chaotic light sources due to the in-phase
constructive interference of parts of the two-photon eigen modes. Experimental verification on both the integer
and the fractional HBT bunching revivals are given. The transverse revival and fractional revival of the HBT
bunching effect provide an efficient way for imaging processing such as ghost image copy in the detection plane.
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I. INTRODUCTION

Discrete systems are universal in nature, from micro-
scopic elementary particles, atoms and molecules, meso-
scopic nanoparticles and structures, and macroscopic period-
ical structures such as gratings and optical waveguide arrays,
to even cosmoscopic objects, which are of very different
physical properties from the continuous systems. Poincaré
recurrence theorem indicates that systems with discrete eigen
values will eventually return arbitrarily close to its initial state
[1,2], which is generally called the revival effect of quantum
wave packet [3] extensively studied in many bounded quan-
tum systems such as the infinite well [4–6], the harmonic
oscillators [7–9], the Rydberg atoms [10–12], the two-level
atoms interacting with coherent fields [13–17], a collection
of anharmonically confined atoms [18], and even the macro-
scopic Bose-Einstein condensates [19–22], just to mention
a few. The underlying physics for the revival and fractional
revival of the wave packets is the in-phase superposition of
the discrete eigen wave functions of the bounded quantum
systems after the collapse of the initial states due to the
dephasing evolution among the discrete eigen wave functions
[3,23]. The wave-packet revival is not only of fundamental
importance to understand the correspondence principle which
is at the heart of quantum mechanism but also of technical
significance in the development of novel techniques to control
or produce specific quantum states.

In optics, a large amount of revival effects were reported
in various linear and nonlinear systems in both the spatial
and frequency domains [24–31]. A typical revival effects in
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optics is the Talbot effect [24], which manifested itself as re-
peated self-imaging of the objects at certain regular distance,
the so-called Talbot distance, in the longitudinal propagation
dimension when light transmits through periodical structures
such as gratings. Rayleigh first interpreted the Talbot effect
as a consequence of the interference among spatially coherent
diffracted light from the gratings [32]. Lau found that such
self-imaging effect can also be observed even under incoher-
ent illuminations [25]. Much attention has been paid to the
Talbot effect and the development of related applications such
as optical imaging processing, optical lithography, optical
metrology and spectrometry [33–35]. New Talbot effects,
such as discrete Talbot effect in waveguide arrays [27] and
nonlinear Talbot effect with periodically poled lithium tanta-
late crystals [29], were also reported. The Talbot self-imaging
technique can also be extended to various areas such as x-
ray, electron microscopy, plasmonics, acoustics, and Bose-
Einstein condensates [33,34].

One may note that all the above-mentioned revival and
fractional revival effects are based on the first-order in-phase
constructive interference. For optical fields, the second-order
optical coherence was discovered by Hanbury Brown and
Twiss (HBT), known as the HBT bunching effect of thermal
light [36,37], and the second-order Talbot effect was proposed
based on the second-order optical coherence and demon-
strated experimentally with both entangled photon sources
[28,38,39] and thermal light sources [40,41], respectively. The
Talbot distance in the second-order optical coherence is found
to be half of that in the classical first-order optical coher-
ence, but the spatial resolution of the second-order Talbot
self-imaging was not improved as compared to that in the
traditional first-order Talbot self-imaging [35,39]. Note that
the Talbot self-imaging, no matter in the first-order or the
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FIG. 1. Fundamental scheme to study the first- and second-order
coherence between two independent chaotic point light sources A
and B. D1 and D2: single-photon detectors. CC: coincidence counting
system.

second-order optical coherence, are in the Fresnel diffraction
configuration and repeated in the longitudinal propagation
dimension [33,35]. Comprehensive reviews about the Talbot
effect can be found in Refs. [33,35].

In this paper, we reported on the revival and the fractional
revival of the HBT bunching effect with a discrete chaotic
light source, which is a result of in-phase superposition of
multiple discrete two-photon eigen modes. Different from the
revival of wave packet in quantum systems or self-imaging
of the object structure in the Talbot effect, here it is the HBT
bunching effect of chaotic light that is revived. In addition, the
HBT bunching effect is revived repeatedly in the transverse
dimension instead of the traditional longitudinal dimension
such as that in the Talbot effect. Possible applications on the
imaging processing was also proposed and demonstrated.

II. THEORETICAL MODEL AND RESULTS

For simplicity but without loss of generality, here we will
give a detailed analytical result about the transverse revival
and fractional revival of the HBT bunching effect for the one-
dimensional (1D) case; the extension to the two-dimensional
(2D) case is direct and therefore will not describe here again.
However, experimental verification for both the 1D and 2D
cases will be provided in Secs. III and IV. In addition, for
the chaotic light sources, we assume the light intensity is
temporally stable while the phase changes randomly. Such
chaotic light sources can be experimentally designed by using
a spatial light modulator (SLM), as we will show in the
experimental part Sec. III. In the following, the HBT effects of
three different chaotic light sources, namely, two independent
chaotic point light sources, continuous chaotic light sources
and discrete chaotic point light sources, respectively, are
studied analytically, exhibiting very different HBT bunching
behaviors, respectively.

A. Two independent chaotic point light sources

The simplest case is the one for two independent chaotic
point light sources, which has been well studied in the
literature [36,37,42–48]. For comparison and completeness,
here we give a brief description of the HBT behavior of
the two independent chaotic point light sources, which is
helpful to understand the results of the other two cases.
Figure 1 shows the fundamental scheme to study the first- and

second-order coherence effects between two spatially sepa-
rated and completely independent chaotic point light sources
A and B, where Di(i = 1, 2) is the single-photon detector
placed on the far-field detection plane (or the Fraunhofer
zone). The first-order coherence can be studied by using a
single-photon detector to record the spatial distribution of
the light intensity on the far-field detection plane, while the
second-order coherence can be measured with two single-
photon detectors and a photon coincidence counting system
(CC in Fig. 1).

When the two point light sources are completely indepen-
dent, it is evident that they are first-order incoherent, but one
can observe the second-order interference fringes [46,47],

G(2)(x1, x2) = 〈(|EO,A|2 + |EO,B|2)2〉
+ 2〈|EO,A|2〉〈|EO,B|2〉cos(k�x′(x1 − x2)/z),

(1)

where 〈· · ·〉 stands for the ensemble average, EO,A and EO,B

are the instantaneous electric field amplitude on the detection
plane but originating from the point light sources A and B,
respectively, which satisfies |EO,i| ∝ 1

λz |ES,i|, where λ and ES,i

are the wavelength and the instantaneous field amplitudes of
sources i = A, B, respectively. k = 2π/λ is the wave number
of light, �x′ = x′

A − x′
B is the displacement between two point

light sources A and B on the source plane, with x′
A and x′

B
being their respective positions, x1 and x2 are the positions of
two single-photon detectors on the detection plane, and z is
the distance between the detection plane and the source plane,
respectively. Here, we consider only the scalar light field for
simplicity.

It is evident that the second-order correlation function
G(2)(x1, x2) consists of two contributions [42]: (1) the self-
correlation part G(2)

self(x1, x2) with the pair of detected photons
from the same point light source which only contributes a con-
stant background; (2) the cross-correlation part G(2)

cross(x1, x2)
with the pair of detected photons from two different sources
which leads to the superposition of two different but indis-
tinguishable two-photon paths, resulting in the two-photon
interference fringes. Here, the second-order spatial cross-
correlation function of the two independent chaotic point light
sources can be expressed as [43–48]

G(2)
cross(x1, x2)

= 2〈|EO,A|2〉〈|EO,B|2〉[1 + cos(k�x′(x1 − x2)/z)]

= 2I2
0 Re(1 + e−ik�x′(x1−x2 )/z ), (2)

forming an oscillating two-photon eigen mode e−ik�x′(x1−x2 )/z

of the second-order interference fringes with a characteristic
eigen spatial frequency �x′/(λz) determined by the displace-
ment �x′ if the propagation distance z is fixed. Here, for
simplicity, we set the two chaotic point sources of equal
field amplitude and intensity; therefore, it satisfies 〈|EO,A|2〉 =
〈|EO,B|2〉 = I0 on the detection plane. The symbol Re(· · · )
means to take the real part of the variable inside the bracket.

B. Continuous chaotic light sources

For a continuous chaotic light source with a spatial
dimension of [−R, R] and spatially homogeneous field

023848-2



TRANSVERSE REVIVAL AND FRACTIONAL REVIVAL OF … PHYSICAL REVIEW A 99, 023848 (2019)

F

F

FIG. 2. (a) and (b) are the schematic diagrams of a 1D continu-
ous chaotic light source with a size of [−R, R] and its corresponding
distribution density function FC(�x′), respectively. (c) and (d) are
the schematic diagrams of a typical 1D PDCLS T with a total
number of point sources N and a period d0 and its corresponding
discrete distribution density function FD〈T |T 〉(�x′), respectively.

amplitude distribution as shown in Fig. 2(a), there are
many pairs of point light sources, each pair of them
{x′

A, x′
B} (x′

A, x′
B ∈ [−R, R]) will contribute a two-photon

eigen mode with a specific eigen spatial frequency
�x′/(λz) (�x′ ∈ [−2R, 2R]). When two pairs of point
light sources are of the same displacement �x′, the resulting
two-photon eigen modes are also the same because the eigen
spatial frequency �x′/(λz) is determined by the displacement
�x′. This means that each eigen mode is of different
distribution density FC(�x′), which can be written as

FC(�x′) =
∫ R

−R
rect

(
�x′ − x′

A

2R

)
rect

(
x′

A

2R

)
dx′

A

= 2R�

(
�x′

2R

)
, with �x′ ∈ [−2R, 2R], (3)

where the subscript C in FC(�x′) denotes the case for the
continuous chaotic light source, rect(x) is the rectangular

function defined as rect(x) ≡ {1, |x| � 1
2

0, otherwise, and �(x) is the

triangle function defined as �(x) ≡ {1 − |x|, |x| � 1
0 , otherwise, as shown

in Fig. 2(b).
The summation over all these weighted two-photon eigen

modes will result in the second-order spatial correlation func-
tion of the continuous chaotic light source. For a continuous
chaotic light source with a limited width [−R, R], the second-
order spatial correlation function on the far-field can then be
calculated as

G(2)
C (x1, x2) = 1

2

∫ +2R

−2R
FC(�x′)G(2)

cross(x1, x2)d�x′

= I2
0 Re

[
G

(2)
C (x1, x2) + G̃(2)

C (x1, x2)
]
, (4)

where

G
(2)
C (x1, x2) =

∫ +2R

−2R
FC(�x′)d�x′ = 4R2 (5)

and

G̃(2)
C (x1, x2) =

∫ +2R

−2R
FC(�x′)e−ik�x′(x1−x2 )/zd�x′

= 4R2sinc2[2R(x1 − x2)/(λz)]. (6)

Here, the prefactor 1
2 in Eq. (4) is due to the fact that the

displacements �x′ and −�x′ are actually corresponding to
exactly the same eigen mode. One may note that the self-
correlation contribution is already included in Eq. (4) when
�x′ = 0. On the right side of Eq. (4), the first term G

(2)
C (x1, x2)

contributes a constant background, while the second term
G̃(2)

C (x1, x2) is the weighted superposition of two-photon eigen
modes with continuous spectra, which is actually the Fourier
transform of the distribution density function FC(�x′). Note
that all eigen modes are in phase at x1 − x2 = 0 but dephase
gradually with the increase of |x1 − x2|, leading to the well-
known HBT bunching effect of thermal light.

The normalized second-order spatial correlation function
of the continuous chaotic light source can be calculated as
[46,47]

g(2)
C (x1, x2) = G(2)

C (x1, x2)/(〈I (x1)〉〈I (x2)〉)

= 1 + sinc2[2R(x1 − x2)/(λz)], (7)

where 〈I (xi )〉 = 2RI0 (i = 1, 2) is the ensemble averaged light
intensity at position xi on the detection plane and sinc(x) ≡
sin(πx)/(πx), respectively. This conclusion is consistent with
the result reported in the literature [36,37,42–45,48].

C. Discrete chaotic light sources

It is well known that in general the discrete system is of
very different physical properties from the continuous system.
Many novel optical phenomena have been reported for various
discrete optical systems, such as Talbot effect [24] and Lau
effect [25] in periodical discrete systems and the collapse and
revival of the wave-packet evolution in quantum systems with
discrete eigen wave functions [3]. Both the first-order and the
second-order Talbot effects were reported, and all of them are
in the Fresnel zone and in the longitudinal dimension [35].
Different from these temporal or longitudinal revival effects,
here we will show that novel phenomena such as transverse
revival and fractional revival of the HBT bunching effect can
also be observed in the discrete chaotic light sources, which,
however, is in the far-field (or the Fraunhofer zone) and in the
transverse dimension.

1. Transverse revival of the HBT bunching effect

Supposing that there is a chain of discrete chaotic point
light sources with equal distance between the nearest neigh-
boring ones, where the point light sources are completely
independent with respect to each other, forming a 1D peri-
odical discrete chaotic light source (1D PDCLS), as shown
in Fig. 2(c). Assuming that the total number of the point
light sources in the 1D PDCLS is N , and the period of 1D
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PDCLS is d0. For convenience, we mark this set of 1D PDCLS
as T . Similarly, a pair of independent chaotic point light
sources with a separation distance �x′ = ηd0 will contribute
a discrete two-photon eigen mode with a specific eigen spa-
tial frequency ηd0/(λz), where η = −N, −N + 1, · · · , N −
1, N . The summation over all these discrete two-photon eigen
modes results in the second-order spatial correlation function
of the 1D PDCLS. For a specific 1D PDCLS with limited
number of point sources N , the distribution density function
of the discrete two-photon eigen modes is also discrete and
can be expressed as

FD〈T |T 〉(�x′) = N�

(
�x′

Nd0

)
one

(
�x′

d0

)
, (8)

where the subscript D in FD〈α|β〉(�x′) indicates the case for
the discrete chaotic light source, and the subscript 〈α|β〉
indicates a set of pairs of point light sources contributing
discrete eigen modes, in which, for each pair of point light
sources, one point light source is from the set of discrete point
light sources α, and the other one is from the set of discrete
point light sources β; and the sampling function one(x) is
equal to 1 for integers and 0 for all other values. In Eq. (8),
both two discrete point light sources are from the same set
T . The distribution density function FD〈T |T 〉(�x′) of the 1D
PDCLS is schematically illustrated in Fig. 2(d), where the
blue dashed lines describe the envelope of the distribution
density function FD〈T |T 〉(�x′), which in fact has the same
profile as that of Eq. (3), as one can see from Figs. 2(b) and
2(d).

Consequently, the second-order spatial correlation function
with the 1D PDCLS in the far-field can be written as

G(2)
D〈T |T 〉(x1, x2)

= 1

2

N∑
η=−N

FD〈T |T 〉(ηd0)G(2)
cross(x1, x2)

= I2
0 Re

[
G

(2)
D〈T |T 〉(x1, x2) + G̃(2)

D〈T |T 〉(x1, x2)
]
, (9)

where

G
(2)
D〈T |T 〉(x1, x2) =

N∑
η=−N

FD〈T |T 〉(ηd0) = N2 (10)

and

G̃(2)
D〈T |T 〉(x1, x2) =

N∑
η=−N

FD〈T |T 〉(ηd0)e−ikηd0 (x1−x2 )/z

= sin2[πNd0(x1 − x2)/(λz)]

sin2[πd0(x1 − x2)/(λz)]
. (11)

Again, the prefactor 1
2 in Eq. (9) is due to the fact that

every pair of point sources are counted for twice but only
contribute one discrete two-photon eigen mode. The first term
G

(2)
D〈T |T 〉(x1, x2) on the right side of Eq. (9) is a constant

background, while the second term G̃(2)
D〈T |T 〉(x1, x2) is the

weighted superposition of a set of discrete two-photon eigen
modes, which will result in the collapse and revival of the
HBT bunching effect of the discrete chaotic light in the
transverse dimension, as we will show below.

The normalized second-order spatial correlation function
with the 1D PDCLS can then be expressed as

g(2)
D〈T |T 〉(x1, x2) = 1 + 1

N2

sin2[πNd0(x1 − x2)/(λz)]

sin2[πd0(x1 − x2)/(λz)]
. (12)

One can see from Eq. (12) that the two-photon bunching
behavior of the 1D PDCLS is completely different from that
of the continuous chaotic light sources expressed by Eq. (7).
In addition to the bunching peak at x1 − x2 = 0, which is the
same as that with the continuous chaotic light source, the
two-photon bunching peak can also be observed whenever
the condition πd0|x1 − x2|/(λz) = nπ is satisfied, where n =
0, 1, 2, · · · . This is understandable from Eqs. (9)–(11), as
one can see that, it is the second term G̃(2)

D (x1, x2), i.e., the
weighted superposition of a set of discrete two-photon eigen
modes e−ikηd0 (x1−x2 )/z (η ∈ [−N, N]), that results in the two-
photon bunching effect of the 1D PDCLS. It is evident that
all these discrete two-photon eigen modes are in phase at
x1 − x2 = 0, leading to the traditional HBT bunching peak.
With the increase of |x1 − x2|, these discrete two-photon eigen
modes dephase and the bunching effect collapses. However, if
|x1 − x2| further increases up to λz/d0, then all these discrete
two-photon eigen modes are in phase again, and the HBT
bunching effect revives. The collapse and the revival of the
HBT bunching effect repeat periodically along the transverse
dimension in the detection plane. According to Eq. (12),
the revival period of the HBT bunching effect Trev, defined
as the transverse distance between the nearest neighboring
bunching peaks, is calculated to be Trev = λz/d0, and the
bunching peak-to-background ratio is 2:1, the same as that
of the continuous chaotic thermal light [36,37]. One may
also note that there are (N − 1) minimal dips equal to 1
between two neighboring bunching peaks when x1 − x2 =
mλz/(Nd0) [m = ±1, ±2, · · · , ±(N − 1), ±(N + 1), · · · ],
and therefore there are (N − 2) submaximum between two
neighboring bunching peaks. The half width of the main HBT
bunching peak, defined as the transverse distance between the
main peak position and its nearest first minimal position, can
be calculated to be Whalf = λz/(Nd0). The revival of the HBT
bunching effect is a particular property for the discrete system,
which can be referred to as the discrete HBT effect, no such
revival can be observed with the continuous chaotic thermal
light.

2. Transverse fractional revival of the HBT bunching effect

Now, let us make some modifications on the discrete
chaotic point light source set T . We take a set of chaotic point
light source E out from T . This set of chaotic point light
source E is of equal distance between the nearest neighboring
point light sources with a period of qd0 (q = 2, 3, · · · ), and
the position of the first chaotic point light source in E is at the
ζ th point light source in T . The total number of the point light
source in E is M, surely, we have (M − 1)q � (N − 1). The
remaining nonperiodic discrete chaotic light sources (non-
PDCLS) form a set marked as R, satisfying T = E + R.

When one considers the second-order spatial correlation
function of the discrete chaotic point light sources R, the
key is to find out all two-photon eigen modes originated from
R. According to the relationship T = E + R, one has the
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relationship for pairs of point light sources 〈T |T 〉 =
〈R|R〉 + 〈E |E 〉 + 2〈R|E 〉 and 〈T |E 〉 = 〈R|E 〉 + 〈E |E 〉.
Thus, one has 〈R|R〉 = 〈T |T 〉 + 〈E |E 〉 − 2〈T |E 〉, and the
second-order spatial correlation function can be expressed as

G(2)
D〈R|R〉(x1, x2) = I2

0 Re
[
G

(2)
D〈R|R〉(x1, x2)

+ G̃(2)
D〈R|R〉(x1, x2)

]
, (13)

where

G
(2)
D〈R|R〉(x1, x2) = 2C2

N−M + (N − M ) = (N − M )2, (14)

and

G̃(2)
D〈R|R〉(x1, x2) = G̃(2)

D〈T |T 〉(x1, x2) + G̃(2)
D〈E |E 〉(x1, x2)

− 2G̃(2)
D〈T |E 〉(x1, x2). (15)

According to the procedures in Sec. II C 1, one can easily
obtain the first and the second terms in Eq. (15) because both
T and E are 1D periodical discrete chaotic light sources with
periods d0 and qd0, respectively, and they can be written as

G̃(2)
D〈T |T 〉(x1, x2) = sin2[πNd0(x1 − x2)/(λz)]

sin2[πd0(x1 − x2)/(λz)]
, (16)

and

G̃(2)
D〈E |E 〉(x1, x2) = sin2[πMqd0(x1 − x2)/(λz)]

sin2[πqd0(x1 − x2)/(λz)]
. (17)

The third term in Eq. (15) shows the superposition of
two-photon eigen modes where the pairs of chaotic point light
sources are from two different sets T and E , respectively, and
it can be calculated as

G̃(2)
D〈T |E 〉(x1, x2) =

M∑
χ=1

N∑
η=1

e−ik{η−[ζ+(χ−1)q]}d0 (x1−x2 )/z

= γ
sin

[
πMqd0(x1−x2 )

λz

]
sin

[
πNd0(x1−x2 )

λz

]
sin

[
πqd0(x1−x2 )

λz

]
sin

[
πd0(x1−x2 )

λz

] ,

(18)

where γ = e−i2πL〈T |E 〉(x1−x2 )/(λz), in which L〈T |E 〉 =
[N + 1 − 2ζ − (M − 1)q]d0/2 is the distance between
the central positions of two point light source sets T and E .
Particularly, by setting M = N , q = 1 and ζ = 1 in expression
G̃(2)

D〈T |E 〉(x1, x2), it reduces to G̃(2)
D〈T |T 〉(x1, x2).

The normalized second-order spatial correlation function
with the non-PDCLS R can then be written as

g(2)
D〈R|R〉(x1, x2)

= 1 + 1

(N − M )2

sin2
[

πNd0(x1−x2 )
λz

]
sin2

[
πd0(x1−x2 )

λz

]
+ 1

(N − M )2

sin2
[

πMqd0(x1−x2 )
λz

]
sin2

[
πqd0(x1−x2 )

λz

]
− 2γRe

(N − M )2

sin
[

πMqd0 (x1−x2 )
λz

]
sin

[
πNd0(x1−x2 )

λz

]
sin

[
πqd0(x1−x2 )

λz

]
sin

[
πd0(x1−x2 )

λz

] , (19)

where γRe is the real part of γ . One can see from Eqs. (15)–
(19) that all discrete two-photon eigen modes are again in

phase at x1 − x2 = 0 but dephase gradually with the increase
of |x1 − x2|, resulting in a two-photon bunching peak of 2
at x1 − x2 = 0. Similar to the case with the 1D PDCLS set
T , at the specific transverse positions |x1 − x2| = nTrev where
n = 0, 1, 2, · · · , all two-photon eigen modes are in phase
again and the two-photon bunching effect revives fully with
a bunching peak-to-background ratio of 2, the same as that
of the thermal light, as shown in Eq. (19). More interestingly,
at the transverse positions |x1 − x2| = (n + p

q )Trev where p =
1, 2, · · · (q − 1), the discrete two-photon eigen modes in
Eqs. (16) and (18) are completely dephasing, and the super-
position of them is exactly 0 when q is a factor of N . Even in
the case when q is not a factor of N , these discrete two-photon
eigen modes in Eqs. (16) and (18) are also dephasing, and
their contribution to g(2)

D〈R|R〉(x1, x2) is negligibly small at
|x1 − x2| = (n + p

q )Trev. This can be inferred from Eqs. (11)
and (12). One knows that, for the discrete chaotic point light
sources T , the contribution of weighted superposition of dis-
crete two-photon eigen modes to g(2)

D〈T |T 〉(x1, x2) is negligibly

small as compared to 1, so is the ratio 1
N

sin[πNd0(x1−x2 )/(λz)]
sin[πd0(x1−x2 )/(λz)]

at |x1 − x2| = (n + p
q )Trev. Note that (N − M ) is of the same

order as N , therefore, the second term and the fourth term in
Eq. (19) are also negligibly small at |x1 − x2| = (n + p

q )Trev

even when q is not a factor of N . However, the discrete
two-photon eigen modes in Eq. (17) are always in phase at
|x1 − x2| = (n + p

q )Trev no matter q is a factor of N or not.
The superposition of these in-phase two-photon eigen modes
expressed by Eq. (17) leads to the partial revival, i.e., the
fractional revival of the two-photon bunching effect with a
bunching peak of ∼1 + M2/(N − M )2. This means that both
transverse revival and fractional revival of the HBT bunching
effects can be observed with the non-PDCLS R.

3. Discussions

It should be noted that the bunching pattern of any chaotic
light on the detection plane can also be derived from the Van
Cittert-Zernike theorem [49,50], since the Van Cittert-Zernike
theorem is applicable for any chaotic light source [51–54],
including both continuous and discrete light sources. By em-
ploying the Van Cittert-Zernike theorem, the bunching pattern
is explained as a result of the absolute-square of the Fourier
transform of the intensity distribution of the chaotic light
source. Therefore, for a periodic discrete point light source,
its Fourier transform is also a periodic function. However,
the underlying physics of the appearance of such periodic
second-order correlation function, i.e., the revival of the HBT
bunching effect, is not explicitly and clearly shown in the
above Fourier transform way.

Here, we revealed explicitly the underlying physics for the
formation of the periodic bunching pattern in the far-field
detection plane, i.e., the revival of the HBT bunching effect
is due to the in-phase superposition of all discrete two-photon
eigen modes originated from the periodic discrete chaotic
light sources, but not judged just by the value of g(2)(x1, x2).
One notes that, it is the whole bunching curve, including both
the central bunching peak and its side-lobe structure, that is
revived periodically in the discrete chaotic light case. Such
HBT bunching revival is specific for the discrete light source
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FIG. 3. (a) Schematic diagram of experimental setup to measure
the HBT effects with discrete chaotic light sources. L1, L2, and
L3: lenses; SS: square slot; BS: beam splitter; CCD: charge coupled
device; SLM: spatial light modulator. (b), (d) The phase distribution
within an elementary unit cell of 1D and 2D discrete chaotic light
sources, respectively. The background phase structure was for a
blazed grating, as indicated by the gray stripes. The 1D and 2D
discrete chaotic sources were embedded on the background blazed
grating, as indicated by the red areas where the random phase ϕ j and
ϕ j,h were encoded by the SLM on the jth and ( j, h)th light sources
in 1D and 2D discrete chaotic light sources, respectively. (c) The
discrete arrays of the three 1D PDCLSs T1D,20a, T1D,40a and T1D,60a,
and the discrete arrays of the three 1D nonPDCLSs R1D,2d0 , R1D,3d0

and R1D,4d0 , respectively. (e), (f) The discrete arrays of a 2D PDCLS
T2D,20a and a 2D nonPDCLS R2D,2d0 , respectively.

but not for the continuous light source, as one can see by
comparing the results in Sec. II B and Secs. II C 1, II C 2.

It is known that the bunching curve profile can be mod-
ulated as reported by Strekalov et al. [54], where the width
and the sidelobes of the bunching curve varied due to the
presence of an absorptive object, through which the objective
information such as the orientation of the object’s transient
trajectory can be inferred from the variance of the bunching
curve profile. One notes that, such modulation on the profile
of a specific bunching curve is conceptually different from the
revival of the HBT bunching effect in which many identical
bunching peaks will collapse and then revive periodically on
the detection plane at different specific transverse positions.

III. EXPERIMENTAL VERIFICATION

Figure 3(a) shows the schematic diagram of the experi-
mental setup to measure the second-order spatial correlation
patterns of discrete chaotic light sources. In our experiments,
a single-mode, continuous-wave laser beam operating at

780 nm was expanded and collimated by two lenses L1 and
L2 and spatially reshaped by a square slot (SS) to gener-
ate a plane wave with a flat-top intensity distribution. This
expanded and collimated flat-top light beam was reflected
by a beam splitter (BS) with a 50:50 reflection/transmission
ratio and then launched normally onto a reflection-type phase-
only SLM (PLUTO 1080P from HOLOEYE Photonics AG,
Germany, with an elementary square pixel of a2 = 8 × 8 μm2

and totally 1920 × 1080 pixels). The reflected beam from the
SLM transmitted through the BS again and was then collected
by a lens L3 with a focal length f3 = 80 cm. The intensity
distribution on the rear focal plane of the lens L3 (i.e., the far-
field detection plane) was recorded by using a charge coupled
device (CCD) camera, and totally 10 000 frames, each with
a recording time of 1.0 ms, were measured and used to cal-
culate the second-order correlation patterns on the detection
plane.

Figure 3(b) shows the spatial distribution of the phase
structure of an elementary unit cell in a typical 1D PDCLS.
Here, we combined the neighboring s pixels of the SLM along
the horizontal dimension [the x′-dimension in Fig. 3(b)] as
an elementary unit cell, in which the central 10 pixels were
loaded with the same random phase ϕ j [see the red area in
Fig. 3(b)] and served as the jth discrete slit sources, while
the rest part of the elementary unit cell was loaded with the
background phase structure working as the blazed grating
[indicated by the gray stripes in Fig. 3(b)]. Note that, in the
1D PDCLS, the length-width ratio of each discrete slit source
was much larger than 1 so that the phase can be effectively
regarded to be uniform in the vertical dimension (i.e., the
y′-dimension). In other words, as far as the phase distribution
is considered, the discrete slit sources can be viewed as being
embeded in the background 1D blazed grating. In this way,
only the light beams reflected from the discrete slit sources
were collected by the CCD on the detection plane [55]. One
sees that the effective dimension size of each discrete slit
source was 10a, while the period of the 1D PDCLS d0, i.e.,
the distance between the nearest neighboring discrete slit
sources, was s × a, respectively, in the x′ dimension. For a
given width D of the incident flat-top plane wave on the SLM,
which was 3.35 mm in our experiment, the total number N
of the discrete slit sources in the 1D PDCLS was equal to
D/d0. Here, we set the phase ϕ j encoded on the jth discrete
slit source of the 1D PDCLS being randomly and uniformly
distributed within [0, 2π ). Note that, by replacing the phase
ϕ j with the surrounding phase required by the background
blazed grating, the jth discrete slit source can be removed
and a nonPDCLS can be conveniently designed. Based on
the aforementioned technique, we designed three 1D PDCLSs
and three 1D nonPDCLSs, respectively, as shown in Fig. 3(c).
For the three PDCLSs, the periods were set to be 20a, 40a, and
60a, and they were labeled as T1D,20a, T1D,40a, and T1D,60a,
respectively. The corresponding total numbers N of the three
1D PDCLSs were therefore 21, 11, and 7, respectively. The
three 1D nonPDCLSs were formed by removing slit source
sets E1D with different periods from the basic 1D PDCLS
T1D,20a. The periods of the removed slit source sets E1D

were set to be 2d0, 3d0, and 4d0, respectively, with the
corresponding first removed slit source being the 4th, 3rd, and
4th ones, respectively, as shown in Fig. 3(c). For convenience,

023848-6



TRANSVERSE REVIVAL AND FRACTIONAL REVIVAL OF … PHYSICAL REVIEW A 99, 023848 (2019)

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Experimental observation of the transverse revival of the
HBT bunching effect with the three 1D PDCLSs (a)–(c) and the
transverse revival and fractional revival of the HBT bunching effect
with the three 1D nonPDCLSs (d)–(f), respectively.

the remaining three 1D nonPDCLSs were marked as R1D,2d0 ,
R1D,3d0 , and R1D,4d0 , respectively, in the following.

The extension to the 2D cases is relatively simple.
Figure 3(d) shows the spatial distribution of the phase struc-
ture of an elementary unit cell within the 2D PDCLS. Simi-
larly, we combined the neighboring s × s pixels of the SLM
as an elementary unit cell, within which the central 10 × 10
pixels were loaded with the same random phase ϕ j,h as those
in the 1D PDCLS [see the red square in the inset of Fig. 3(d)],
and the rest pixels were loaded with the phase required by
the background blazed grating. The central 10 × 10 pixels
with random phase ϕ j,h, distributed with equal probability
within [0, 2π ), served as the ( j, h)th chaotic point source.
Such unit cells repeated in both the x′ and y′ dimensions to
form the 2D PDCLS, which can be viewed as being embedded
in the background blazed grating. In our experiments, with an
incident square flat-top plane wave of Dx′ × Dy′ = 3.35 mm ×
3.35 mm and s = 20, a 2D PDCLS T2D,20a of a square array of
21 × 21 with an array period of d0 = 20a in both the x′ and y′
dimensions was produced, as shown in Fig. 3(e). By using the
same technique as that in the 1D case, the corresponding 2D
nonPDCLS can be produced by removing the corresponding
periodic point source set E2D from the 2D PDCLS T2D,20a,
for example, by removing a 2D periodic point source array
E2D,2d0 with a period of 2d0 in both the x′ and y′ dimensions,
as marked by R2D,2d0 in Fig. 3(f).

Figure 4 shows the experimental results for the revival and
the fractional revival of the bunching effect with both 1D PD-
CLSs and 1D nonPDCLSs, respectively. Note that the phases
of the discrete chaotic sources were kept to be stationary
when recording the intensity pattern for each frame, but the
relative phases among the discrete chaotic sources in the array
were random, and the phases of all discrete chaotic sources in
the array changed randomly from one frame to the other. To

calculate the second-order correlation patterns, totally 10 000
frames, each with an exposure time of 1.0 ms, were recorded
for each second-order correlation pattern in Fig. 4. Here,
the empty black circles in Fig. 4 are the experimental data,
while the red curves are the corresponding theoretical fits.
For the three 1D PDCLSs T1D,20a, T1D,40a, and T1D,60a, the
measured second-order spatial correlation patterns are shown
in Figs. 4(a)–4(c), respectively, in which the red curves are the
theoretical fits by Eq. (12). One sees that the bunching effect
collapses first and then revives periodically in the transverse
x dimension. The revival periods of the bunching effects
in Figs. 4(a)–4(c) were measured to be Trev = 3.95 mm,
1.98 mm, and 1.32 mm, respectively, which are in good
agreement with the theoretical prediction. The bunching peaks
g(2)(x1 − x2 = nTrev) (n = 0, ±1, ±2, · · · ) in Figs. 4(a)–4(c)
were measured to be 1.94, 1.92, and 1.91, respectively, which
is slightly lower than the theoretical limit 2 of the thermal
chaotic light. This is mainly due to the facts that the random
phase encoded on each discrete source was not perfectly
random since the randomness was generated by computer and
the phase encoded through SLM may slightly deviate from
the designed ideal values because the SLM’s phase encoding
linearity may not be perfect. In addition, the half width of
bunching peaks in Figs. 4(a)–4(c) were measured to be Whalf =
191 μm, 197 μm, and 178 μm, respectively, which are also
consistent with the theoretical value f3λ/(Nd0) = 186 μm.

For the three 1D nonPDCLSs R1D,2d0 , R1D,3d0 , and
R1D,4d0 , the measured second-order spatial correlation pat-
terns are shown in Figs. 4(d)–4(f), respectively. Again, the
empty black circles are the experimental data and the red solid
curves are the theoretical fits by using Eq. (19). One sees that,
in addition to the revival bunching peaks at |x1 − x2| = nTrev

where n = 0, 1, 2, · · · , the fractional revival bunching peaks
were also observed at the appropriate transverse positions. For
example, for the 1D nonPDCLS R1D,2d0 , the bunching effect
partially revives at |x1 − x2| = (n + 1

2 )Trev with a fractional
bunching peak of ∼1.50, as shown in Fig. 4(d). Similarly, for
the 1D nonPDCLS R1D,3d0 , the fractional revival bunching
effect can be observed at |x1 − x2| = (n + 1

3 )Trev and (n +
2
3 )Trev with a fractional bunching peak of ∼1.23, while for
the 1D nonPDCLS R1D,4d0 , the fractional revival bunching
effect can be observed at |x1 − x2| = (n + 1

4 )Trev, (n + 2
4 )Trev

and (n + 3
4 )Trev with a fractional bunching peak of ∼1.10,

respectively, as shown in Figs. 4(e) and 4(f), respectively.
Again, here n = 0, 1, 2, · · ·. These fractional revival bunch-
ing observations are in good accordance with the theoretically
predicted ones, which are calculated to be 1.50, 1.26, and
1.12, respectively, for the 1D nonPDCLSs R1D,2d0 , R1D,3d0 ,
and R1D,4d0 by using Eq. (19).

Figure 5 depicts the revival and the fractional revival of the
HBT bunching effect with 2D PDCLS T2D,20a and 2D non-
PDCLS R2D,2d0 , respectively. Similarly, for the 2D PDCLS
T2D,20a, the bunching effect collapses first and then revives
periodically in both the transverse x and y dimensions with a
period of Trev = 3.95 mm and a half width of the bunching
peaks Whalf ∼ 188 μm. While for the 2D nonPDCLS R2D,2d0

with a characteristic removed point source array E2D,2d0 of
a period of 2d0 in both the x′ and y′ dimensions, as shown
in Fig. 3(f), in addition to the revival bunching peaks at
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FIG. 5. Experimental results of the HBT bunching revivals with
the 2D PDCLS T2D,20a (a), and the revival and the fractional revival
of the HBT bunching effect with the 2D nonPDCLS R2D,2d0 (b),
respectively.

(|x1 − x2|, |y1 − y2|) = (nTrev, mTrev), the fractional revival
peaks appear at (|x1 − x2|, |y1 − y2|) = [(n + 1

2 )Trev, (m +
1
2 )Trev], where n, m = 0, 1, 2, · · · . As expected, the frac-
tional revival peaks are lower than the revival peaks in general,
which are in good agreement with the theoretical predictions.

IV. GHOST IMAGING COPY

One of the important applications of the HBT bunching
effect is the ghost imaging, in which the bunching effect builds
up the one-to-one point correlation between the object and the
image planes [47,56–59]. It is evident that the transverse re-
vival and fractional revival of the HBT bunching effects build
up a deterministic one-to-multiple point correlation between
the object and the image planes, therefore, this provides a pos-
sibility to copy the ghost image in the transverse dimension
based on the HBT bunching revival and fractional revival of
the discrete chaotic light.

Figure 6 shows the schematic diagram of the experimental
setup to copy the ghost image in the transverse dimensions
with a 2D discrete chaotic light source. The setup was built
after that in Fig. 3(a) by adding a 2 f –2 f -imaging system with
lens L4 after the rear focal plane of lens L3 in Fig. 3(a).
The discrete chaotic light sources T2D,20a and R2D,2d0 were
employed, respectively, and the focal length of lens L4 was
set to be 5.1 cm in the experiment. We put an amplitude
transmitting double-slit with a slit width of 200 μm and a
separation distance between two transmitting slits of 400 μm
on the left-bottom corner of the input object plane of the
2 f –2 f -imaging system (i.e., the rear focal plane of lens L3) as

 BS(1:1)

Object

f3 = 80 cm

1mm

SLM

SS

L2
L1

L3 L4

Laser

2f42f4

CCD

FIG. 6. Experimental setup for the ghost imaging copy with a 2D
discrete chaotic light source. A 2 f –2 f -imaging system with lens L4
of a focal length 5.1 cm was added after the setup shown in Fig. 3(a).
A double-slit was served as an input object, placing at the left-bottom
corner of the object plane of the 2 f –2 f -imaging system.
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FIG. 7. (a) and (b) are the measured ghost imaging copies with
the 2D PDCLS T2D,20a and the 2D nonPDCLS R2D,2d0 , respectively.
(c) and (d) depict the typical intensity distribution of a single frame
with the 2D PDCLS T2D,20a and the 2D nonPDCLS R2D,2d0 , respec-
tively. The white dashed rectangles in (c) and (d) are the integral
areas used to calculate the total transmitting intensity through the
double-slit BIi.

the object, and then recorded the intensity distribution on the
image plane of the 2 f –2 f -imaging system by a CCD camera.
To obtain the ghost image, 10 000 frames of the intensity
distribution were recorded, each with an exposure time of 1.0
ms. The ghost image Ighost (x, y) on the image plane of the
2 f –2 f -imaging system can be calculated through [60,61]

Ighost (x, y) = 1

10 000

10 000∑
i=1

(BIi − 〈BI〉)Ii(x, y), (20)

where Ii(x, y) is the intensity distribution of the ith frame, BIi

is the total transmitting intensity through the double-slit of the
ith frame, and 〈BI〉 is the ensemble average over all measured
BIi.

Figures 7(a) and 7(b) show the experimentally measured
ghost images with 2D PDCLS T2D,20a and 2D nonPDCLS
R2D,2d0 , respectively. In comparison, we also give the cor-
responding typical intensity distribution of a single frame
Ii(x, y), as shown in Figs. 7(c) and 7(d), respectively. Here,
BIi was obtained through an intensity integration over the area
within the white dashed rectangle on the right-top corner of
Fig. 7(c) or 7(d), which was the total transmitting intensity
through the double-slit, equivalent to the case detected by
a bucket detector without spatial resolution. One sees that,
in addition to the self-correlated ghost image at the right-
top corner of the image plane, there are many ghost image
copies right at the HBT bunching revival and fractional revival
positions in Figs. 7(a) and 7(b) with 2D PDCLS T2D,20a and
2D nonPDCLS R2D,2d0 , respectively. Correlation-imaging in
the transverse dimension was also observed based on the
self-similarity of the periodical diffraction pattern from the
periodical pinhole arrays [62,63]. In contrast, for the conven-
tional intensity imaging, except for the conventional image at
the right-top corner of the image plane, the rest area on the
image plane is distributed with mussily speckled light spots
and no image can be observed, as shown in Figs. 7(c) and 7(d).
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One notes that the imaging technique here is also different
from the one employed by Strekalov et al. [54], where the
object information was obtained through the measurement
of the width variation of the bunching curve combined with
the intensity measurement. In our case, as shown in Fig. 6,
although the illumination light is a discrete chaotic light,
but the light field on the object plane is spatially intensity
correlated due to the HBT bunching revival effect, therefore,
one can achieve ghost image copy in the transverse dimension
on the imaging plane, and many ghost images appear on the
imaging plane, as shown in Fig. 7.

V. CONCLUSION

In conclusion, we proposed theoretically and demonstrated
experimentally the transverse integer and fractional HBT
bunching revivals of discrete chaotic light sources, which are
the results of in-phase constructive interference of multiple
discrete two-photon eigen modes of the discrete chaotic light
sources. It is seen that the discrete HBT bunching effect
with discrete chaotic light sources is very different from the
traditional HBT bunching effect with the spatially continuous
chaotic light sources. The HBT bunching effect collapses

first and then revives fully and periodically in the transverse
dimension of the far-field detection plane with periodical
discrete chaotic light sources. The fractional HBT bunching
revival, which is due to the in-phase superposition of parts
of two-photon eigen modes, occurs with the nonperiodical
discrete chaotic light sources which is formed when a set
of discrete periodical chaotic light source with a q-multiple
fundamental periodicity qd0 is removed from the original
fundamental periodical discrete chaotic light sources with a
fundamental period of d0. No revival and fractional revival can
be observed with spatially continuous chaotic light. Both the
integer and fractional HBT bunching revivals were confirmed
experimentally with 1D and 2D discrete chaotic light sources.
Possible applications such as ghost image copy were also
proposed and demonstrated experimentally.
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