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Reexamination of Bessel beams: A generalized scheme to derive optical vortices
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The electromagnetic field of optical vortices is in most cases derived from vector and scalar potentials using
either a procedure based on the Lorenz or the Coulomb gauge. The former procedure has been typically used to
derive paraxial solutions with Laguerre-Gauss radial profiles, while the latter procedure has been used to derive
full solutions of the wave equation with Bessel radial profiles. We investigate the differences in the derivation
procedures applying each one to both Bessel and Laguerre-Gauss profiles. We show that the electromagnetic
fields thus derived differ in the relative strength of electric and magnetic contributions. The new solution that
arises from the Lorenz procedure in the case of Bessel beams restores a field symmetry that previous work failed
to resolve. Our procedure is further generalized and we find a spectrum of fields beyond the Lorenz and Coulomb
gauge types. Finally, we describe a possible experiment to test our findings.
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I. INTRODUCTION

Electromagnetic waves in free space are transverse waves,
as determined by Maxwell’s divergence equations ∇ · E = 0
and ∇ · B = 0. For the simplest case of plane waves, this
leads to the fact that both the electric and the magnetic field
have no field component along the propagation direction. The
same holds for spherical waves in the far-field zone emitted
from localized charge distributions such as, e.g., electric or
magnetic dipole radiation. For light beams with a high inten-
sity region close to the beam center and a laterally decaying
intensity distribution or for beams with a more complicated
phase distribution in general the electric and the magnetic
field may have components along the propagation direction.
Nevertheless, these components are often smaller than the
components perpendicular to the propagation direction. Then,
to obtain the full electromagnetic fields of these beams it may
be a good strategy to start with an ansatz for the components
transverse to the propagation direction and to construct from
these the full fields in such a way that they satisfy Maxwell’s
equations.

In electrodynamics, different methods can be used to derive
complex light fields, e.g., a direct derivation using Maxwell’s
equations [1], the superposition of plane waves [2,3], a deriva-
tion from Hertz potentials [4], or from vector and scalar
potentials [5]. As is well known, in the latter case vector
and scalar potentials are not uniquely determined; instead
there is a gauge freedom. Probably the most common gauges
are the Lorenz and the Coulomb gauges. For plane waves,
both gauges are simultaneously satisfied for a vector potential
that, like the electromagnetic fields, has only components
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perpendicular to the propagation direction and a vanishing
scalar potential. Again, for beams with a laterally decaying
intensity distribution or a more complicated phase distribution
this does not hold anymore, but it can be taken as a starting
point to complement the transverse components of A by a
longitudinal one and/or a scalar potential in such a way that
the Coulomb or Lorenz gauge condition is satisfied.

A class of light beams with a high intensity region close
to the beam center and a laterally decaying intensity distribu-
tion, which has attracted large interest in the past years, are
optical vortices (OV) or twisted light beams, i.e., light fields
exhibiting phase singularities. Such beams are interesting
because of their possibility to carry orbital angular momentum
(OAM) which could be exploited for applications in the field
of quantum information technology [6–11]. Among those
beams, Laguerre-Gaussian (LG) [12–14] and Bessel [5,15,16]
beams are the most widely considered types. Interestingly, for
these two types of beams different strategies have been used in
the literature to complement the transverse components of the
vector potential. In the case of LG modes, the point of view
of the Lorenz gauge has been applied [12–14]: a transverse
vector potential with a LG radial mode is postulated. Then,
the Lorenz gauge is imposed to derive a scalar potential which
complements the two components of the vector potential such
that the Lorenz condition is fulfilled, and finally electric and
magnetic fields are derived from these potentials. The electro-
magnetic fields thus found satisfy the paraxial wave equation.

The derivation of Bessel beams usually takes a different
path [5,15,16]. Besides the obvious choice of Bessel type
radial modes, the common point is the assumption of a null
scalar potential and the use of the Coulomb gauge to deter-
mine the longitudinal component Az of the vector potential.
The electromagnetic fields derived from these potentials sat-
isfy the full wave equation.
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The two procedures sketched above differ by the choice
of the gauge and the ansatz for the spatial mode. If both
procedures were carried out on the same radial function—LG
or Bessel—one might expect that the results are related by a
gauge transformation alone. If this were true, the electromag-
netic fields derived from each procedure would be one and
the same. To answer this and other related questions, in this
paper we follow both procedures and analyze their general
properties. We will show that, in contrast to what might be
expected, there is no possible gauge transformation connect-
ing both sets of potentials, and that they therefore lead to
different electromagnetic fields. We derive a generalized pro-
cedure which interpolates smoothly between these two cases.
The general theory is then applied to vortex beams. Here
we discuss in particular the class of Bessel beams because
they are exact solutions of Maxwell’s equations (or the full
wave equation) and we therefore do not have to worry about
possible different orders in the paraxial approximation [1],
which might complicate the comparison. The same strategy
is then applied to LG beams taking into account that they are
solutions of the wave equation in the paraxial approximation.
In particular, we will show that the two approaches based on
either a vanishing scalar potential or a vanishing longitudinal
component of the vector potential give rise to two distinct
types of electromagnetic fields. These differences, however,
are at least of second order in the paraxial parameter and
therefore require one to go beyond the regime of paraxial
beams. Finally, we discuss how these differences could be
measured in the case of highly nonparaxial Bessel beams.

The article is organized as follows. In Sec. II the procedure
to construct either a longitudinal component of the vector
potential or a scalar potential is introduced. This procedure
is then generalized in such a way to continuously interpolate
between these limiting cases, and the resulting electric and
magnetic fields are discussed. Section III is devoted to the
application of the general formalism to the case of vortex
beams. We discuss in particular the case of Bessel beams,
which are exact solutions of Maxwell’s equations, and then
we show that the same features are found for LG beams
when going beyond the paraxial regime. Finally, in Sec. IV
we discuss a possible experiment to test the new solutions
found in the previous sections. We end with some conclusions,
that include a discussion on the light-matter interaction of the
newly found fields.

II. GENERAL FORMALISM

Expressing the electromagnetic fields in terms of a scalar
and a vector potential and inserting these potentials into
Maxwell’s equations in general leads to coupled equations
of motion for the potentials. To decouple them, the gauge
freedom can be employed. A common gauge is the Lorenz
gauge

∇ · A(r, t ) + 1

c2
∂t�(r, t ) = 0. (1)

Within this gauge, far from any sources all the components of
A as well as � satisfy the homogeneous wave equation.

Another common gauge is the Coulomb gauge

∇ · A(r, t ) = 0, (2)

which leads to Poisson’s equation for � and a wave equation
for A. Far from the sources the scalar potential vanishes,
i.e., � = 0. In this regime the Coulomb gauge is also called
radiation gauge, and it is then a special case of the Lorenz
gauge.

For plane waves with wave vector q, the Coulomb gauge
requires q · A = 0 stating that the vector potential has no com-
ponent in the propagation direction. In addition, the radiation
condition is imposed and � = 0. For beams with laterally
decaying intensity distribution in general this does not hold
anymore. Nevertheless, it is often a good starting point, e.g.,
for a monochromatic beam with frequency ω traveling in z
direction, to make the ansatz

A(r, t ) = A⊥(r, t ) = Ã⊥(r)ei(qzz−ωt ), (3)

with Ã⊥(r) lying in the xy plane and chosen in such a way
that the two components of A satisfy the homogeneous wave
equation. However, assuming Az = � = 0 as above, Eq. (3)
in general neither satisfies Coulomb nor Lorenz gauge, and
the fields derived from this potential do not satisfy Maxwell’s
equations. This drawback can be corrected in different ways.
In the following we will start by discussing two limiting cases
of such an extension of Eq. (3), which will then be generalized
to a whole class of potentials.

A. 2CA and 3CA potentials

Requesting that the potentials satisfy the Lorenz gauge
condition for a completely transverse vector potential with
components Ax and Ay, a scalar potential can be derived from
Eq. (1). The potentials then read

A(0)
⊥ (r, t ) = A⊥(r, t ), (4a)

A(0)
z (r, t ) = 0, (4b)

�(0)(r, t ) = −i
c2

ω
∇⊥ · A⊥(r, t ). (4c)

We will refer to this choice of potentials with two nonvanish-
ing components of the vector potential as 2CA potentials and
for reasons that will become clear below we denote them by a
superscript (0).

Since A⊥ satisfies the homogeneous wave equation, it
follows from Eq. (4c) and from the monochromaticity of the
scalar potential that also �(0) satisfies the homogeneous wave
equation which, together with the fact that the potentials sat-
isfy the Lorenz gauge condition, guarantees that the resulting
electromagnetic fields are solutions of Maxwell’s equations.

Alternatively, requesting that the potentials satisfy
Coulomb and radiation gauge, the third component Az of
the vector potential can be obtained from the Coulomb gauge
condition Eq. (2). The potentials then read

A(1)
⊥ (r, t ) = A⊥(r, t ), (5a)

∂zA
(1)
z (r, t ) = −∇⊥ · A⊥(r, t ), (5b)

�(1)(r, t ) = 0. (5c)

We will refer to this choice of potentials with three compo-
nents of the vector potential and vanishing scalar potential as
3CA potentials and denote them by a superscript (1).
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Again, the fact that A⊥ satisfies the homogeneous wave
equation implies through Eq. (5b) that also A(1)

z satisfies the
homogeneous wave equation. Together with the vanishing
scalar potential and the fact that the vector potential satis-
fies the Coulomb gauge condition, this guarantees that the
resulting electromagnetic fields are solutions of Maxwell’s
equations.

B. Are 2CA and 3CA potentials connected
by a gauge transformation?

The derivations above were based on different gauges.
Therefore, they might lead to the impression that both sets
of potentials are in fact different gauge representations of the
same electromagnetic fields. To check whether this is true
we are looking for a gauge function χ (r, t ) that transforms
the 3CA potentials into the 2CA potentials. A general gauge
transformation [17] connecting these potentials should read

A(0)(r, t ) = A(1)(r, t ) + ∇χ (r, t ), (6a)

�(0)(r, t ) = �(1)(r, t ) − ∂tχ (r, t ). (6b)

On the one hand, we have A(0)
z = 0; therefore, χ must satisfy

∂zχ (r, t ) = −A(1)
z (r, t ). (7)

In addition, our assumption of the equality of the transverse
components, i.e., A(0)

⊥ = A(1)
⊥ , tells us that ∂xχ = ∂yχ = 0,

which implies that

χ (r, t ) = η(z, t ), (8)

with a function η which depends only on z and t . This
contradicts Eq. (7), since from Eq. (5b) we know that A(1)

z has
in-plane dependence.

On the other hand, we have �(1) = 0, such that χ must
satisfy

∂tχ (r, t ) = −�(0)(r, t ). (9)

This again implies that χ has in-plane dependence, which
contradicts the assumption of the equality of the transverse
components of A.

Therefore, we conclude that there is no gauge transforma-
tion connecting the two sets of potentials and, as a conse-
quence, they lead to different sets of electromagnetic fields.

We want to remark that the crucial point is the assumption
that the transverse components of the vector potentials agree
in both gauges. Without this assumption, a gauge function
satisfying Eq. (7) can be used to remove the z component
of A(1) and create instead a scalar potential. However, the
transformed vector potential will then have modified x and
y components. The same holds if a gauge function satisfying
Eq. (9) is used to remove the scalar potential �(0) by creating
a z component of A.

C. Generalized potentials

Since 2CA and 3CA potentials are not connected by a
gauge transformation, the question arises whether the two
procedures discussed above might be seen as limiting cases of
a more general approach to construct complete potentials from
the given in-plane components of Eq. (3). For that purpose we

introduce an arbitrary real number γ and define the potentials
according to

A(γ )
⊥ (r, t ) = A⊥(r, t ), (10a)

∂zA
(γ )
z (r, t ) = −γ∇⊥ · A⊥(r, t ), (10b)

�(γ )(r, t ) = −i(1 − γ )
c2

ω
∇⊥ · A⊥(r, t ). (10c)

For γ = 0 we recover the 2CA potentials with A(0)
z = 0 and

for γ = 1 we obtain the 3CA potentials with �(1) = 0. Again,
due to the fact that A(γ )

⊥ = A⊥ satisfies the wave equation, also
A(γ )

z and �(γ ) satisfy the wave equation. By construction the
potentials A(γ ) and �(γ ) fulfill the Lorenz gauge condition (1).
This ensures that the fields calculated from these potentials are
indeed solutions of Maxwell’s equations.

D. Electric and magnetic fields

Given the scalar and the vector potential, the electric and
magnetic fields are determined from

E(r, t ) = −∂t A(r, t ) − ∇�(r, t ), (11a)

B(r, t ) = ∇ × A(r, t ). (11b)

Starting from Eq. (10) we note that, while �(γ ) is explicitly
given in terms of the transverse components of the vector
potential, A(γ )

z is only given up to an integration. This is be-
cause in general Ã⊥(r) in Eq. (3) may depend on z; therefore,
Eq. (10b) cannot be explicitly integrated without specifying
Ã⊥(r). The characteristic length scale for the variation of
Ã⊥(r) along z is given by the diffraction length l [1] or
the Rayleigh range zR = l/2 [12] of the beam. Propagation-
invariant—also referred to as nondiffracting—beams, such
as Bessel beams, have an infinite diffraction length and the
derivative in Eq. (10b) is simply given by ∂zA

(γ )
z = iqzA

(γ )
z .

Gaussian-like beams, such as Laguerre-Gaussian or Hermite-
Gaussian beams, are characterized by a finite value of the
diffraction length; however, since the diffraction length is
typically much larger than the wavelength of the light, it is still
a good approximation to set ∂zA

(γ )
z ≈ iqzA

(γ )
z . Below, when

discussing the application of the formalism to the case of LG
beams, we will quantitatively estimate this approximation in
terms of the paraxial parameter. To get explicit formulas, here
we will assume ∂zAz = iqzAz.

Introducing γ = 1 − γ , this leads to

E(γ )(r, t ) = i

[
ωAx + γ

c2

ω
∂x(∇⊥ · A⊥)

]
ex

+ i

[
ωAy + γ

c2

ω
∂y(∇⊥ · A⊥)

]
ey

−
[
γ

ω

qz
+ γ

c2qz

ω

]
(∇⊥ · A⊥)ez, (12a)

B(γ )(r, t ) = −
[
∂zAy − iγ

1

qz
∂y(∇⊥ · A⊥)

]
ex

+
[
∂zAx − iγ

1

qz
∂x(∇⊥ · A⊥)

]
ey

+ (∂xAy − ∂yAx )ez, (12b)
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where the arguments of the vector potential have been omitted
to make the formulas clearer.

Indeed we find that the electromagnetic fields depend on
the value of γ , i.e., the different procedures to complement
the transverse components of the vector potential give rise
to different electromagnetic fields. These differences are all
related to the term ∇⊥ · A⊥. Interestingly, in the limiting cases
of 2CA (i.e., γ = 0) and 3CA (i.e., γ = 1) these correction
terms appear either in the transverse components of the elec-
tric field or of the magnetic field. We will come back to the
consequences of these corrections below. The z component
of the magnetic field is unaffected by these terms while the
z component of the electric field is completely caused by Az

and �.

III. APPLICATION TO OPTICAL VORTICES

In this section we will apply the formalism to the two most
important types of OV, namely Bessel beams and LG beams.
Beams with a well defined high-intensity region close to the
beam center and a laterally decaying intensity distribution are
typically classified in terms of a so-called paraxial parameter
f , which is given by the ratio of the wavelength of the light
to a characteristic width of the beam. For Bessel beams the
width of the central high-intensity region can be expressed in
terms of an inverse transverse wave vector qr , and the paraxial
parameter is then given by f = qr/qz with qz denoting the
wave vector component in propagation direction. LG beams
are characterized by a beam waist w0 and the paraxial param-
eter is defined as f = (qzw0)−1.

Bessel beams provide an exact solution of Maxwell’s
equations or, equivalently, the full wave equation without
performing a paraxial approximation. They are obtained from
a factorization in cylindrical coordinates. Alternatively, they
can be constructed as superpositions of plane waves with wave
vectors lying on a cone around the propagation direction. They
constitute an example for the class of propagation-invariant
beams, i.e., beams with a transverse profile that is independent
of the coordinate along the propagation direction. Much like
plane waves, they are a very useful mathematical concept.
Strictly speaking, these beams cannot be experimentally re-
alized because, due to their slow lateral decay, they carry an
infinite amount of energy; however, good approximations can
be implemented [18] and are useful in various applications.
While the paraxial parameter f is a useful quantity to estimate
the importance of certain contributions, as will be done below,
it should be noted that all the results for Bessel beams are valid
at any order of f .

LG beams are solutions of the paraxial wave equation,
which is obtained from the full wave equation by neglecting
terms of the order f 2. Thus, strictly speaking, only contribu-
tions up to first order in f should be kept and all higher-order
corrections should be neglected to remain consistent with the
paraxial wave equation. In particular, since the diffraction
length of an LG beam is given by l = qzw

2
0 [1], we have

(qzl )−1 = f 2, which shows that the approximation ∂zAz =
iqzAz used in the previous section is indeed correct up to
corrections of the order f 2. However, also LG beams can
be considered beyond the paraxial limit either by using a
systematic expansion of the wave equations in powers of f

[1,19–21] or by explicitly including the focusing of LG beams
by a lens with high numerical aperture [22–24].

In the following we will first study in detail the case of
Bessel beams and then briefly analyze the case of LG beams.

A. Bessel beams

The transverse components of the vector potential for a
Bessel beam with well-defined orbital angular momentum
(OAM) and spin angular momentum (SAM) is given by [25]

A⊥(r, t ) = A0J�(qrr)ei�ϕei(qzz−ωt )eσ , (13)

where J�(qrr) is a Bessel function of the first kind of order �,
q−1

r characterizes the beam waist, eσ = (ex + iσey)/
√

2 with
σ = ±1 the polarization vector for circular polarization, and
the integer � is the topological index. Such a field carries OAM
and SAM per photon of h̄� and h̄σ , respectively. With ω2 =
c2(q2

z + q2
r ) the two components of this vector potential satisfy

the wave equation; however, the potential does neither satisfy
the Lorenz nor the Coulomb gauge condition. Therefore, the
goal of the following subsections will be to complement these
transverse components by a z component Az and/or a scalar
potential �.

1. Potentials

We now apply the general procedure Eqs. (10) to the
special case of Bessel beams. All the correction terms are
related to the term ∇⊥ · A⊥. Using Eq. (13), this term reads

∇⊥ · A⊥(r, t ) = −σ
A0√

2
qrJ�+σ (qrr)ei(�+σ )ϕei(qzz−ωt ). (14)

The potentials then read

Ã(γ )(r) = A0J�(qrr)ei�ϕeσ − iγ σ
qr

qz

A0√
2

J�+σ (qrr)ei(�+σ )ϕez,

(15a)

�̃(γ )(r) = iγ
c2

ω
σ

A0√
2

qrJ�+σ (qrr)ei(�+σ )ϕ. (15b)

For γ = 1 (i.e., γ = 0) we obtain the 3CA potentials for
Bessel beams, which is the form typically used for this kind
of beam [5,25]. On the other hand, for γ = 0 (i.e., γ = 1) we
get the 2CA potentials, which is the form that has been used
in the literature for LG beams [12–14].

We notice that both Az and � have the paraxial parameter
f = (qr/qz ) or powers of it as a prefactor, which demonstrates
that they are indeed smaller than the transverse components
A⊥ for collimated beams. In the following we will analyze in
detail the differences in the electromagnetic fields of Bessel
beams as obtained from the 2CA or 3CA potentials.

2. Electric and magnetic fields

We gain further insight by writing the fields in the
basis of circular polarization given by the basis vectors
eσ = (ex + iσey)/

√
2 and ez. This is done by using the re-

lations ∂x = cos(ϕ)∂r − (1/r) sin(ϕ)∂ϕ and ∂y = sin(ϕ)∂r +
(1/r) cos(ϕ)∂ϕ and projecting the in-plane components of the
fields on the unit vectors e± = eσ=±1. To simplify the nota-
tion, we write the fields in the form E(r, t ) = Ẽ(r)ei(qzz−ωt )
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and B(r, t ) = B̃(r)ei(qzz−ωt ). Then we obtain in the 2CA limit
the fields

Ẽ(0)(r) = iE0J�(qrr)ei�ϕeσ + iσ
E0

2

(cqr

ω

)2

× [J�+σ+1(qrr)ei(�+σ+1)ϕe−
− J�+σ−1(qrr)ei(�+σ−1)ϕe+]

+ σc2 qzqr

ω2

E0√
2

J�+σ (qrr)ei(�+σ )ϕez, (16a)

B̃(0)(r) = σB0J�(qrr)ei�ϕeσ

− i
B0√

2

qr

qz
J�+σ (qrr)ei(�+σ )ϕez. (16b)

In the 3CA case the fields read

Ẽ(1)(r) = iE0J�(qrr)ei�ϕeσ

+ σ
qr

qz

E0√
2

J�+σ (qrr)ei(�+σ )ϕez, (17a)

B̃(1)(r) = σB0J�(qrr)ei�ϕeσ + σ
B0

2

(
qr

qz

)2

×[J�+σ+1(qrr)ei(�+σ+1)ϕe−
+ J�+σ−1(qrr)ei(�+σ−1)ϕe+]

− i
B0√

2

qr

qz
J�+σ (qrr)ei(�+σ )ϕez, (17b)

where we have used B0 = qzA0 and E0 = ωA0. In the follow-
ing we will discuss the differences between the fields resulting
from the 2CA and 3CA potentials. Note that these formulas are
exact due to the propagation-invariant nature of Bessel beams.

Let us first concentrate on the components along the
propagation direction. As already mentioned, the magnetic
field component B(γ )

z is independent of the parameter γ and
therefore the same in all cases. The spatial profile of the
electric field component E (γ )

z is also the same for all values of
γ ; however, the prefactor slightly depends on γ . If we expand
the prefactor in powers of the paraxial parameter (qr/qz ) we
find that the lowest order, i.e., the linear term, is independent
of γ while the next order, which is ∼(qr/qz )3, depends on
the value of γ . This is in agreement with the findings of Lax
et al. [1], who showed that when performing the expansion in
the paraxial parameter the field components in propagation
direction have only contributions of odd orders, while the
transverse components have only even orders. Furthermore,
the nth order of the longitudinal components is completely de-
termined by the (n − 1)th order of the transverse components,
which is the reason why the lowest order is independent of γ .

Let us now come to the transverse components. When
looking at Eqs. (16a) and (17a), we observe that in both cases
the transverse components of one of the two field types—the
electric or the magnetic one—keep the circular polarization
of the transverse components of the vector potential, while
the other one gets an additional contribution with the oppo-
site circular polarization. Instead of using the classification
in terms of 2CA and 3CA potentials, which is based on
the unmeasurable potentials, we can therefore introduce a
classification in terms of the fields and thus a classification

which is directly related to measurable quantities. In analogy
with transverse electric (TE) and transverse magnetic (TM)
fields in the case of guided waves, we can classify the fields
in the 3CA case as circular electric (CE) and those in the 2CA
case as circular magnetic (CM) because in the former case the
transverse components of the electric field have a well-defined
circular polarization, while in the latter case this holds for the
transverse components of the magnetic field.

From the general formulas for the fields in Eq. (12) we see
that in general (i.e., for values 0 < γ < 1) both the electric
and the magnetic field get an additional contribution with
opposite circular polarization, such that none of the fields
exhibits a circular polarization of its transverse components.
The relative strength between the countercircular electric and
magnetic contribution and thus the relative degree of elliptic-
ity is determined by the value of γ .

We note that the terms giving rise to the ellipticity are of
second order in the paraxial parameter f . This is again in line
with the fact that the transverse components should have only
even-order contributions in that parameter [1]. Summarizing
our results for the longitudinal and transverse components,
it turns out that in zeroth and first order of f the fields are
independent of the value of γ , i.e., on the gauge chosen to
complement the transverse vector potential. All higher-order
terms will then depend on that choice. These differences
will be therefore particularly important in the case of highly
nonparaxial beams, as will be discussed in more detail in
Sec. IV.

Besides the two limiting cases γ = 0 and γ = 1 there is
another interesting special value

γs = 1

1 + ω
cqz

= 1

1 +
√

1 + ( qr

qz

)2
, (18)

with several remarkable features. For fields close to the parax-
ial limit this corresponds to γs ≈ 1

2 , i.e., the value is just
in the middle between the two limiting cases, for increasing
deviations from the paraxial limit γs decreases. The fields are
once again derived from Eqs. (12) leading to

Ẽ(γs )(r) = iE0J�(qrr)ei�ϕeσ + iσ
E0

2

(
1 − cqz

ω

)
× [J�+σ+1(qrr)ei(�+σ+1)ϕe−
− J�+σ−1(qrr)ei(�+σ−1)ϕe+]

+ σc
E0√

2

qr

ω
J�+σ (qrr)ei(�+σ )ϕez, (19a)

B̃(γs )(r) = σB0J�(qrr)ei�ϕeσ + σ
B0

2

(
ω

cqz
− 1

)

× [J�+σ+1(qrr)ei(�+σ+1)ϕe−
+ J�+σ−1(qrr)ei(�+σ−1)ϕe+]

− i
B0√

2

qr

qz
J�+σ (qrr)ei(�+σ )ϕez. (19b)

Using the identity

eσ =
(

1 + σ

2

)
e+ +

(
1 − σ

2

)
e−,
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the fields can be rewritten as

Ẽ(γs )(r) = i
E0

2

[(
1 − σ

cqz

ω

)
J�+σ+1(qrr)ei(�+σ+1)ϕe−

+
(

1 + σ
cqz

ω

)
J�+σ−1(qrr)ei(�+σ−1)ϕe+

−iσ
√

2
cqr

ω
J�+σ (qrr)ei(�+σ )ϕez

]
, (20a)

B̃(γs )(r) = −iσ
B0

cE0

ω

qz
Ẽ(γs )(r). (20b)

In this case, the electric and magnetic fields become com-
pletely symmetric, i.e., they have the same form. Further-
more, since E0/B0 = ω/qz, the familiar plane-wave relation
E/(cB) = 1 holds exactly for these fields. And finally, the
electric and magnetic fields are equal to those derived from a
superposition of plane waves with a given circular polarization
σ [3,26]. In that sense these are the Bessel beams which are
characterized by a well-defined helicity.

3. Mixing of topological and spin indices

Keeping in mind that σ denotes the circular polarization
and � the topological charge of the transverse components of
the original vector potential, the transverse components of the
electric and the magnetic fields inherit a term with the same
polarization and topological charge of A⊥. However, in the
2CA case the electric field and in the 3CA case the magnetic
field get additional terms with both circular polarizations
leading in general to an elliptic polarization. At the same time,
the azimuthal dependence of these fields is not anymore given
by exp(i�ϕ) but there are additional terms with a dependence
exp[i(� + σ ± 1)ϕ]. This shows that in the 2CA case the
transverse component of the electric field and in the 3CA
case the transverse components of the magnetic field are not
anymore characterized by a well-defined circular polarization
and topological charge. Instead they exhibit a mixture of
orbital (index �) and spin (index σ ) angular momenta. Indeed,
such a mixing of spin and orbital angular momentum has been
found for tightly focused beams in the case of Bessel [3] and
LG [22–24,27] beams, and even in the different context of
electron vortex beams [28,29].

For σ = 1 there is one additional term with again σ = 1
and topological charge � and another one with σ = −1 and
topological charge � + 2. For σ = −1 there is again one
additional term with σ = −1 and topological charge � and
another one with σ = 1 and topological charge � − 2. This
confirms that there is indeed a coupling of SAM and OAM,
since all terms have the same sum � + σ of topological charge
and spin index.

4. Spatial profiles and fields close to the phase singularity

Due to the relation J−�(x) = (−1)�J�(x), that holds for
Bessel functions of integer order, the radial dependence of
the fields is determined by the modulus of the topological
charge. This has led to a classification of the beams into a
parallel class, where Sign(�) = Sign(σ ), and an antiparallel
class with Sign(�) �= Sign(σ ) [25,30]. In the parallel class
(and also in the case � = 0) the additional term with opposite
circular polarization has a modulus of the topological charge

of |�| + 2, i.e., the modulus is larger than in the terms with
the original circular polarization. Since close to the beam
center Bessel functions behave like J�(qrr) ∼ (qrr)|�|, this
means that the terms with opposite circular polarization are
usually negligible in this region. In contrast, in the antiparallel
class for beams with |�| � 2 the additional term with opposite
circular polarization has a modulus of the topological charge
of |�| − 2, i.e., the modulus is smaller than in the terms with
the original circular polarization. Therefore, in the region
close to the beam center this term strongly dominates over
the original one. In particular, for |�| = 2 the terms with
opposite circular polarization have a finite field strength at the
beam center, in contrast to the terms with the original circular
polarization, which vanish according to (qrr)2. A special case
are antiparallel beams with |�| = 1, where the terms with
both circular polarizations have the same radial dependence
∼(qrr).

In a previous work [30] we have studied the behavior of
Bessel beams from the antiparallel class close to the phase
singularity r = 0. There we predicted the existence of an
atypically strong magnetic field. However, the origin of this
asymmetry between the electric and magnetic fields remained
unclear. Based on the results of the present paper, it is clear
that this asymmetry was caused by the choice of the potentials
for the Bessel beam, which in the present notation were
of 3CA type. Here we restore the symmetry by finding a
procedure (i.e., using 2CA potentials) that yields fields whose
electric field exhibits the same behavior close to the phase
singularity and, moreover, by finding a generalized procedure
where this behavior can be found in both electric and magnetic
field.

B. Laguerre-Gaussian beams

Let us now apply the general formalism presented in Sec. II
to the case of LG modes. The transverse components of the
vector potential for a circularly polarized LG beam can be
written as [12]

A⊥(r, t ) = A0uqz,�(r, z)ei�ϕei(qzz−ωt )eσ , (21)

with ω = cqz and the LG mode function uqz,�(r, z) is given by

uqz,�(r, z) = 1√
π |�|!

(√
2

w0

)|�|+1

r|�|

× exp

[
− r2

w2
0

+ 2ikzr2

l2
− 2i(|�| + 1)

z

l

]
. (22)

Here, w0 denotes the beam waist and l = qzw
2
0 = 2zR is

the diffraction length, zR being the Rayleigh range [1,12].
The paraxial parameter is given by f = (qzw0)−1 leading to
(qzl )−1 = f 2.

Again, the correction terms are related to the term ∇⊥ · A⊥.
Using Eq. (21), this term reads

∇⊥ · A⊥(r, t ) = A0√
2

(
∂uqz,�

∂r
− σ�

uqz,�

r

)

×ei(�+σ )ϕei(qzz−ωt ). (23)

As previously mentioned, the most common derivation
leading to LG optical vortex fields is the one making use of the
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Lorenz gauge supplementing the transverse vector potential
with a scalar potential; this is what here is called the 2CA
procedure corresponding to γ = 0 and γ = 1. According to
Eq. (4c) the scalar potential is then given by

�(0)(r, t ) = −i
c2

ω
∇⊥ · A⊥(r, t )

= −i
c2A0√

2ω

(
∂uqz,�

∂r
− σ�

uqz,�

r

)

× ei(�+σ )ϕei(qzz−ωt ), (24)

in agreement with the derivation in Ref. [12]. From this
potential we obtain a longitudinal component of the electric
field

E (0)
z (r, t ) = −∂z�

(0)(r, t ). (25)

This field has a first-order contribution in the paraxial param-
eter f given by iqz�

(0) and corrections of third and higher
orders in f , resulting from the z dependence of the mode
function uqz,�. The first order is again in agreement with
Loudon’s derivation [12]. The higher-order corrections are
beyond the validity of the paraxial wave equation and have
therefore been neglected in [12]. The derivatives of �(0) with
respect to x and y lead to additional contributions in the
transverse electric fields. Like in the case of Bessel beams
they involve terms ∼ exp[i(� + σ ± 1)ϕ] and thus exhibit
mixing of topological and spin indices. However, they are of
second order in the paraxial parameter and therefore beyond
the validity of the paraxial wave equation. Consequently they
have been neglected in Ref. [12].

Let us now turn to the 3CA procedure corresponding to
γ = 1 and γ = 0. In this case the scalar potential vanishes
and the z component of the vector potential is obtained from
[see Eq. (5b)]

∂zA
(1)
z (r, t ) = −∇⊥ · A⊥(r, t ). (26)

Here, the integration of this equation is more complicated than
in the case of Bessel beams because the mode function uqz,�

depends on z. However, this dependence occurs on a length
scale of the diffraction length l , which is very slow compared
to the variation of exp(iqzz). Neglecting the z dependence of
uqz,�, we obtain

A(1)
z (r, t ) = i

qz
∇⊥ · A⊥(r, t )

= −i
A0√
2qz

(
∂uqz,�

∂r
− σ�

uqz,�

r

)

× ei(�+σ )ϕei(qzz−ωt ) (27)

and the corrections which have been neglected are of the
order f 2. From this potential we now obtain a longitudinal
component of the electric field

E (1)
z (r, t ) = −∂t A

(1)
z (r, t ). (28)

This field component is of first order in the paraxial parameter
f and furthermore it is in agreement with the corresponding
field component obtained in the 2CA procedure. The next
higher-order corrections are of third order in f ; these terms

are different in the two procedures because in the 2CA case
they result from the derivative of the mode function with
respect to z [see Eq. (25)], while in the 3CA case they result
from its integration with respect to z. These findings are
again in agreement with the results of Lax et al. [1] that the
longitudinal components of the fields have only contributions
of odd order in f and the f th-order terms are completely
determined by the ( f − 1)th-order terms of the transverse
field components.

The derivatives of A(1)
z with respect to x and y lead to

additional contributions to the transverse components of the
magnetic field, as seen in Eq. (12), exhibiting mixing of
OAM and SAM. They are again of second order in f and are
therefore beyond the validity of the paraxial wave equation.

We thus find that, much like in the case of Bessel beams,
up to first order in the paraxial parameter the 2CA and 3CA
procedures lead to the same electromagnetic fields. Beyond
this level, i.e., in particular in highly nonparaxial beams,
differences will appear. However, while Bessel beams are
correct solutions of Maxwell’s equations for arbitrary values
of the paraxial parameter, LG beams are only correct up to
first order. Therefore, to analyze differences in the fields of LG
beams caused by the 2CA and 3CA procedure the description
of these beams has to go beyond the paraxial regime, e.g., by
including higher orders in the framework of the systematic
approach discussed by Lax et al. [1] or by studying highly
nonparaxial or tightly focused LG beams [22–24,27] where
indeed mixing of orbital and spin angular momentum has been
found, as we have explicitly discussed for Bessel modes in
Sec. III A 3.

IV. EXPERIMENTAL CONSIDERATIONS

We now discuss how one could experimentally distinguish
between the different fields considered above. We will con-
centrate on the case of Bessel beams because there the derived
fields are exact solutions of the Maxwell equations. Measuring
an optical field is usually done by absorbing a photon in the
detector. The strongest interaction is typically achieved for
electric dipole transitions; therefore, here we concentrate on
measuring the electric field profiles of different beams. Let us
start the discussion by considering the required spatial scales.

As can be seen from Eqs. (16a) and (17a), the terms which
lead to the differences in the transverse components of E have
a prefactor of q2

r /(q2
r + q2

z ). With the beam waist w = 1/qr

and the wavelength λ = 2π/
√

q2
r + q2

z , the intensity of these
contributions is thus smaller by a factor of (λ/2πw)4. There-
fore, to increase the sensitivity the beam should be highly
nonparaxial. Let us assume that the beam is prepared such that
w = λ/2; then the characteristic scale for the variation of the
field strength is a few hundred nanometers. To measure these
variations, a probe in the range of a few tens of nanometers
is required. This could be realized, e.g., by a semiconductor
nanostructure like a quantum dot [31] or a single trapped ion
[32]. In the following we will concentrate on the latter scheme.

We consider a single trapped ion interacting with a struc-
tured light beam as in Ref. [32]. The ion is laser cooled to
an average spread of 60 nm and can be positioned along the
beam with subnanometer precision. The beam shape can be
measured by scanning the ion’s position across a beam while
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FIG. 1. Normalized transition probabilities as a function of the
position of the ion for different beams all with waist w = λ/2. The
probabilities are calculated for a dipole transition with change in
magnetic quantum number m = 1, assuming a negligible position
spread for the center of mass of the ion. Panel (a) refers to beams
with chirality � = 2; panels (b) and (c) refer to beams with � = 0
and 1, respectively. Blue (light gray) and red (dark gray) predictions
are for the two different circular polarizations σ = ±1, while solid
and dashed lines correspond to the prediction expected for a 2CA or
3CA model, respectively.

observing excitation probabilities on a given atomic transition.
Excitation probabilities, in this kind of experiment, are usually
measured by state dependent fluorescence [33].

We focus here on the interaction with a dipole-allowed
transition such as the SP transition in a one-electron atom.
More specifically, we consider a Zeeman split manifold such
that one can independently observe absorption involving dif-
ferent change in magnetic quantum number m. The strength
of these transitions will depend on the term accompanying
each polarization in Eq. (16a) for the electric field [34,35].
For the case where the external magnetic field and beam
propagation direction are collinear, the mapping is trivial:
m ←→ εm. This way, choosing the laser frequency and
polarization one can probe the different contributions of the
electric field and discern whether the beam is of the 2CA or
3CA type.

In Fig. 1 we show the expected results of a possible
experiment. The laser is tuned to a dipole-allowed transi-
tion with change in total angular momentum m = 1. A
highly nonparaxial beam with waist λ/2 is prepared. The
excitation probability cross sections are shown for the two
different polarizations and for three different spatial structures
� = 0, 1, 2. The bottom rows present an expanded view of the
low excitation range.

We suppose that we can freely choose the beam’s polariza-
tion and chirality but cannot assert whether it is of the type
2CA or 3CA. A detailed inspection of the expected excitation
curves shown in Fig. 1 shows that the best family of beams one
can use to distinguish between 2CA and 3CA are those with
� = 2. For this family [Fig. 1(a)] the expected spatial profile
for σ = +1 (blue curves) has always a two peak structure with
a pronounced zero at the center irrespective of the model. The
reason is that here the spatial structure is always determined
by the Bessel function J2. However, when the polarization
is changed to σ = −1 (red curves) the 2CA model predicts
a three peak structure with a maximum at the center of the
beam, which is caused by the contribution with the Bessel
function J0 arising from the mixing of topological and spin
index, while the 3CA model predicts no interaction since here
the polarization of the electric field remains purely σ = −1. In
particular, the presence (or absence) of the peak at the center
when changing the polarization from plus to minus would
reveal if the beam is of the 3CA (or 2CA) type.

It is important to note that polarizations can never be set
perfectly, so measuring small contributions when there is
another stronger competing one is always challenging. For
example, in the case just described, a small amount of the
wrong polarization would produce a spurious signal with a
spatial pattern corresponding to that polarization. For this
reason it is important to choose profiles which have distinct
features for each polarization. The case of � = 1 [Fig. 1(c)]
is an example of how no shape difference for the interactions
with different polarizations makes this family of beams a poor
candidate for the method described above. The reason is that
here the mixing of topological and spin index couples Bessel
functions J1 and J−1 which, however, have the same spatial
profile.

The � = 0 case [Fig. 1(b)], in turn, provides some distin-
guishability but not as good as the � = 2 case first discussed.
Here, the σ = −1 beam in the 2CA case acquires a contribu-
tion with the spatial profile of the Bessel function J2, which
has nonvanishing values at positions where the σ = +1 beam
is zero. Again, the excitation probability of the σ = −1 beam
in the 3CA case is strictly zero because of the absence of
mixing between spin and orbital angular momentum in the
electric field.

V. CONCLUSIONS

We have analyzed different methods to derive electromag-
netic fields from an ansatz for the transverse vector potential.
These methods were inspired by the ones normally used to
derive LG and Bessel beams. In order to compare the meth-
ods we applied both methods to both types of field modes,
LG and Bessel modes. We discussed in detail the case of
Bessel beams, which was motivated by the fact that these are
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solutions of the full Maxwell equations and not limited to
the paraxial approximation. We showed that the procedures
lead to different electromagnetic fields for the same ansatz.
These two types of beams, which we call circular electric and
circular magnetic, exhibit different properties that stem from
the presence of an anomalous term in the transverse part of
either the electric or magnetic fields. We then showed that
the two procedures can be regarded as limiting cases of a
generalized procedure, which interpolates smoothly between
the limiting cases and results in a class of electromagnetic
fields that have the anomalous term in both electric and
magnetic fields. In particular, there is a special value γs for
which the anomalous terms appear in the same way in the
electric and the magnetic field and moreover the ratio between
the electric field and the magnetic field contributions is the
same as for plane waves. This is therefore the most symmetric
configuration.

The same behavior has been found for LG beams; however,
since the anomalous terms are of second order in the paraxial
parameter LG beams beyond the paraxial limit have to be

considered, either by including higher-order terms in the
paraxial expansion or by studying tightly focused beams.

The second-order terms in the paraxial parameter in the
transverse components of the electric and magnetic field of
both Bessel and LG beams are responsible for the mixing
of orbital and spin angular momentum. This becomes more
important when beams are highly nonparaxial or strongly
focused, as has already been pointed out in the literature
[3,22–24]. Here we provided an explicit form for this mixing
term and we demonstrated that it can be present only in the
electric field, only in the magnetic field, or with an arbitrary
weight in both fields.
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