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We discuss the main features of a recently introduced system capable of laser action: the complex active
optical network, or lasing network (LANER) [Lepri et al., Phys. Rev. Lett. 118, 123901 (2017)]. The system
is experimentally realized with optical fibers linked each other with couplers and with one or more coherently
amplifying sections. The LANER displays a standard laser behavior: When the gain provided by the active
sections is high enough to overcome the losses, a coherent emission is produced, with a complicated intensity
spectrum. A linear theoretical description is discussed in detail, showing how the LANER can be considered
as a generalization of the laser with the physical network acting as a complicated cavity. Among its main
aspects, the system can be represented by directed graphs disclosing the analogies with the problem of quantum
chaos on graphs. Moreover, when the links’ lengths are all integer multiples of the same value, the LANER
framework corresponds to a lattice problem, with the equivalence of the Brillouin zone with the cavity free
spectral range. Experiments in simple configurations are also performed, reporting the evidence of lasing action
and its characterization. Examples of spectra of the detected emitted intensity are obtained in different cases, in
a phenomenological agreement with the numerical findings of the theory.
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I. INTRODUCTION

The concepts of networks and graphs are central in com-
plexity science. Countless examples of systems where ir-
regular connectivity of agents plays a central role in the
dynamics and emergent properties are discussed in the sci-
entific literature [1]. In view of the many possible natural
realizations in physics, biology, and even social sciences, the
study of nonlinear dynamical systems on graphs is per se a
relevant research topic [2]. Just to mention a few examples,
this is relevant for the functioning of power grids and their
failures [3] and the roles of topology in synchronization [4],
spatial [5] and quantum [6,7] networks, and other nonlinear
effects [8,9]. Dynamics of nonlinear fields on graphs, for
instance, starlike structures, has also attracted the interest of
theoreticians [10,11]. However, most of the above topics could
be quite difficult to study in real systems and even more so in
controlled laboratory conditions.

Laser systems have been historically used as test beds
for many ideas from nonlinear dynamics and statistical or
condensed-matter physics and could represent suitable can-
didates for such an investigation. On the other hand, since
the very first proposals, the great majority of lasers have
shared the same structure: a gain section in a simple linear
or ring cavity, supporting regular sets of optical modes [12].
The opposite case is represented by the random laser, where
the propagation of rays in a disordered gain medium leads
to light amplification [13,14]. In fact, both such frameworks
are inadequate to provide the richness and the complexity
required for a characterization of specific statistical and/or dy-
namical issues in the network theory. The recently introduced
Lasing Network (LANER) [15] represents a system where the
above difficulties can be overcome. In brief, it consists of an
active optical network, whose connectivity induces a form of

topological disorder and can display genuine laser action;
indeed, the LANER could also be considered as a discrete
random laser, with a controllable complexity [15]. The sys-
tem permits scaling of the more standard laser geometries,
embodied in the simpler configurations with a single gain, to
strongly connected, multiple-gain setups. Moreover, from an
experimental point of view, the apparatus has several practical
advantages: Its flexibility allows exploration of different con-
figurations by an easy rearrangement of the components. The
stability of the setup grants detailed statistical analysis as well.

With respect to Ref. [15], here we first detail the theoretical
description of the LANER and its relevant features. In par-
ticular, we discuss the properties of the matrices involved in
the derivation of the modes and analyze the physical features
of some limit cases. Simple configurations are investigated as
examples. Then, an experimental realization is presented of
the same setups, and we report evidence of the lasing action
and the phenomenology of the power spectrum of the emitted
intensity.

The plan of the paper is as follows. In Sec. II, we in-
troduce the general idea and the main physical ingredients.
A theoretical linear model to compute the modes via the
network matrix of the LANER is presented in Sec. III. Some
specific examples are illustrated in Sec. IV, where we also
report a calculation of the optical spectra based on rational
approximations of the lengths (Sec. V). The final part of the
paper (Secs. VI A and VI B) is devoted to the description
of the experimental realizations we have carried out and a
summary of their phenomenology.

II. THE LANER CONCEPT

A sketch of the concept is depicted in Fig. 1. A physical
network is built using single-mode optical fibers connected via
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FIG. 1. The LANER concept. A physical network, built with
optical fibers (blue) connected though standard components such as
power splitters (green dots), acts as a laser with a complex cavity. The
coherent gains are provided by active regions (red thick segments),
employing, e.g., Er-doped fibers, semiconductor amplifiers, etc.

standard optical components such as m × n power splitters,
circulators, etc. Coherent gain sections, using the mechanism
of stimulated emission are placed in one or more (active)
links: laser-pumped, erbium-doped fibers, and/or semiconduc-
tor amplifiers or other systems can be used at this purpose.
Alternative components can be employed to introduce or
remove particular constraints in the structure; for instance, in
the experiments described in this work, we will only deal with
directed gains, realized by inserting optical isolators in the
active links. The observable quantities are the emitted fields
in the links, detected inserting (e.g., 2 × 2) power splitters
(possibly with a small coupling ratio): The two propagation
directions can be monitored at the same time if desired. The
split fields can be thus sent to detection sections, where high
bandwidth and sensitivity detectors monitor the field intensity.

III. THEORETICAL DESCRIPTION

For the theoretical description, we denote by Lj the length
of the link j, spanning the Nl available fiber segments; in the
present work, we consider the case in which all the ports of
each splitter are connected to fibers so that Nl = 2Ns and Ns

is the number of 2 × 2 splitters. We consider the propagation
delays through the splitters by a suitable redefinition of the
Lj’s. The main basic quantity we will deal with is the optical
spectrum of stationary modes. Its calculation is based on a
standard linear propagation approach and will be discussed in
the following subsections.

A. The observables: The field in the links

We consider the electric field propagating in the link j

E j (t, r j ) = E(+)
j (t, r j ) + E(−)

j (t, r j ), (1)

in terms of the forward- and backward-propagating fields

E(±)
j (t, r j ) = ey�(ρ, θ ) f (±)

j (t, z j ) . (2)

FIG. 2. The observables: the propagating fields at the extrema of
the links (a) and at the ports of the splitters (b). The indexing shown
is chosen only to distinguish each component of the fields for the two
cases; in the general approach, a further index for the links and the
splitters will be required.

Here, r j = (ρ, θ, z j ) is the cylindrical-coordinate vector in the
link j, ey is the unit vector indicating the linear (transverse)
polarization directions, and � is the transverse mode profile,
assumed to be the same for all the fibers. In single-mode
fibers like those we have employed in the experiments, only
the fundamental mode LP01, which is a function of the radial
coordinate ρ only is supported. The functions f (±)(t, z j )
describe the amplitude of the field propagating in the two
directions at the point z j of the j-link coordinate system.

In the present approach, we will consider that all the fields
in the links of the physical network share the same polariza-
tion direction. While this can be experimentally realized by
using polarization-maintaining fibers and components, the ef-
fect of possible different polarization directions in some links
can be taken in account by a suitable redefinition of the corre-
sponding gains. This approach is made possible by the fact
that such effects would be fixed for a given experimental
configuration.

The physical description of the LANER behavior is then
carried out in terms of the propagating fields in each link.
In particular, for a given link, we call A (respectively, B)
the values of the field at the extremities exiting (respectively,
entering) the link as shown in Fig. 2(a).

B. Connecting the links: The scattering matrix

We consider first a single 2 × 2 lossless coupler depicted
in Fig. 2(b). We define, at each of the four ports, the column
vectors of input and output amplitudes A = (A1, A2, A3, A4)T

and B = (B1, B2, B3, B4)T (this requires fixing a port num-
bering). They are related via the scattering matrix B = S(1)A.
The splitting of the field follows an unitary transformation
(energy conservation through the splitter). Under a prescribed
convention, we can parameterize it through the transmission
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and reflection coefficients T, R such that |T | = √
α and |R| =√

1 − α, where 0 � α � 1 is also termed as the splitting fac-
tor. Moreover, the splitters are reflectionless and this impose
some further constraint on the form S(1). Altogether,

S(1) =

⎛
⎜⎜⎝

0 0
√

1 − α
√

α

0 0 −√
α

√
1 − α√

1 − α −√
α 0 0√

α
√

1 − α 0 0

⎞
⎟⎟⎠ . (3)

The blocks connecting {A1, A2} with {B3, B4} and {A3, A4}
with {B1, B2} (upper right and bottom left respectively) are
unitary matrix as noted before. As a consequence, the matrix
S(1) is unitary as well.

In the case of Ns splitters that, for simplicity, we assume to
be all equal as above, we can extend the definitions introduc-
ing the 4Ns-dimensional column vectors of input and output
amplitudes A and B whose components are taken ordered in
such a way that

B = SA (4)

and the complete (4Ns × 4Ns) scattering matrix is block-
diagonal

S =

⎛
⎜⎜⎜⎝

S(1) 0 · · · 0
0 S(1) · · · 0
...

...
. . .

...
0 0 · · · S(1)

⎞
⎟⎟⎟⎠.

The unitary (orthogonal) matrix S describes the transfer prop-
erties of the splitters (or, in general, of the optical components
at the physical nodes of the LANER) and is thus independent
of the gains and the topology of the physical network. It is
readily generalized to the case of a set of different splitters
each having different transmission coefficients and/or port
numbers.

It is worth noting that splitters may have rather different
designs, translating into corresponding properties of S, such
as (see, e.g., Ref. [16]) the following:

(i) lossless (S is unitary);
(ii) reciprocal (S is symmetric); and
(iii) matched (diagonal elements of S are zero).
In the present work, we will focus on the case of all equal

2 × 2, 50% power optical splitters, such that α = 1
2 which

satisfies (i), (ii), and (iii).

C. Evolution in the links: The propagation matrix

In a linear description, we assume that the propagation of
the field in the link j is described by gain Gj = g je−(μ+ik)Lj =
g je−sL j , where g j > 1 (respectively, < 1) represents real and
positive link gain (respectively, losses), s is the complex wave
vector, and Lj is the (oriented) link length. We note that the
gains are written in the space domain: In the time domain, we
would instead use the time delays Lj/v, where v is the light
velocity in the fibers. In this way, the field at the end of the
link is obtained by that at the beginning (along the propagation
direction) by multiplying the latter by the gain. According to
the definition of the field variables and introducing the (2Nl ×
2Nl ) propagation matrix P, we write

A = PB . (5)

In a specific realization of the LANER, additional (fixed)
link-coupler phase delays should be considered depending on
the type of components. Such delays could be included in a
more general form of the gains as

G(±)
j → G(±)

j eiφ(±)
j , (6)

where the (±) refers to the (chosen) propagation direction
along the link, notably, φ

(+)
j = −φ

(−)
j . Associating the global

phase delays to the elements of P allows us to write the matrix
S in its simplest form; i.e., possible phase delays due to the
couplers are now included in the propagation and not in the
scattering matrix.

The matrix P contains both the topology (how the splitters
connect the links) and metric (gain and links length) informa-
tion of the LANER. As shown in Fig. 2(a), variables {A, B} in
the same link are related according to

An = g(+)
j e−(μ+ik)Lj Bm = G(+)

j Bm, (7)

Am = g(−)
j e−(μ−ik)Lj Bn = G(−)

j Bn, (8)

where j = j(n, m) is a (given) function of the splitter ports
indexes numbering the links.

The matrix P has the following properties:
(1) Since every port of each splitter is connected to one

and only one (different) port, P has only one nonvanishing
entry in every row and in every column.

(2) Since the output of a port cannot be connected to itself,
the diagonal elements of P are zero.

(3) It is invertible since

det P = |G1|2 × · · · × |GNl |2

= (g(+)
1 g(−)

1 ) × · · · × (g(+)
Nl

g(−)
Nl

) × exp(−2μL) �= 0,

where we have introduced the total length L = L1 + · · · +
LNl .

In the particular case of symmetric gains g(+)
j = (g(−)

j )∗

(i.e., |g(+)
j | = |g(−)

j | since φ
(+)
j = −φ

(−)
j as said) for every j,

P is Hermitian (i.e., P = P†).
We will consider the case φ = 0 for each link, since in our

experiments phase delays are not present either in the fibers or
in the power splitters. In such a case, g(+)

j = g(−)
j = g j and

Pnm = g je
−sL j = Gj, Pmn = G∗

j . (9)

Directed active gains, that we are using in the experiment
reported here, correspond to set the blocked direction in the
symmetric elements of P to zero. Notably, this is a strong
source of losses, as the field incoming in the blocked direction
is dissipated in the optical isolator.

D. The LANER matrix

The field stationary solution A can be obtained by setting

A = PB = PSA . (10)

Equation (10) is satisfied for A �= 0 if A is an eigenvector of
the LANER matrix

N = PS, (11)
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with a corresponding eigenvalue λ = 1, leading to the charac-
teristic equation1

det(N − I ) = 0, (12)

where I is the identity matrix. The roots {s} in the complex
plane of the above equation can be found numerically by
standard routines. Equation (12) allows for the complete
determination both of the optical modes supported by the
cavity (matching conditions for the field) and of the threshold
condition (balance between the gains and the losses) in order
to have them lasing. Analytic solutions of (12) are often very
difficult to be found except for some simple cases.

We remark how, since the direction in every link is chosen
arbitrarily, Eq. (12) must admit the same set of solutions for all
the possible permutations G(+)

j → G(−)
j (Gj → G∗

j in the case
of symmetric scalar gains), for j ∈ H where H is an arbitrary
subset of the links index set. H thus represents the subset of
links where the propagation directions has been reverted.

Depending on the configuration (e.g., the topology of the
connections), we expect that the corresponding matrix N
might exhibit particular structures allowing the determination
of the properties of the modes. This problem represents the
mayor challenge of the linear, theoretical description of a
LANER.

E. Lossless LANER (empty cavity limit): The Hamiltonian case

Let us now discuss two particular cases, starting with the
situation of LANER with no gain nor losses, i.e., g j = 1.
This corresponds to the so-called empty cavity limit and can
be described mathematically by setting the elements of the
propagation matrix to pure dephasing terms only: Gj → eiKL j

(with K real). The propagation matrix is thus unitary P† = P,
reflecting the time-reversal invariance of the dynamics (which
is obviously broken in the presence of gain and losses). As
a consequence, the LANER matrix is unitary as well, N†N =
NN† = I and all the mode solutions of Eq. (12) are marginally
stable (i.e., the real part of the poles are all zeros) and the
dynamics would be akin to the one of a conservative system.
In this case, all the possible modes can lase and the equation
provides a way for calculating all of them regardless of their
effective action in the dynamics.

We also remark the close analogies of this situation with
quantum graphs which have been thoroughly investigated in
the realm of quantum chaos [17–19]. In this context, N is
termed the vertex scattering matrix. The equation for the
poles, Eq. (12), is formally equal to the one to determine the
quantum spectrum of a particle moving freely along the bonds
and scattered at the graph vertices. As an interesting extension
that may be of some relevance also in our case, we mention
that a form of dissipation has been also studied by considering
open graphs [19,20].

An experimental realization of quantum graphs is provided
by microwave networks which have been investigated in re-
cent years [21]. However, the LANER is not only different for
being an optical system but also for having as a novel element

1Equation (10) can be written in terms of B as well, using the matrix
M = SP. In particular, the eigenvalues of N and M are the same.

the optical gain (possibly in multiple links) which allows us to
achieve the lasing action.

From the general point of view of graph theory, a full
description of the LANER will require solving the electro-
magnetic wave equation coupled with suitable equation(s) for
population dynamics on the bonds. This would represent a
more general (and complicated) framework with respect to
the above discussed quantum graph limit. Of course, a suit-
able mapping procedure of the physical network to a graph
will be required as well; in the next section, we indicate a
possible approach to introduce a graph representation of the
LANER.

F. LANER and graphs

Another interesting limit is the one in which the prop-
agation approaches a “classical” limit corresponding to ray
dynamics [22]. This point of view has been successfully
employed to justify theoretically the Lévy distribution of
emission fluctuations, akin to the one observed for random
lasers [23–25]. To this aim, a Monte Carlo type of model has
been simulated in Ref. [15]. It consists of two steps: (i) a free
propagation of an ensemble of “rays” on the physical network,
each having an intensity that grows or decreases depending
on the local value of the gains g j , and (ii) random transitions
at each splitter with probabilities assigned according to the
values of the splitting factors (see Ref. [15] for details).

In this situation, it should be also useful to introduce a
simplified description of the dynamics as a (random) motion
on a graph that can be introduced as follows. Each vertex of
the graph represents a component of the field in a link and a
directed bond is the linear dependence of the target on the
source field. We define such a graph through its adjacency
matrix obtained by setting all the nonzero elements of the
matrix N to 1.

To illustrate the concept, we refer to the specific exam-
ple with Nl = 2Ns = 6 sketched in Fig. 3(a). The numbers
1±, 2±, . . . , 6± denote the 12 field components propagating
on each fiber and label the nodes of the associated graph,
Fig. 3(b). This example leads to a regular directed graph as
the number of incoming and outcoming links is equal to 2 for
each vertex. A red vertex indicates that the related mode link
is active; otherwise, it is passive if black. To illustrate how
the connectivity can be changed, we show in Fig. 3(c) how
the inclusion of isolators in the active links [represented in
Fig. 3(a) by the red arrows indicating the allowed directions]
leads to the removal of the blocked fields and therefore the
corresponding vertices are removed from the graph, which is
therefore pruned. It is worth noting that the system can lase
only if at least one active vertex is present in the pruned graph.

At the simplest level of description, the ray dynamics in
the LANER can be visualized as complicated motion yielding
a Markovian random walk [26] on such graphs while amplifi-
cation and damping can be introduced [15].

IV. LANER EXAMPLES

As examples, we discuss the simpler configurations real-
ized with few splitters in the 50 : 50 splitting ratio case, i.e.,
α = 1/2 in Eq. (3) and symmetric scalar gains. We notice how
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FIG. 3. A possible LANER configuration and its correspondent directed graph as described in the text. (a) The physical network: the
thick, red segments indicate the gain sections and the black, numbered arrows are the propagating fields along the fiber links. The insertion
of isolators imposes a single propagation direction in the active links (indicated by the red arrows on top of the gain sections). [(b), (c)]
The graphs represent the fields as vertices and the connections induced by the splitters as bonds: A targeted mode is linearly dependent on
the sourced one. The red and black dots indicate that the links are respectively active or passive. (c) Change in the connectivity induced by
the insertion of the isolators in the physical network (a): The graph (b) is pruned as the opaque parts are removed.

the zero splitter LANER is the standard laser, either in a loop
(ring) or linear cavity.

Starting with the case of a single splitter, we consider the
configuration 1PARA represented in Fig. 4(a) as the simplest,
nontrivial LANER. The gains are oriented (in all the exam-
ples) according to the arrows depicted in the figure; i.e., the
propagation gain along the arrow in a link j is Gj and G∗

j in
the opposite direction. The propagation matrix is given in the
appendix. In the case of two splitters, we consider the 2PARA
and 2PERP configurations as depicted in Figs. 4(b) and 4(c),
respectively. Their matrices are also reported in the appendix.

FIG. 4. LANER examples: (a) 1PARA, (b) 2PARA, and (c)
2PERP. The arrows indicate the (arbitrarily chosen) reference propa-
gation directions. Red blocks depict possible position choices for the
active gains.

We mention that for the simple configurations such as
the 1PARA and 2PARA, the representative graphs are dis-
joint [15], indicating that two sets of independent propaga-
tions are possible in such LANERs. Such a feature in terms
of ray dynamics can be interpreted as the independence of the
two correspondent Euler paths [27] in the graph.

Let us illustrate in Fig. 5 the spectral and emission features
for the three configurations. We first show the onset of the
laser action by computing the poles sn = μn + ikn numeri-
cally from Eq. (12) and plotting them in the complex plane
for increasing gain values [see Figs. 5(b), 5(d) and 5(f)]. In
all cases, above a critical value, a set of resonances cross the
real axis and the associated modes grow with rate μn > 0 and
start to lase. Since we assumed an infinite gain bandwidth, the
dynamics will involve an infinite number of unstable modes
above threshold (in practice, it will be very high dimensional,
with order of 105 or more modes [15]). Also, we checked that
the integrated density of states, namely the number of modes
below k grows on average linearly, as expected from the Weyl
law for one-dimensional structure [18].

What is experimentally accessible is the beating spectrum
of the field intensity measured at the detection point x0 along
the chosen direction, i.e., the modulus of the Fourier transform
of the modulus of the field F ,

|F (x0)|2 = |�nFne−iknx0 |2
= �n,mFnF ∗

m e−i(kn−km )x0 , (13)
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FIG. 5. (Numerics) Threshold behavior of various LANER systems upon increasing gain on one link. Results for 1PARA [(a), (b)], 2PARA
[(c), (d)], and 2PERP [(e), (f)]. Panels (a), (c), and (e) are the beating spectra (in arbitrary units) computed as described in the text; panels (b),
(d), and (f) are poles in the complex plane. The chosen lengths are L1 = 9.16 m, L2 = 18.12 m (1PARA) and L1 = 9.16 m, L2 = 18.12 m, L3 =
5.24 m, L4 = 10.0 m (2PARA, 2PERP); the loss factors are gj = 0.9 on all the links except the one specified in the figures. The spectra are
computed considering roughly 103–104 poles in each case.

showing peaks at all the possible differences (within the
available detection bandwidth) of the optical modes involved.
Thus, for a given set of M values of the wave numbers kn, we
compute all the differences kn − km belonging to a given inter-
val (0, β ), with β being an assigned bandwidth. Such beatings
are evaluated for the lasing modes (those with μn > 0) and
their distribution is plotted [see Figs. 5(a), 5(c) and 5(e)]. The
result represents a qualitative estimation, showing a structure
that can be directly compared with the experiment.

V. THE LANER AS A LATTICE

An important case to consider is when the links are all
multiples of the same length L0, i.e., the LANER is a lattice
and L0 is the lattice periodicity:

Lj = n jL0, (14)

with {n j} being a set of positive integers. Such a circumstance
is intentionally avoided in the quantum graphs literature as
it may lead to dynamical quasiperiodicity that hinders the
observation of universal spectral features [18] but it is very
instructive to gain insight in the spectral structure.

According to Eq. (14), the gain terms turn to be invariant
under the transformation s → s + iK0, where K0 = 2π/L0.
The spectrum is therefore periodic along the wave-vector
(imaginary) axis and the period K0 is the free spectral range
(FSR; see, e.g., Ref. [12]) of the cavity: The above result
amounts to identify the FSR with the first Brillouin zone in
solid-state physics (see, e.g., Ref. [28]). In particular, one can
consider the first zone as [−π/L0, π/L0) and, since if s is a
solution s∗ is a solution as well, it follows that the independent
solutions are only those in [0, π/L0).

Another remarkable feature is that in this case the poles
can be evaluated as zeros of a polynomial and can be thus
enumerated exactly. To see this, let us introduce the complex

variable e−sL0 = z and define

Q(z, z∗) = det(N − I ) . (15)

In the case of symmetric scalar gains, by inspection of Q one
can find that all its terms are of the form

a jz
m(z∗)l + a∗

j z
l (z∗)m, (16)

where the coefficients a are products of the g’s. Indeed, since
in our case P is Hermitian and S is real and symmetric, it holds
that

Q∗ = det(P∗S∗ − I )

= det((SP)T − I ) = det(SP − I ) = Q . (17)

Q is thus a real polynomial, with a degree D = ∑
l nl both

in z and z∗, and admits D solutions in the Brillouin (half)
zone. The full solution for the poles s is obtained by periodic
extension taking all branches of the logarithm function with
the appropriate periodicity.

We notice that in general the characteristic equation

det(N (G, G∗) − I ) = C(G, G∗) = 0, (18)

where for brevity {G, G∗} denotes the arrays of the Gj, G∗
j ,

must admit the same set of solutions not only by replacing
Gj ↔ G∗

j for all j’s (to invert all the propagation direction in
the links) but also in the case of the more general symmetry

Gj ↔ G∗
j , j ∈ H, (19)

where H is an arbitrary subset of the links index set. As said,
such a property is a direct consequence of the possibility to
choose arbitrarily the propagation direction in every link.

Besides, it is always possible to write the propagation
matrix as

P(G, G∗) = T1(G, G∗) + T2(G, G∗), (20)

where T1 (respectively, T2) is a lower (upper) triangular matrix
and, with a proper choice of the orientation in the links, we
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FIG. 6. The poles in the complex plane for the 1PARA config-
uration with lengths having rational rations; see Eq. (23) and text.
Only the data in the range |k| < π/L0 are reported (corresponding to
first Brillouin zone); the gains are g1 = 1.3, g2 = 0.7. [(a)–(c)] Case
n2 = Nn1, solid blue line is the analytical curve, Eq. (26); [(d)–(e)] n1

and n2 are successive values of the Fibonacci series. For comparison,
the real parts have been multiplied by the total length (n1 + n2).

can order the gains in such a way that, e.g., all and only the
G’s (respectively, G∗’s) are T1 (T2) elements. Finally, using
P = P†, it follows that

P(G, G∗) = T (G) + T (G)†, (21)

where T = T1. The characteristic equation thus can be solved
by considering

C(G, G) = 0, (22)

together with the symmetry Gj ↔ G∗
j ,∀ j (if Gj is a solution

G∗
j is a solution as well).
As an example, we discuss the 1PARA spectrum in the

lattice configuration. We first set

L1 = n1L0, L2 = n2L0; (23)

to find the poles of the characteristic equation is sufficient to
solve

1 + g1g2zn1+n2 − 1√
2

(g1zn1 + g2zn2 ) = 0, (24)

where z = e−sL0 , given the spectrum symmetry discussed
above.

For illustration, let us first consider the case n2 = Nn1,
where now z = e−sn1L0 , yielding N + 1 solutions of Eq. (24)
for z. Then, for each of them we need to solve an n1-order
equation for the s, obtaining n1 poles with the same real part.
Therefore, the spectrum displays a further symmetry, splitting
in n1 profiles (i.e., the Brillouin zone), each containing N + 1
poles.

As seen in the Figs. 6(a)–6(c), for increasing N the poles
distribute along a well-defined curve after a suitable rescaling
of the real part. This can be demonstrated analytically looking

for solutions of the type

z = e−(μ+ik)L0 = e−(y(x)/N+ix)L0 , (25)

where x, y are independent of N for N 	 1. Substituting in
the polynomial equation, we obtain

y(x) = log

∣∣∣∣
(

g1e−ix − 1√
2

)
g2

∣∣∣∣ − log

∣∣∣∣1 − 1√
2

g1e−ix

∣∣∣∣,
(26)

which is depicted as a solid line in the figure, showing a very
good agreement with the numerical solutions.

Another interesting example is the case in which the inte-
gers n1 and n2 are pairs of consecutive terms in the Fibonacci
series so that the ratio of the two physical lengths L2/L1

approaches the golden ratio (
√

5 + 1)/2 for increasingly large
n1 and n2. Some of the first steps of the construction are given
in Figs. 6(d)–6(e) that allows us to appreciate the structure of
the spectrum. It should be noticed that the poles are confined
in a horizontal strip in the complex plane, meaning that the
growth and decay rates are bounded.

As an additional remark, note the qualitative similarity
of the spectra obtained by rational approximation with the
numerical solution reported in Fig. 5(b), originating from
the choice L2 ≈ 2L1. This confirms that the procedure illus-
trated in this section can be useful to understand the spectral
structure.

To conclude this section, we remark that the lattice ap-
proach can be an effective description of real setups. Indeed,
when using arbitrary length fibers and splitters, the LANER
can be approximated by a sequence of lattices with increas-
ingly smaller periodicity L0.; e.g., L0 → 10−rL0, leading to
n j → 10rn j . As a consequence, the link length is described
by an increasing number of digits and the spectrum remains
almost the same upon rescaling of the frequency axis (by a
factor ≈10r). This approach can be thus considered as an
increasingly accurate rational approximation of the spectrum.
In a physical system, the ultimate limit for L0 would be
represented by the field wavelength; in practice, many effects
may affect the observable FSR.

VI. EXPERIMENT

A. Experimental setup

In this section, we present the main phenomenology found
in the experimental realizations of the configurations outlined
in Fig. 4, focusing on the laser emission and the basic fea-
tures of the spectrum and leaving more detailed and specific
investigations to future studies. Indeed, besides the features of
a laser process that can be evidenced already in the dc total
intensity, a complicated structure of the emission spectrum of
a LANER is expected as, e.g., gain is varied.

As discussed in Sec. II, a LANER can be physically
realized in many ways depending on the components cho-
sen. For instance, a different splitting ratio of the 2 × 2
unitary splitters considered before can strongly influence the
results obtained in the same topology already in the simplest
configurations.

In the present work, we focus on experimental setups
characterized by the choices: The physical network is build
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FIG. 7. Block setup for the case of Fig. 4(b) (2PARA). Left: (Oriented) active section composed of a 980-nm pumped, Er3+ fiber, WDMs
combining and separating pump and 1.55-μm signals and an optical isolator. Center: The rest of the system. Right: The frequency and
time-domain detection and acquisition section.

using single-mode optical fibers and standard, 2 × 2 lossless,
reciprocal, and matched optical splitters. The 50 : 50 splitting
ratio has been used in the all configurations here considered.
An example of an experimental setup organized in a block
structure is outlined in Fig. 7.

The gain in the active links is provided by ≈1.5-m erbium-
doped optical fiber(s), pumped by 980-nm power laser(s).
In the gain section(s), input and output wavelength demulti-
plexers (WDMs) are used to couple and decouple the pump
beam to and from the 1550-nm signal beam. The unused
output port of the WDM-OUT can be used to monitor the
amount of pump power not absorbed by the system. The active
links are directed; i.e., optical isolators assure the unidi-
rectional propagation of the signal beam. This represents a
relevant simplification in the expected experimental effects,
since possible spatial effects in the active medium (such as
spatial hole burning due to the interference between the two
counterpropagating fields) are avoided. The currents of the
pump lasers represent the main control parameters of our
setup, as they are directly related to the coherent amplifica-
tion in the active links: An arbitrary number of them can
be active simultaneously and independently. A single-gain,
directed setup for an active link is depicted in the left part
of Fig. 7.

The detection is performed by inserting in a link a 2 × 2
optical coupler with ratio of 50 : 50. The split field intensity
is collected in the proper direction either with high-bandwidth
(8 GHz) or low-bandwidth (150 MHz), high-sensitivity pho-
todetectors. The detector current is then sent to a radio-
frequency spectrum analyzer and/or a fast digital oscilloscope.
A detection and measuring section is illustrated in the right
part of Fig. 7.

B. Experimental results

The first experimental configurations investigated are de-
picted in Fig. 8. A main ring is built including the active
fiber, an optical isolator, and three 50 : 50 optical splitters;
one of them is devoted to bring out the field for the detection.
The total length of the ring is measured pumping the active
fiber in order to have a laser emission. The measured intensity
spectrum, characterized by equally spaced peaks is typical of
a ring laser (see, e.g., Ref. [12]) and allows us to estimate
the cavity length by measuring the peak frequency separa-
tion. With the same method, by properly replacing the fiber
links, it is possible to measure the lengths of the other rings.
In the configuration depicted in the figure, some additional
optical splitters have been inserted (such as those in the upper
and lower rings) to gain flexibility in the reorganization of
the links at the expenses of an higher level of losses in
the cavity. In particular, we can switch from the 1PARA to
the 2PARA configuration by inserting the upper fiber only
(the part in the dashed lines box), while maintaining all the
features (e.g., lengths) of the rest of the physical network.
Notably, in this case the level of losses will decrease because
the upper splitter will not drain power: We therefore expect
at least a different value for the threshold current in the two
configurations.

As a first result, we present in Fig. 9 the total emission
curve as a function of the pump laser current for the 1PARA
configuration. This is obtained by a direct measurement of
the emitted intensity with a 1.55-μm optical power meter
(black curves), and simultaneously monitoring the fraction of
the 980-nm pump laser intensity (red curve) exiting from the
unused output port of the WDM-OUT (see also Fig. 7). A
clear evidence of a laser emission is obtained, with the typical
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FIG. 8. Experimental setup for the 1PARA and 2PARA config-
urations. The unconnected ports of the splitters allow us to expand
the LANER without modifications to the existing parts (see the top
ring), at the expenses of an higher amount of losses in the simpler
arrangements.

intensity-versus-pump behavior displaying a threshold point
at I = 43.1 mA.

As seen in the figure, the change in the slope (corner) of
the red curve indicates a strong change in the energy absorbed

FIG. 9. Measurements of the LANER emitter power as a func-
tion of the laser pump current (black) for the 1PARA configuration.
An hysteresis cycle is visible for intermediate pumping power. Inset:
the same curve in semilog scale showing clearly the lasing transition.
Red curve: laser pump power measured at the unused port of the
WDM-out (see Fig. 7); the curve has been rescaled for comparison.
The slope change indicates the LANER threshold at I = 43.1 mA as
well.

FIG. 10. Measurement of the laser pump power detected at the
unused port of the WDM-out (see Fig. 7) for the 1PARA and
2PARA configurations. The corner points indicating the thresholds
are marked.

by the erbium active medium as the lasing process starts. This
method allows an easier estimation of the threshold since the
monitoring does not need to reconfigure the detection setup.
As an example, we report in Fig. 10 the threshold estimation
in the 1PARA and 2PARA setups performed in this way.

We also observe that a different level of emission, resulting
in an hysteresis cycle when increasing and decreasing the
pump laser current is found at intermediate level of pumping
(see Fig. 9). Such a phenomenon is expected when nonlinear
effects related to far-from-threshold pumpings enter into play
and this will be the object of further investigations.

The dynamics in erbium-doped fiber laser is commonly
expected [29] to belong to the class-B lasers [30]. In such a
class, a peculiar feature of the laser dynamics is the relax-
ation toward stationary, stable lasing states through damped
oscillations. Such transient phenomenon, named relaxation
oscillations (RO) (see, e.g., Ref. [31]) can be observed in the
presence of noise as well as a sustained peak in the laser
intensity power spectrum. A typical feature of RO is the
square-root scaling of their frequency with the normalized
laser pump current (I − Ith )/Ith, where Ith is the laser pump
current threshold.

We report in Fig. 11 the direct measurement of the fre-
quency of RO both in the 1PARA and 2PARA configurations.
The curves follow the predicted scaling with the pump, thus
confirming the laser nature of the LANER emission. It is
interesting to note that a strong separation is observed between
the dynamical oscillation frequencies, related to the field prop-
agation delays on the MHz scales, and the natural frequency
of the RO the kHz scales, which is instead pump dependent.

Most of the dynamical features of the LANER emission
can be studied in the spectrum of the emitted intensity, as
it can be compared with the findings of the linear theory.
It is worth remembering, however, that the detected signal
spectrum shows the beatings of the optical modes involved
which are estimated by the theory.

In Fig. 12, we show the power spectrum of the emitted
intensity in the 1PARA configuration for increasing values of
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FIG. 11. Measurements of the relaxation oscillations frequency
for the 1PARA and 2PARA configurations as a function of the pump
laser current. Inset: rescaled curves for the two configurations (see
text). The dashed line is a power law with exponent 1/2.

the pump laser current. Below the threshold value (at about
I = 43.1 mA as said), no emission is obtained (see the first
top spectrum); increasing the pump, the emission starts and
many peaks appear, distributed in an irregular but apparently
close to a periodic sequence. As shown in the figure (see also
the inset), increasing the pump apparently does not produce
relevant changes in the beating spectrum, apart from a general
increase of the peak height. In particular, the smaller peaks
could be generated by the beatings between higher harmonics
due to nonlinear effects.

In Fig. 13, we report the same type of measurement for the
2PARA configuration realized by adding the top fiber link as
shown in Fig. 8. The approximate periodicity of the spectrum
is quickly lost for more complicated configurations (see also
the inset), at least in the available measurement bandwidth
window.

FIG. 12. Experimental power spectra of the LANER emitted
intensity in the 1PARA configuration for increasing values of the
pump laser current. The threshold is Ith = 43.1 mA. Each spectrum
is shifted vertically by 100 dB from the previous one. The inset is an
enlargement of the spectrum at I = 44 mA.

FIG. 13. Experimental power spectra of the LANER emitted
intensity in the 2PARA configuration for increasing values of the
pump laser current. The threshold is Ith = 37 mA. Each spectrum
is shifted vertically by 50 dB from the previous one. The inset is a
larger bandwidth spectrum at I = 43 mA.

As a final example, we consider the 2PERP configuration
sketched in Fig. 14. A peculiar feature of this setup is the
presence of two active links, each realized as in the left block
of Fig. 7. Notably, while in the previous 1PARA and 2PARA
setups the optical isolator determined the unidirectional prop-
agation in all the system, this does not occur in the 2PERP
even using two of them. In particular, as can be seen in Fig. 14,
the (forced) unidirectional propagation in the links 1 and 4
does not a priori lead to same behavior in the links 2 and 3;
therefore, both sides of the detection splitter can be used to
simultaneously measure the fields in the two directions.

In the present work, we limit ourselves to present the
effect of the two combined gains as shown in Fig. 15, in a
regime where both the pumped fibers are acting as coherent
amplifiers (i.e., the corresponding pump laser currents are

FIG. 14. Experimental setup for the 2PERP configuration.
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FIG. 15. Experimental power spectra for the 2PERP configura-
tion when scanning the two pump laser currents. The inset shows a
larger bandwidth spectrum for I1 = 40 mA, I2 = 60 mA.

large enough). As shown in the figure, a complicated situation
occurs, with structured spectra with many peaks found in the
two-dimensional parameter space of the gains. Multistabilities
in the emission are also possible, as a consequence of the
interplay of the involved fields.

All the reported phenomenology measured in the three
configurations can be compared with those evaluated by com-
puting the linear spectra in Fig. 5, showing a good qualitative
agreement.

VII. CONCLUSIONS

The LANER represents an optical scheme generalizing the
standard laser setups, both in the geometry of the cavity and in
the number of active media providing coherent amplification.
In this work, we have described in details the main ingredients
of the system, remarking on the generality of the approach
potentially capable of employing a large variety of compo-
nents to obtain increasingly complicated configurations. The
LANER can also represent a powerful and flexible experi-
mental framework for the investigation of the dynamics on
a physical network, where all the control parameters and the
variables (related to the involved optical fields) can be easily
measured.

In a theoretical approach, the LANER is described by a
general propagation matrix containing the connections (topol-
ogy) and the lengths and gains (metrics). A global scatter-
ing matrix, containing the transfer properties of the optical
couplers connecting the links, provides the suitable boundary
conditions for the fields. The problem defined by Eq. (12)
for the LANER matrix allows the determination of the poles
for the wave solutions of the system representing the gener-
alization of the corresponding problem for the standard laser.
The structure of the solutions resembles that found for highly
multimode laser systems; however, a LANER could be much
more complicated because of the freedom in its topology (i.e.,
the geometry of the connections).

Besides the details of the theoretical description, we have
discussed some specific limit cases of particular interest as
they relate to well-known frameworks: the Hamiltonian (gain-
and lossless cavity) and lattice (all links multiples of the same
length) setups. They both show the potentiality of the LANER
to experimentally realize such difficult schemes. Furthermore,
the close connection with the graph theory is suggested with
a general method to represent a LANER as a directed graph,
determining easily the adjacency matrix of the latter. In this
way, an even closer connection with the quantum chaos topics
and the problem of amplification and diffusion on a graph has
been established.

To provide examples of the approach, we have studied
some simple configurations that can be realized with few
couplers, showing the corresponding matrices and numerical
solutions of the characteristic problem with the determination
of the poles.

From an experimental point of view, a general discussion
of the possible implementations has been provided, suggest-
ing that a completely new avenue of studies can be initiated.
Furthermore, we have presented the specific phenomenology
of the experimental realizations of the simpler configurations
studied in the theory, giving evidence of the onset of the laser
emission above a critical pumping of the active media. We
have also reported measurements of the spectra of the emitted
intensity where the beatings of the involved modes depict a
complicated scenario. As shown by our experiments, the setup
is more suited to study small networks. However, possible
implementation with scalable integrated optics devices can be
envisaged to easily realize networks of hundreds to thousands
elements.

To conclude, we have characterized the LANER as an
optical scheme with laser action and a fully controllable
topological disorder induced by the link connections. Since
multiple and independent gain sections can be used as well,
the LANER would allow new investigations, ranging from
dynamics on physical networks of increasing size to the effect
of the cavity topology on the laser emission. We finally remark
that the identifications of the key points leading to general
results will represent a major challenge of this research.
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APPENDIX: LANER EXAMPLES MATRICES

The 1PARA propagation matrix is

P =

⎛
⎜⎝

0 0 G1 0
0 0 0 G2

G∗
1 0 0 0

0 G∗
2 0 0

⎞
⎟⎠ (A1)

and the network matrix is

N = PS = 1√
2

⎛
⎜⎝

G1 −G1 0 0
G2 G2 0 0
0 0 G∗

1 G∗
1

0 0 −G∗
2 G∗

2

⎞
⎟⎠ . (A2)
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In this case, Eq. (12) factorizes as[
1 + G∗

1G∗
2 − 1√

2
(G∗

1 + G∗
2 )

][
1 + G1G2 − 1√

2
(G1 + G2)

]
= 0 . (A3)

The 2PARA propagation matrix is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 G1 0 0 0 0 0
0 0 0 0 G2 0 0 0

G∗
1 0 0 0 0 0 0 0

0 0 0 0 0 0 G∗
3 0

0 G∗
2 0 0 0 0 0 0

0 0 0 0 0 0 0 G∗
4

0 0 0 G3 0 0 0 0
0 0 0 0 0 G4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A4)

and the network matrix is

N = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1 −G1 0 0 0 0 0 0
0 0 0 0 0 0 G2 G2

0 0 G∗
1 G∗

1 0 0 0 0
0 0 0 0 G∗

3 −G∗
3 0 0

0 0 −G∗
2 G∗

2 0 0 0 0
0 0 0 0 G∗

4 G∗
4 0 0

G3 G3 0 0 0 0 0 0
0 0 0 0 0 0 −G4 G4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The 2PERP propagation matrix is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 G1

0 0 0 0 0 G2 0 0
0 0 0 0 0 0 G3 0
0 0 0 0 G4 0 0 0
0 0 0 G∗

4 0 0 0 0
0 G∗

2 0 0 0 0 0 0
0 0 G∗

3 0 0 0 0 0
G∗

1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A5)

and the network matrix is

N = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 G1 G1 0 0
0 0 0 0 0 0 −G2 G2

0 0 0 0 G3 −G3 0 0
0 0 0 0 0 0 G4 G4

G∗
4 G∗

4 0 0 0 0 0 0
0 0 −G∗

2 G∗
2 0 0 0 0

G∗
3 −G∗

3 0 0 0 0 0 0
0 0 G∗

1 G∗
1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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