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Hyperparametric frequency noise eater
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Nonlinear optical frequency conversion can result in redistribution of the noise of the coherent pump light
among generated optical harmonics leading to improved quality of laser emission. The property is useful for
making narrow line lasers suitable for various metrology applications on a chip. We show theoretically that the
resonant hyperparametric scattering allows reducing optical frequency noise in one of the generated harmonics
with respect to the coherent pump light. The reduction calls for significantly dissimilar quality factors of the
resonator modes and appears at the cost of enhanced frequency sensitivity to power fluctuations of the pump
light. The artificial suppression of the quality factor of one of the modes participating in the scattering does not
lead to significant increase of the oscillation threshold and broadens the dynamic range of the phase matching of
the process. The technique is promising for creation of chip-scale parametric frequency “noise eaters.”
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I. INTRODUCTION

Optical sensors call for high spectral purity optical sources
[1] to improve the measurement sensitivity [2–5]. The noise of
the optical sources also defines performance of high data rate
optical communications [6,7]. Solid state or fiber lasers sta-
bilized to external bulk cavities are utilized to fulfill some of
these requirements [8–10]. Further improvements are needed
to create spectrally pure lasers that are small in size and
insensitive to environmental perturbations to enable sensor
arrays operating in harsh environments. This problem is par-
tially solved by usage of optical monolithic microresonators
for the semiconductor laser stabilization via self-injection
locking [11–14]. The self-injection locking technique works
well with single-mode semiconductor distributed feedback
(DFB) lasers, calls for high stability and high transparency
of the optical path between the laser chip and the resonator
[15], and is prone to residual optical backscattering and ul-
timately requires optical isolators. It is desirable to create an
optical system enabling reduction of the noise of any existing
laser, independently of its nature. The requirement for usage
of an optical isolator is also technologically stringent and
undesirable for photonic integrated circuits. In this paper we
show theoretically that a four-wave mixing hyperparametric
frequency oscillator based on a monolithic microcavity solves
the problem by cleaning the spectrum of a laser used for
pumping this oscillator.

Active optical systems are able to reduce disorder associ-
ated with the incoherent pump and to produce coherent light.
The simplest example of an active system that reduces noise
of the optical pump is a laser itself. A laser transforms a
practically incoherent pump into a coherent one. While the
degree of the noise reduction is very large, frequently it is
insufficient to achieve desirable spectral purity of the emitted
coherent radiation. One of the reasons is that the laser noise
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depends on the quality (Q) factor of the laser cavity, which is
not very large, especially in semiconductor lasers.

It was known for years that stimulated Brillouin scattering
(SBS) is an example of a nonlinear process in which generated
light can have significantly lower phase noise compered with
the phase noise of the pump light if the bandwidth of the
optical modes is smaller than the bandwidth of the mechan-
ical mode [16–20]. The extra optical noise brought to the
system is transferred to the weakly coherent phonons also
generated in the process. Recently the SBS-mediated optical
noise-cleaning technique was expanded to generalized opto-
mechanical structures. Optomechanical oscillations (OMOs)
of these structures feature small internal noise described by
a Schawlow-Townes-like model [21,22] which ultimately is
much smaller than the noise of the optical pump [23–26]. The
generated optical harmonic receives the pump noise so that
the produced phonons become very coherent in the opposite
case of the very high Q of the mechanical mode that can be
achieved in an OMO. A phonon “laser” can be produced in
this way [27].

SBS is a strongly nondegenerate parametric process in
which a photon and a phonon are generated from a pump
photon. A hyperparametric scattering in which two pump
photons are converted to two degenerate harmonic photons
is somewhat analogous to SBS and, hence, can be used
for the reduction of the optical noise relatively to the noise
of the pump light if the system has dissimilar decay rates
for the modes participating in the process. We adopt a model
of a resonant hyperparametric oscillator [28] to analyze the
dependence of the frequency of harmonics of the hyperpara-
metric oscillator on the frequency and power of the pump
laser. Previously the analysis was performed for a nearly sym-
metric model of a hyperparametric oscillator with the focus
at the beat note between the pump and generated light [29].
The ideal symmetry in the oscillation process results in the
complete suppression of the influence of the pump parameters
on the beat note frequency. The pump noise penetrates into
the beat note if the symmetry is broken, and, hence, the

2469-9926/2019/99(2)/023843(10) 023843-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.023843&domain=pdf&date_stamp=2019-02-22
https://doi.org/10.1103/PhysRevA.99.023843


ANDREYB. MATSKO PHYSICAL REVIEW A 99, 023843 (2019)

asymmetric case is undesirable if one intends to generate
low noise radio frequency signals with the oscillator. In this
paper we focus on the optical properties of the generated
harmonics and find that the significantly asymmetric case is
advantageous for improving the optical noise of a selected
frequency harmonic produced in the system.

In the symmetric hyperparametric oscillator the frequency
noise of the optical pump is imprinted on the generated optical
harmonics in an identical way. Drift of the pump frequency
results in identical drift of the harmonic frequencies. Due to
this fact the noise of the beat note of the pump and harmonics
does not depend on the pump frequency noise. We find that in
the significantly asymmetric case, when one of the resonator
modes containing the generated harmonic has a much higher
Q factor, the frequency of light generated in this mode barely
depends on the frequency of the pump light. The frequency of
the light is locked to the frequency of the mode instead. En-
gineering the Q factor of the resonator modes allows reducing
the optical frequency noise rather significantly. We show that
the phase noise of the pump can be reduced by factor 4γ 2

+/γ 2
−,

where γ± are the dissimilar, γ− � γ+, amplitude decay rates
of the sideband modes. Since the hyperparametric oscillation
can be strongly nondegenerate [30] one can easily filter out
both the pump and the high noise frequency harmonic from
the output light and use only the spectrally pure frequency
harmonic.

In what follows we derive the basic equations describing
resonant hyperparametric oscillator following Refs. [28,29]
(Sec. II), we find their steady-state solution indicating that
asymmetry of the attenuation rates results in increase of the
phase-matching range of the oscillator as well as decrease of
sensitivity of one of the generated harmonics to the pump
frequency fluctuations (Sec. III), and we present an analysis
of the quantum and classical noise in the system (Sec. IV).
In Sec. V we discuss practical ways of achieving asymmetric
decay rates in a nonlinear optical cavity and suggest an
experimentally realizable system. Section VI concludes the
paper.

II. BASIC EQUATIONS

We consider a hyperparametric oscillation in a nonlinear
ring resonator. The model includes only three optical modes.
The central mode is pumped optically. Two optical harmonics
are generated in the outside modes. This is a four-wave mixing
process in which two monochromatic optical pump photons
transform into the two sideband photons. The oscillation is
described by the Kerr Hamiltonian

V = −h̄(g/2) : (a + b+ + b− + H.c.)4, (1)

where “: · · · :” stands for normal ordering, a, b+, and b−
are the annihilation operators for the optically pumped and
sideband modes, respectively, and g is the coupling constant
defined as [28]

g = ω0
h̄ωc

Vn0

n2

n0
, (2)

where ω0 is the carrier frequency, c is speed of light in the
vacuum, V is the mode volume (complete overlap of the

modes and a nearly degenerate hyperparametric process is
assumed), and n2 is cubic nonlinearity of the material.

Equations describing the amplitude of the electric field
within the optical modes care derived from Eq. (1) in a
rotation wave approximation:

ȧ = −(iω0 + γ0)a + ig[a†a + 2b†
+b+ + 2b†

−b−]a

+ 2iga†b+b− + F0 + f0, (3)

ḃ+ = −(iω+ + γ+)b+ + ig[2a†a + b†
+b+ + 2b†

−b−]b+

+ igb†
−a2 + f+, (4)

ḃ− = −(iω− + γ−)b− + ig[2a†a + 2b†
+b+ + b†

−b−]b−

+ igb†
+a2 + f−, (5)

where ω0 and ω± are frequencies of the pumped and sideband
modes, respectively, γ0 and γ± are the coupling-defined decay
rates of the of the modes, respectively (we neglect the atten-
uation of the material), f0 and f± are the fluctuational forces
that take into account quantum noise contributions (to be dis-
cussed later), F0 = [2γ0P0/(h̄ω0)]1/2 exp[−i(ωt − φF0 )], P0 is
the power of the external pump, and ω is the carrier frequency
of the external pump.

It is essential in this configuration that γ− �= γ0 �= γ+.
The case of equal as well as nearly equal decay rates was
considered earlier. In this paper we show that the essential
inequality of the rates allows achieving significant phase noise
reduction in one of the generated harmonics of the system.

Equations (3)–(5) have to be supplied with expressions for
the output field:

aout = −(F0 + f0)
√

τ/2γ0 +
√

2γ0τb±, (6)

bout± = − f±
√

τ/2γ0 +
√

2γ±τb±, (7)

where τ is the round trip time of light in the cavity.

III. STEADY-STATE SOLUTION

We use notations of Refs. [28,29] and present the field
operators as a sum of the expectation value (A and B±) and
quantum slow-varying amplitudes (â and b̂±):

a = (A + â)e−iωt , b± = (B± + b̂±)e−iω̃±t , (8)

where ω̃+ and ω̃− are the carrier frequencies of generated
optical harmonics obeying

2ω = ω̃+ + ω̃−, (9)

resulting from the energy and photon number conservation
laws. In this section we find the oscillation threshold and
values of ω̃±.

We drop the quantum terms and substitute (8) into (3)–(5)
to derive a set of steady-state equations for A and B±:

�0A = ig[|A|2 + 2|B+|2 + 2|B−|2]A + 2igA∗B+B− + F0,

(10)

�+B+ = ig(2|A|2 + 2|B−|2 + |B+|2)B+ + igB∗
−A2, (11)
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�−B− = ig(2|A|2 + |B−|2 + 2|B+|2)B− + igB∗
+A2, (12)

where

�0 = i(ω0 − ω) + γ0,

�± = i(ω± − ω̃±) + γ±

denote the complex parameters standing for detuning and
attenuation as well as the external optical pumping.

To solve the equations it is convenient to introduce dimen-
sionless parameters [28,29]:

ξ = g|A|2
γ0

, f =
(

g

γ0

)1/2 |F0|
γ0

, A = |A|eiφ0 ,

B± = |B±|eiφ± , B± = |B±|
|A| , ψ = φF0 − φ0,

φ = 2φ0 − φ+ − φ−, 	± = ω± − ω̃±
γ0

, 	0 = ω0 − ω

γ0
,

D = 2ω0 − ω+ − ω−
γ0

� β2cω2
FSR

γ0n0
,

where ωFSR ≡ (ω+ − ω−)/2 is the free spectral range of the
resonator in the vicinity of the pumped mode, β2 is the group
velocity dispersion (GVD) parameter for the resonator mode
family (the parameter takes into account both geometrical and
material contributions).

It is easy now to transform the set of three equations
(10)–(12) to the set of six algebraic equations using this
parametrization:

√
ξ (1 − 2ξB+B− sin φ) = f cos ψ, (13)

√
ξ{	0 − ξ [1 + 2(B2

+ + B2
− + B+B− cos φ)]} (14)

= f sin ψ,

γ+B+ + γ0ξB− sin φ = 0, (15)

[	+ − ξ (2 + B2
+ + 2B2

−)]B+ − ξB− cos φ = 0, (16)

γ−B− + γ0ξB+ sin φ = 0, (17)

[	− − ξ (2 + 2B2
+ + B2

−)]B− − ξB+ cos φ = 0, (18)

	+ + 	− = 2	0 − D (ω̃+ + ω̃− = 2ω). (19)

The entire set of parameters describing the system
(ξ, φ, 	+, 	− as well as the ratio between B+ and B−) is
derived from Eqs. (15)–(19):

ξ 2 = γ+γ−
γ 2

0

+ γ+γ−
(γ+ + γ−)2

(20)

{2	0 − D − ξ [4 + 3(B2
+ + B2

−)]}2,

sin φ = −
√

γ+γ−
γ0ξ

, (21)

cos φ = {2	0 − D − ξ [4 + 3(B2
+ + B2

−)]}√γ+γ−
(γ+ + γ−)ξ

, (22)

	+ = (2	0 − D)
γ+

γ− + γ+

+ ξ (2 + B2
+ + B2

−)
γ− − γ+
γ− + γ+

, (23)

	− = (2	0 − D)
γ−

γ− + γ+

− ξ (2 + B2
+ + B2

−)
γ− − γ+
γ− + γ+

, (24)

B+
B−

=
√

γ−
γ+

. (25)

Using Eqs. (7) and (25) we find that the amplitude of the
fields leaving the cavity is always the same:

|Bout+|
|Bout−| =

√
γ+
γ−

B+
B−

= 1. (26)

We derive equations for phase ψ from Eq. (13) and
Eq. (14). To simplify the equations we note that γ−B2

− =
γ+B2

+ and keep only terms dependent on B−:

cos ψ =
√

ξ

f

[
1 + 2

γ−
γ0

B2
−

]
, (27)

sin ψ =
√

ξ

f

{
	0 − ξ − 2ξB2

−

[
(γ− − γ+)2

γ+(γ+ + γ−)

+γ−(2	0 − D)

ξ (γ+ + γ−)
− 3

γ−
γ+

B2
−

]}
. (28)

The equation for the intracavity field amplitude (B−) can be
found from these equations (cos2 ψ + sin2 ψ = 1) as well as
from Eq. (20):

[
1 + 2

γ−
γ0

B2
−

]2

+
{
	0 − ξ − 2ξB2

−

[
(γ− − γ+)2

γ+(γ+ + γ−)

+ γ−(2	0 − D)

ξ (γ+ + γ−)
− 3

γ−
γ+

B2
−

]}2

= f 2

ξ
. (29)

Equations (20) and (29) show that the threshold value of
the normalized pump power f 2 depends on the bandwidth
of the modes accommodating the generated sidebands. The
oscillation conditions can be further simplified for the soft
excitation regime characterized with B2

± → 0 in the vicinity
of the threshold of the oscillation:

ξ (1 + [	0 − ξ ]2) = f 2, (30)

ξ 2 = γ+γ−
γ 2

0

+ γ+γ−
(γ+ + γ−)2

[2	0 − D − 4ξ ]2. (31)

A. Threshold and stability of the oscillations

Equations (30) and (31) do not take into account dynamic
stability of the oscillations as well as stability of the oscil-
lations with respect to the initial conditions, and, hence, the
solution of the equations cannot always be realized experi-
mentally. In this section we evaluate the threshold conditions
by solving set (3)–(5) numerically at various values of disper-
sion parameter D and compare the result with the analytical
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FIG. 1. Illustration of the oscillation threshold conditions for the
case of three identical modes (γ± = γ0). (a) The detuning, 	0, and
(b) the pump amplitude, f , at the threshold. The red solid line
stands for the hard excitation, the blue solid line stands for the soft
excitation, and the red dashed line stands for the hard excitation
unstable with respect to the initial conditions. The soft and hard
excitation thresholds coincide for the anomalous GVD (D < 0).
There is a limited stable oscillation regime for the case of normal
GVD [31]. The thin solid line stands for solution of Eqs. (30)
and (31).

model [(30), (31)]. To identify the threshold we varied free
parameters f and 	0 and inferred the generated sideband
power. The threshold of the oscillation was identified as the
minimal value of f when the sideband power is different from
zero.

During the simulations we used either nearly zero initial
conditions for the soft excitation regime or random nonzero
initial conditions for the hard excitation regime. More specif-
ically, in the case of soft excitation we solved the set of
ordinary differential equations starting from an optical power
of a half of a photon in each mode. For the hard excitation
regime we assumed that the initial number of photons in the
modes is arbitrary, but not exceeding the resonant steady-state
photon number corresponding to the selected pump value. The
phase of the initial mode excitation was random in both cases.
To verify the dynamical stability of the system we introduce a
weak noise to the pump and ran the simulation over hundreds
of ring-down times of the cavity, which leads to collapse of
the dynamically unstable realizations. The simulations were
performed for the case of identical modes as well as for the
cases when the bandwidth of one of the sideband modes
exceeds the bandwidth of the other two modes by 3 and 10
times. The evaluated threshold conditions are illustrated by
Figs. 1, 2, and 4.

For the completely symmetric case, when all the modes
have the same Q factor, the analytical model gives identical
result with the numerical simulations for anomalous GVD
(approximately D < −0.3) and large normal GVD (approx-
imately D > 2.3), as shown in Fig. 1. The system becomes
unstable with respect to initial conditions at 2.3 > D > −0.3.
Interestingly, while the threshold pump power followed the
analytical result for the hard excitation, the frequency de-
tuning value deviated from the analytical one. The larger
detuning was selected by the system to compensate for the
large generated harmonic values, since the oscillations with
small harmonic amplitudes was not realized in the case of hard
excitation.

As was found earlier [31], soft excitation is pos-
sible for D > 4/

√
3 and −(D/2 + √

D2 + 16)/2 > 	0 >

FIG. 2. Illustration of the oscillation threshold conditions for the
case of γ+ = γ0 and γ− = 3γ0. (a) The detuning, 	0, and (b) the
pump amplitude, f , at the threshold. The red solid line stands for
the hard excitation, the blue solid line stands for the soft excitation,
and the red dashed line stands for the hard excitation unstable
with respect to the initial conditions. The soft and hard excitation
thresholds nearly coincide for the anomalous GVD (D < 0). An
island of soft excitation occurs at normal GVD (D > 0), similarly
to the symmetric case. The hard excitation has a lower threshold for
normal GVD, but the oscillations are unstable with respect to the
initial conditions. The thin solid line stands for solution of Eqs. (30)
and (31).

−(
√

3 + D/2). The soft excitation is also supported for
a limited interval of values of the pump, f . The soft
and hard excitations have nearly identical power threshold
values.

Increase of the asymmetry of the system attenuation re-
sulted in a modification of the distribution of the stability
windows for the oscillator. The soft excitation regime was
stable in the region of the anomalous GVD, similarly to
the case of symmetric loading of the modes. The oscillation
was also stabilized at some normal GVD values with the
stability region shifted to the higher pump power, as shown
by the blue solid line in Fig. 2. The minimal achievable
threshold value with respect to the pump power increased only
slightly, in agreement with expression f 2

min ∼ (γ+γ−)1/2/γ0.
The parameters of the stability regions nearly coincided with
the analytical model in the case of the soft excitation.

In the case of the hard excitation regime the simula-
tion result nearly coincides with the analytical model for
anomalous GVD. A lower power threshold than predicted
by the analytical model can be realized for normal GVD
values, as indicated by the dashed red line in Fig. 2. These
solutions, though, are unstable with respect to the initial
conditions.

It is instructive to illustrate the oscillation stability island
observed at the conditions of normal GVD. To do it we create
a density plot showing normalized power of the generated
sidebands as a function of the pump power as well as pump
frequency detuning (Fig. 3). In this plot one can see that there
is a finite region of parameters where the stable oscillation is
observed. This regime can be achieved for both soft and hard
excitation conditions. The hard excitation is also realizable at
larger detunings and at smaller pump powers. This regime
is unstable with respect to the initial conditions. We select
the initial conditions randomly, and, hence, the instability is
visible because of the sparse distributed colored dots at the
left-hand side of Fig. 3(a).
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FIG. 3. Color density map plot illustrating dependence of the
generated sidebands power on the detuning 	0 and pump amplitude
f for the case of γ+ = γ0 and γ− = 3γ0 as well as D = 27 (normal
GVD). (a) Hard and soft excitation regimes. The lowest point of
the plot shows the position of the oscillation threshold illustrated by
Fig. 2. The hard excitation region of parameters is observed when
	0 is large and negative. The value of f is smallest in this case, but
the oscillations are unstable with respect to the initial conditions. The
soft excitation is observed at smaller negative detunings and larger f
values. (b) Inset showing the localized soft excitation region.

In the present study we are interested in the case of
significantly dissimilar Q factors of the modes supporting
generation of the frequency sidebands, since the asymmetry
of the bandwidths of the modes leads to the generation of
the spectrally pure light. Further increase of the asymmetry
degree of the system results in stabilization of the oscillation
at the normal GVD regime; see Fig. 4. It is also stable in
the anomalous GVD region. The increase of the threshold
power is moderate. The stable normal GVD regime, though,
has a higher threshold if compared with the value found
from the analytical expression. The frequency detuning value
corresponding to this normal GVD regime is nearly identical
with the analytical prediction. The power of the generated
harmonics is illustrated by Fig. 5 (anomalous GVD) and Fig. 6
(normal GVD). The points of the distributions showing the
smallest value of the pump found at the optimal detuning
are used to draw Fig. 4. The parametric process can be very

FIG. 4. Illustration of the oscillation threshold conditions for
the case of γ+ = γ0 and γ− = 10γ0. (a) The detuning, 	0, and
(b) the pump amplitude, f , at the threshold. The red solid line
stands for the hard excitation, and the blue dotted line stands for
the soft excitation. The optimal detuning values for the soft and
hard excitation threshold nearly coincide at any GVD within the
studied parameter range. Hard excitation shows a lower threshold
value; however, it is still higher than the threshold predicted by the
solution of Eqs. (30) and (31), shown by the dash-dot black line. All
the shown solutions are stable.

FIG. 5. Color density map plot illustrating dependence of the
generated sidebands power on the detuning 	0 and pump amplitude
f for the case of γ+ = γ0 and γ− = 10γ0 as well as D = −6. Panels
(a) and (b) illustrate hard and soft excitation regimes, respectively.
The lowest point of the plot shows the position of the oscillation
threshold illustrated by Fig. 4.

efficient, so at least half of the pump power is transferred to
the power of the generated harmonics.

IV. FLUCTUATIONS

It was shown previously that for the case of symmetric
loading of the side modes, γ− = γ+, the relative frequency
of the beat note of the pump and sideband harmonics does
not depend on both the phase and the power of the pump
light [28]. In this case B+ = B−. We here are interested in the
case when one of the generated optical sidebands is decoupled
from the pump light to the highest possible degree. This is
possible when γ− �= γ+.

Indeed, let us assume that γ− � γ+. According to
Eqs. (23) and (24), in this case the detuning value 	+ depends
on the detuning of the pump light 	0 much less than 	−.
Variations of the pump frequency are nearly exactly imprinted
at the 	−. On the other hand, both 	+ and 	− depend on the
pump power. As the result the fluctuations of the generated
light depend on both the frequency and power fluctuations
of the pump. In this section we study the simplest case of
the hyperparametric oscillator operating in the vicinity of the
threshold and demonstrate that while the frequency noise of

FIG. 6. Color density map plot illustrating dependence of the
generated sidebands power on the detuning 	0 and pump amplitude
f for the case of γ+ = γ0 and γ− = 10γ0 as well as D = 15. Panels
(a) and (b) illustrate hard and soft excitation regimes, respectively.
The lowest point of the plot shows the position of the oscillation
threshold illustrated by Fig. 4.
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the pump is indeed suppressed the fluctuations of the power
become important.

A. Equations describing the fluctuations

To study phase fluctuations in the system we introduce
fluctuations terms as

a = (|A| + δA)ei(φ0+δφ0 )e−iωt , (32)

b± = (|B±| + δB±)ei(φ±+δφ± )e−iω̃±t , (33)

F0 = (|F | + δF )ei(φF0+δφF0 ), (34)

where the amplitude and phase fluctuation terms of the field
amplitudes are related to the annihilation operators as

â = δA + i|A|δφ0, (35)

b̂± = δB± + i|B±|δφ± (36)

and δF as well as δφF0 stand for the classical time-dependent
noise of the optical pump.

We assume that ξB2
± 
 1 (the generated sidebands are

much smaller than the pump) and write equations for the
phase and amplitude fluctuations of the pump field:

δȦ + |F |
|A| cos ψδA

= |F | sin ψ (δφ0 − δφF0) + δF cos ψ + Re[ f0eiωt ], (37)

δφ̇0 + |F |
|A| cos ψ (δφ0 − δφF0)

=
(

2g|A|2 − |F |
|A| sin ψ

)
δA

|A| + δF
sin ψ

|A| + 1

|A| Im[ f0eiωt ].

(38)

It worth noticing that |F | cos ψ/|A| ∼ γ0 for the unsaturated
system, so the cavity modifies the noise due to the filtering
function of the linear resonance. Fluctuations of the phase
of the pump define the fluctuations of the pump field in the
mode. Here, for the sake of shortness, we use the following
notations: Re[ f0eiωt ] = ( f0eiωt + ad j.)/2 and Im[ f0eiωt ] =
( f0eiωt − ad j.)/2i.

A linearized set of equations for the amplitude and phase
fluctuations of the sidebands are

δḂ± = Re[ f±eiω̃±t ]

− g|A|2 sin φ

(
δB∓ − |B∓|

|B±|δB±

)

− g|A|2 cos φ|B∓|(2δφ0 − δφ+ − δφ−), (39)

δφ̇± = 1

|B±| Im[ f±eiω̃±t ]

− g|A|2 |B∓|
|B±| sin φ(2δφ0 − δφ+ − δφ−)

+ g|A|2 |B∓|
|B±| cos φ

(
δB∓
|B∓| − δB±

|B±|
)

+ 2g|A|δA

(
2 + |B∓|

|B±| cos φ

)
. (40)

We are interested in the solution of Eqs. (39) and (40)
describing phase noise of the optical harmonics generated in
the process. To find the solutions we have to take into account
the following equations:

δḂ+
|B+| − δḂ−

|B−|

= g|A|2 sin φ

( |B−|
|B+| + |B+|

|B−|
)(

δB+
|B+| − δB−

|B−|
)

− g|A|2 cos φ

( |B−|
|B+| − |B+|

|B−|
)

(2δφ0 − δφ+ − δφ−)

+ 1

|B+|Re[ f+eiω̃+t ] − 1

|B−|Re[ f−eiω̃−t ],

2δφ̇0 − δφ̇+ − δφ̇−

= g|A|2 sin φ

( |B−|
|B+| + |B+|

|B−|
)

(2δφ0 − δφ+ − δφ−)

−2

{
g|A|2

[
2 +

( |B−|
|B+| + |B+|

|B−|
)

cos φ

]
+ |F |

|A| sin ψ

}
δA

|A|

+ g|A|2 cos φ

( |B−|
|B+| − |B+|

|B−|
)(

δB+
|B+| − δB−

|B−|
)

− 2
|F |
|A| cos ψ (δφ0 − δφF0) + 2δF

sin ψ

|A|
+ 2

|A| Im[ f0eiωt ] − 1

|B+| Im[ f+eiω̃+t ] − 1

|B−| Im[ f−eiω̃−t ].

(41)

Since we assumed that γ− � γ+, we focus on the expres-
sion for the phase noise of the light generated in the long-lived
optical mode. In the vicinity of the oscillation threshold we
can safely assume that sin φ � −1 and cos φ � 0. In this case
the equation for the phase of the optical harmonic becomes

δφ̇+ = 1

|B+| Im[ f+eiω̃+t ]

+ g|A|2
√

γ+
γ−

(2δφ0 − δφ+ − δφ−) + 4g|A|2 δA

|A| . (42)

This equation should be supplied with a simplified equation
for the relative phase of the pump and generated harmonics:

2δφ̇0 − δφ̇+ − δφ̇−

= −g|A|2
√

γ−
γ+

(2δφ0 − δφ+ − δφ−) + 2δφ̇0. (43)

We dropped the other fluctuations terms in Eq. (43) since their
contributions are smaller than the impact of the similar terms
in Eq. (42).

023843-6



HYPERPARAMETRIC FREQUENCY NOISE EATER PHYSICAL REVIEW A 99, 023843 (2019)

B. Solution of the equations

We have to solve Equations (37), (38), (42), and (43) to find
noise of phase φ+ of the light generated in the high-Q mode.
To do it we utilize the Fourier transformation

δφ+(t ) =
∫ ∞

−∞
δφ+(�)e−i�t d�

2π
, (44)

and introduce single sideband phase noise in the form

〈δφ+(t )δφ+(t − τ )〉 =
∫ ∞

−∞
L+(�)ei�t d�

2π
. (45)

Fourier amplitudes for the fluctuational force Im[ f+(t )] are
introduced a similar way:

Im[ f+(t )] =
∫ ∞

−∞
Im[ f+(�)]e−i�t d�

2π
. (46)

The simplified solution for the Fourier amplitudes can be
found in the steady-state approximation, γ+ � �, and also
under the assumption that the shot noise of the pump is much
smaller than the shot noise of the generated harmonic:

φ+(�) = 1

|B+|
Im[ f+(�)]

−i�
+ 2

γ+
γ−

δφF0(�)

+ 4g|A|2(|F |/|A|)
−i�(|F |/|A| − 2g|A|2 sin ψ )

δF (�)

|F | . (47)

This expression is valid since sin ψ is negative in the region
of stable oscillation.

Since term f+ represents Langevin force arising from the
attenuation of light in the mode it obeys the relationships

〈 f+(t )〉 = 0, (48)

〈 f+(t ) f †
+(t ′)〉 = 2γ+δ(t − t ′), (49)

〈 f †
+(t ) f+(t ′)〉 = 0, (50)

where 〈. . . 〉 stands for ensemble averaging. Consequently,

〈Im[ f+(t )]Im[ f+(t ′)]〉 = 1
2γ+δ(t − t ′), (51)

〈Im[ f+(�)]Im[ f+(�′)〉 = πγ+δ(� + �′). (52)

(53)

The phase noise of the generated light is

L+(�) � γ+
2�2|B+|2 + 4

γ 2
+

γ 2−
LφF0(�) + ξγ 2

0

�2
RIN, (54)

where ξ is a dimensionless parameter of the order of a unit,
LφF0(�) is the phase noise of the pump light, and RIN is the
relative intensity noise of the pump light.

Equation (54) represents the main result of the paper. It
shows that the phase noise of the harmonic generated in the
high-Q mode is given by the fundamental phase noise result-
ing from phase diffusion, where the expression connecting
the expectation value of the number of photons |B+|2 and the
output power PBout+ is

|B+|2 = PBout+
2γ+h̄ω+

, (55)

as well as the phase and amplitude noise of the pump light.
The contribution of the phase noise of the pump is sig-
nificantly suppressed, while contribution of the RIN of the
pump can be significant if the noise has technical contribution
∼�−ζ , where ζ > 0. This could be standard flicker noise
of the laser. However, if RIN of the pump coincides with
the pump shot noise, the term becomes negligible, since we
assumed that the pump has much higher power than the har-
monics. Therefore, the hyperparametric oscillator allows im-
proving the phase noise of the pump laser. The improvement
is possible for an oscillation occurring at both normal and
anomalous GVD, as the soft excitation regime becomes possi-
ble due to unequal decay rates of the sideband optical modes.

C. Classical transfer function

The described simplified analytical model assumes that
the system has a stable dynamical attractor in the vicinity
of the oscillation threshold. It is not obvious that there is a
stable solution at these conditions since we are dealing with
nonlinear systems where chaos, bifurcations, and other effects
can occur within the parameter space that characterizes the
system. Also, in the vicinity of the oscillation threshold, where
fluctuations are huge, linearized analysis is no longer valid.
Nonlinear effects are crucial to characterize these fluctuations.
To alleviate these concerns, we perform a numerical study that
clearly shows validity of the analytical model.

We have demonstrated stability islands for the oscillations
in Sec. III A, in which the original set of the nonlinear
differential equations (3)–(5) was solved numerically while
varying parameters of the system. In this section we select the
solutions for which the analytical model is valid (ξB2

± 
 1)
and find the transfer function of the phase fluctuations of
the pump light to the phase fluctuations of the generated
optical harmonics to verify if the phase modulation of the
pump indeed impacts the oscillation harmonic generated in
the higher Q optical mode less than the harmonic generated
in the lower Q mode. Results of the simulations confirm the
conclusions of the analytical calculation.

We select the realizations of the oscillations for which
the pump amplitude f is as small as possible. To do it we
first select the value of the GVD parameter D for the cases
of identical decay rates of the sideband modes, γ± = γ0, as
well as significantly dissimilar decay rates, γ+ = γ0 and γ− =
10γ0. The threshold conditions for these cases are shown in
Figs. 1 and 3, respectively. We find that the smallest f can be
used if D = −2 for the symmetric case and D = −6 for the
asymmetric case.

We select next the normalized amplitude of the pumping
force f to exceed the corresponding threshold only slightly
and find the dependence of the power of the generated side-
bands, B2

±, on the frequency detuning of the pump light, 	0.
The initial conditions for the amplitudes of the harmonics are
selected randomly within the range of 0 . . . 5. The integration
time is selected to be 300 ring-down times of the cold cavity.
In this way the unstable solutions decay and only stable ones
are observed.

The resultant curves are shown in Fig. 7. The particular
solution is stable at any 	0 for the symmetric decay rates. The
stability is lost at the larger negative detunings for the case of
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FIG. 7. Dependence of the normalized power of the generated
sideband B2

± on the normalized frequency detuning of the pump
light 	0. Only stable solutions are shown. (a) The normalized pump
amplitude, f = 2.2, for the case of γ+ = γ0 and γ− = 10γ0 as well
as D = −6 and is a part of Fig. 5(a). (b) Pump amplitude, f = 1.1,
for the symmetric case of γ± = γ0 as well as D = −2.

asymmetric decays so the left side of the curves in Fig. 7(a) is
truncated. This type of instability is already taken into account
in the density plot shown in Fig. 5(a).

The generated harmonics have identical normalized power
in the case of symmetric decay rates. In the case of the
asymmetric decays they are unequal, as predicted by Eq. (25).
At the outside of the cavity, though, the actual power levels
become equal, as follows from the energy conservation stand-
point [Eq. (26)].

To evaluate the suppression of the phase noise of the pump
light in the generated harmonics we perform simulations
using the technique developed for the testing noise of Kerr
frequency combs [29,32]. The external optical pumping is
given by F0(t ) = |F | exp[iφF0(t )], where |F | is the value of
the amplitude of the pump light that is considered to be
constant and φF0(t ) is a time-dependent phase of the pump
light.

We introduce slow modulation of the pump light and
find the relative power of phase modulation of the generated
harmonics to infer the transfer function characterizing the
impact of the phase modulation (noise) of the pump on the
phase of the optical frequency harmonics. Namely, we present
the normalized external force in the form

F0 = |F |eiκ cos �t , (56)

where κ 
 1 is a coefficient of phase modulation, and �

is the modulation frequency (having the same meaning as
the Fourier frequency we utilized in the analytical study).
We assume that the modulation coefficient is much less than
unity since we are interested in the study of transfer of
a relatively small noise from the pump to the harmonics.
We run the simulation at various � for the time interval
exceeding the cavity ring down by factor of 300 and compare
the magnitude of the phase modulation of the intracavity
pump and the generated harmonics. We normalize the ob-
tained values to the modulation magnitude of the external
pump and find the power transfer efficiency as a function of
the modulation frequency �. The results of the simulations
are shown in Figs. 8 and 9.

For the case of the symmetric loading of the oscillator
modes (γ± = γ0) the phase noise of the pump and harmon-
ics is the same (Fig. 8) at small modulation frequencies
(�/γ0 
1). This result coincides with the prediction of the

FIG. 8. Phase noise transfer function for the case of symmetric
loading of the modes γ± = γ0. (a) Off-resonant and (b) resonant
tuning of the pump light, as shown in Fig. 7(b). Both generated
optical harmonics are characterized with the same noise transfer
function with respect to the optical pump noise.

analytical model. At larger detunings the modulation (and
the associated noise transfer) is suppressed due to filtering
properties of the cavity. Interestingly, the filtering is stronger
for the generated harmonics. It happens because the noise is
filtered by both the pump and the harmonic cavity modes.
In this way the noise cleaning occurs even in the symmetric
loading case.

We have selected two values of the pump detuning 	0

to see if the saturation point in Fig. 7 makes any difference
and obtained a similar result at small modulation frequencies
(�/γ0 
 1). At larger modulation frequencies the phase mod-
ulation is filtered out faster when the oscillator operates in the
unsaturated regime.

The result is drastically different for the case of the asym-
metric loading of the sideband modes (Fig. 9). First, at the
small modulation frequencies (�/γ0 → 0) the modulation of
the pump is suppressed by factor 4γ 2

+/γ 2
−. This is exactly

the prediction of the analytical model Eq. (54). (It worth
noting that the analytical model is valid for both saturated and
unsaturated regimes considered here.) Second, the numerical
model shows that tuning the frequency of the pump light
towards the saturation of the oscillation results in a significant
reduction of the noise transfer from the pump to the harmonic
generated in the high-Q mode through the entire spectral range
[Fig. 9(b)]. Therefore, the system operates as a true “noise
eater.”

FIG. 9. Phase noise transfer function for the case of asymmetric
loading of the resonator modes γ+ = γ0 and γ− = 10γ0. (a) Off-
resonant and (b) resonant tuning of the pump light, as shown in
Fig. 7(a). The transfer of the pump noise to the high-Q optical mode
is significantly suppressed. The suppression of the phase noise of the
pump light is 4γ 2

+/γ 2
−, as predicted by Eq. (54).
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Suppression of the pump phase modulation (and noise) at
small frequencies results in improvement of the long-term
stability of the generated light. Suppression of the pump
modulation in the entire frequency range shows that indeed
the spectral purity of the generated signal becomes better if
compared with the pump light. In this way the numerical
simulation complements the analytical study and allows us to
apprehend the complete picture of the predicted phenomenon.

It is important to note that the simulation speed can be
improved significantly if the frequency � is slowly changing
in time while running the code (the pump light is considered
to be chirped [29,32]). In this way we can find the modu-
lation transfer spectrum from a single code run. The result
is practically the same with respect to the method involving
separate run of the code for each modulation frequency value.
The chirped force method is sometimes inaccurate, though,
especially at small �, so a careful selection of the modulation
frequency range and chirp speed should be exercised. The
final run is more reliable for the selection of the discrete
modulation frequencies.

V. DISCUSSION

We have shown that both realizing a nonlinear optical cav-
ity characterized with an optical spectrum having significantly
dissimilar Q factors and exciting a hyperparametric oscillation
in the cavity may result in an improvement of the spectral pu-
rity of the generated light. The major condition for the sizable
effect is a significantly larger frequency bandwidth of one of
the optical modes receiving one generated harmonic than the
bandwidth of the other generated harmonic. The spectrally
pure light is generated in the harmonics characterized with the
higher Q factor. In this section we describe several practical
ways of realizing such a cavity.

Optical modes belonging to a single-mode family of a stan-
dard monolithic optical cavity usually have nearly identical
Q factors. The reason is that the optical properties of the
transparent dielectrics do not change much at the scale of a
few hundred GHz or smaller. The simplest way to modify the
Q factors of one or several modes of the same cavity is to

introduce a narrow-band absorber to the cavity [33]. It can be
an atomic or molecular absorption line or a diffraction grating
selectively removing photons from the selected optical mode.
Another cavity coupled to the nonlinear cavity also results in
the attenuation management. Instead of an additional cavity
one can use another, lower-Q, mode family belonging to
the same cavity. Modes of different mode families tend to
interact, and, because the mode families are characterized
with different free spectral ranges, the interaction impacts
not all the modes of the mode family of interest. Usage
of a multidimensional quasiperiodic grating allows creating
cavities with a few optical modes characterized by dissimilar
bandwidth values.

Another way of engineering the Q factors is related to
altering phase matching of the hyperparametric process. It
was shown that creating a cavity in which the group velocity
dispersion changes from a normal to an anomalous one can
observe strongly nondegenerate hyperparametric scattering in
which one of the harmonics is strongly shifted to the red
and the other is shifted to the blue [30,34]. The frequency
difference can exceed an octave, and, consequently, the Q
factors of the corresponding cavity modes can be significantly
different.

VI. CONCLUSION

We have analyzed the reduction of the optical phase noise
in a harmonic of a resonant hyperparametric oscillator charac-
terized by dissimilar Q factors of the optical modes involved
in the oscillation process. The phenomenon occurs due to
redistribution of the noise of the optical pump between the
harmonics generated in the low-Q and high-Q modes of the
nonlinear optical cavity. The noise reduction can be utilized
for cleaning noise of semiconductor lasers integrated on pho-
tonic platforms. The method is advantageous for producing
high spectral purity optical sources on a chip.
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